Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / sparse / frame / test_frame.py

import operator
from types import LambdaType

import numpy as np
from numpy import nan
import pytest

from pandas._libs.sparse import BlockIndex, IntIndex
from pandas.errors import PerformanceWarning

import pandas as pd
from pandas import DataFrame, Series, bdate_range, compat
from pandas.core import ops
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.sparse import frame as spf
from pandas.core.sparse.api import (
    SparseArray,
    SparseDataFrame,
    SparseDtype,
    SparseSeries,
)
from pandas.tests.frame.test_api import SharedWithSparse
from pandas.util import testing as tm

from pandas.tseries.offsets import BDay


def test_deprecated():
    with tm.assert_produces_warning(FutureWarning):
        pd.SparseDataFrame({"A": [1, 2]})


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
class TestSparseDataFrame(SharedWithSparse):
    klass = SparseDataFrame

    # SharedWithSparse tests use generic, klass-agnostic assertion
    _assert_frame_equal = staticmethod(tm.assert_sp_frame_equal)
    _assert_series_equal = staticmethod(tm.assert_sp_series_equal)

    def test_iterrows(self, float_frame, float_string_frame):
        # Same as parent, but we don't ensure the sparse kind is the same.
        for k, v in float_frame.iterrows():
            exp = float_frame.loc[k]
            tm.assert_sp_series_equal(v, exp, check_kind=False)

        for k, v in float_string_frame.iterrows():
            exp = float_string_frame.loc[k]
            tm.assert_sp_series_equal(v, exp, check_kind=False)

    def test_itertuples(self, float_frame):
        for i, tup in enumerate(float_frame.itertuples()):
            s = self.klass._constructor_sliced(tup[1:])
            s.name = tup[0]
            expected = float_frame.iloc[i, :].reset_index(drop=True)
            tm.assert_sp_series_equal(s, expected, check_kind=False)

    def test_fill_value_when_combine_const(self):
        # GH12723
        dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float")
        df = SparseDataFrame({"foo": dat}, index=range(6))

        exp = df.fillna(0).add(2)
        res = df.add(2, fill_value=0)
        tm.assert_sp_frame_equal(res, exp)

    def test_values(self, empty_frame, float_frame):
        empty = empty_frame.values
        assert empty.shape == (0, 0)

        no_cols = SparseDataFrame(index=np.arange(10))
        mat = no_cols.values
        assert mat.shape == (10, 0)

        no_index = SparseDataFrame(columns=np.arange(10))
        mat = no_index.values
        assert mat.shape == (0, 10)

    def test_copy(self, float_frame):
        cp = float_frame.copy()
        assert isinstance(cp, SparseDataFrame)
        tm.assert_sp_frame_equal(cp, float_frame)

        # as of v0.15.0
        # this is now identical (but not is_a )
        assert cp.index.identical(float_frame.index)

    def test_constructor(self, float_frame, float_frame_int_kind, float_frame_fill0):
        for col, series in float_frame.items():
            assert isinstance(series, SparseSeries)

        assert isinstance(float_frame_int_kind["A"].sp_index, IntIndex)

        # constructed zframe from matrix above
        assert float_frame_fill0["A"].fill_value == 0
        # XXX: changed asarray
        expected = pd.SparseArray(
            [0, 0, 0, 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], fill_value=0, kind="block"
        )
        tm.assert_sp_array_equal(expected, float_frame_fill0["A"].values)
        tm.assert_numpy_array_equal(
            np.array([0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]),
            float_frame_fill0["A"].to_dense().values,
        )

        # construct no data
        sdf = SparseDataFrame(columns=np.arange(10), index=np.arange(10))
        for col, series in sdf.items():
            assert isinstance(series, SparseSeries)

        # construct from nested dict
        data = {c: s.to_dict() for c, s in float_frame.items()}

        sdf = SparseDataFrame(data)
        tm.assert_sp_frame_equal(sdf, float_frame)

        # TODO: test data is copied from inputs

        # init dict with different index
        idx = float_frame.index[:5]
        cons = SparseDataFrame(
            float_frame,
            index=idx,
            columns=float_frame.columns,
            default_fill_value=float_frame.default_fill_value,
            default_kind=float_frame.default_kind,
            copy=True,
        )
        reindexed = float_frame.reindex(idx)

        tm.assert_sp_frame_equal(cons, reindexed, exact_indices=False)

