Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / sparse / frame / test_apply.py

import numpy as np
import pytest

from pandas import DataFrame, Series, SparseDataFrame, bdate_range
from pandas.core import nanops
from pandas.core.sparse.api import SparseDtype
from pandas.util import testing as tm


@pytest.fixture
def dates():
    return bdate_range("1/1/2011", periods=10)


@pytest.fixture
def empty():
    return SparseDataFrame()


@pytest.fixture
def frame(dates):
    data = {
        "A": [np.nan, np.nan, np.nan, 0, 1, 2, 3, 4, 5, 6],
        "B": [0, 1, 2, np.nan, np.nan, np.nan, 3, 4, 5, 6],
        "C": np.arange(10, dtype=np.float64),
        "D": [0, 1, 2, 3, 4, 5, np.nan, np.nan, np.nan, np.nan],
    }

    return SparseDataFrame(data, index=dates)


@pytest.fixture
def fill_frame(frame):
    values = frame.values.copy()
    values[np.isnan(values)] = 2

    return SparseDataFrame(
        values, columns=["A", "B", "C", "D"], default_fill_value=2, index=frame.index
    )


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning")
def test_apply(frame):
    applied = frame.apply(np.sqrt)
    assert isinstance(applied, SparseDataFrame)
    tm.assert_almost_equal(applied.values, np.sqrt(frame.values))

    # agg / broadcast
    # two FutureWarnings, so we can't check stacklevel properly.
    with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
        broadcasted = frame.apply(np.sum, broadcast=True)
    assert isinstance(broadcasted, SparseDataFrame)

    with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
        exp = frame.to_dense().apply(np.sum, broadcast=True)
    tm.assert_frame_equal(broadcasted.to_dense(), exp)

    applied = frame.apply(np.sum)
    tm.assert_series_equal(applied, frame.to_dense().apply(nanops.nansum).to_sparse())


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
def test_apply_fill(fill_frame):
    applied = fill_frame.apply(np.sqrt)
    assert applied["A"].fill_value == np.sqrt(2)


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
def test_apply_empty(empty):
    assert empty.apply(np.sqrt) is empty


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
def test_apply_nonuq():
    orig = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["a", "a", "c"])
    sparse = orig.to_sparse()
    res = sparse.apply(lambda s: s[0], axis=1)
    exp = orig.apply(lambda s: s[0], axis=1)

    # dtype must be kept
    assert res.dtype == SparseDtype(np.int64)

    # ToDo: apply must return subclassed dtype
    assert isinstance(res, Series)
    tm.assert_series_equal(res.to_dense(), exp)

    # df.T breaks
    sparse = orig.T.to_sparse()
    res = sparse.apply(lambda s: s[0], axis=0)  # noqa
    exp = orig.T.apply(lambda s: s[0], axis=0)

    # TODO: no non-unique columns supported in sparse yet
    # tm.assert_series_equal(res.to_dense(), exp)


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
def test_applymap(frame):
    # just test that it works
    result = frame.applymap(lambda x: x * 2)
    assert isinstance(result, SparseDataFrame)


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
def test_apply_keep_sparse_dtype():
    # GH 23744
    sdf = SparseDataFrame(
        np.array([[0, 1, 0], [0, 0, 0], [0, 0, 1]]),
        columns=["b", "a", "c"],
        default_fill_value=1,
    )
    df = DataFrame(sdf)

    expected = sdf.apply(np.exp)
    result = df.apply(np.exp)
    tm.assert_frame_equal(expected, result)