        # assert level parameter breaks reindex
        with pytest.raises(TypeError):
            float_frame.reindex(idx, level=0)

        repr(float_frame)

    def test_constructor_fill_value_not_scalar_raises(self):
        d = {"b": [2, 3], "a": [0, 1]}
        fill_value = np.array(np.nan)
        with pytest.raises(ValueError, match="must be a scalar"):
            SparseDataFrame(data=d, default_fill_value=fill_value)

    def test_constructor_dict_order(self):
        # GH19018
        # initialization ordering: by insertion order if python>= 3.6, else
        # order by value
        d = {"b": [2, 3], "a": [0, 1]}
        frame = SparseDataFrame(data=d)
        if compat.PY36:
            expected = SparseDataFrame(data=d, columns=list("ba"))
        else:
            expected = SparseDataFrame(data=d, columns=list("ab"))
        tm.assert_sp_frame_equal(frame, expected)

    def test_constructor_ndarray(self, float_frame):
        # no index or columns
        sp = SparseDataFrame(float_frame.values)

        # 1d
        sp = SparseDataFrame(
            float_frame["A"].values, index=float_frame.index, columns=["A"]
        )
        tm.assert_sp_frame_equal(sp, float_frame.reindex(columns=["A"]))

        # raise on level argument
        msg = "Reindex by level not supported for sparse"
        with pytest.raises(TypeError, match=msg):
            float_frame.reindex(columns=["A"], level=1)

        # wrong length index / columns
        with pytest.raises(ValueError, match="^Index length"):
            SparseDataFrame(float_frame.values, index=float_frame.index[:-1])

        with pytest.raises(ValueError, match="^Column length"):
            SparseDataFrame(float_frame.values, columns=float_frame.columns[:-1])

    # GH 9272
    def test_constructor_empty(self):
        sp = SparseDataFrame()
        assert len(sp.index) == 0
        assert len(sp.columns) == 0

    def test_constructor_dataframe(self, float_frame):
        dense = float_frame.to_dense()
        sp = SparseDataFrame(dense)
        tm.assert_sp_frame_equal(sp, float_frame)

    def test_constructor_convert_index_once(self):
        arr = np.array([1.5, 2.5, 3.5])
        sdf = SparseDataFrame(columns=range(4), index=arr)
        assert sdf[0].index is sdf[1].index

    def test_constructor_from_series(self):

        # GH 2873
        x = Series(np.random.randn(10000), name="a")
        x = x.to_sparse(fill_value=0)
        assert isinstance(x, SparseSeries)
        df = SparseDataFrame(x)
        assert isinstance(df, SparseDataFrame)

        x = Series(np.random.randn(10000), name="a")
        y = Series(np.random.randn(10000), name="b")
        x2 = x.astype(float)
        x2.loc[:9998] = np.NaN
        # TODO: x_sparse is unused...fix
        x_sparse = x2.to_sparse(fill_value=np.NaN)  # noqa

        # Currently fails too with weird ufunc error
        # df1 = SparseDataFrame([x_sparse, y])

        y.loc[:9998] = 0
        # TODO: y_sparse is unsused...fix
        y_sparse = y.to_sparse(fill_value=0)  # noqa
        # without sparse value raises error
        # df2 = SparseDataFrame([x2_sparse, y])

    def test_constructor_from_dense_series(self):
        # GH 19393
        # series with name
        x = Series(np.random.randn(10000), name="a")
        result = SparseDataFrame(x)
        expected = x.to_frame().to_sparse()
        tm.assert_sp_frame_equal(result, expected)

        # series with no name
        x = Series(np.random.randn(10000))
        result = SparseDataFrame(x)
        expected = x.to_frame().to_sparse()
        tm.assert_sp_frame_equal(result, expected)

    def test_constructor_from_unknown_type(self):
        # GH 19393
        class Unknown:
            pass

        with pytest.raises(
            TypeError,
            match=(
                "SparseDataFrame called with unknown type "
                '"Unknown" for data argument'
            ),
        ):
            SparseDataFrame(Unknown())

    def test_constructor_preserve_attr(self):
        # GH 13866
        arr = pd.SparseArray([1, 0, 3, 0], dtype=np.int64, fill_value=0)
        assert arr.dtype == SparseDtype(np.int64)
        assert arr.fill_value == 0

        df = pd.SparseDataFrame({"x": arr})
        assert df["x"].dtype == SparseDtype(np.int64)
        assert df["x"].fill_value == 0

        s = pd.SparseSeries(arr, name="x")
        assert s.dtype == SparseDtype(np.int64)
        assert s.fill_value == 0

        df = pd.SparseDataFrame(s)
        assert df["x"].dtype == SparseDtype(np.int64)
        assert df["x"].fill_value == 0

        df = pd.SparseDataFrame({"x": s})
        assert df["x"].dtype == SparseDtype(np.int64)
        assert df["x"].fill_value == 0

    def test_constructor_nan_dataframe(self):
        # GH 10079
        trains = np.arange(100)
        thresholds = [10, 20, 30, 40, 50, 60]
        tuples = [(i, j) for i in trains for j in thresholds]
        index = pd.MultiIndex.from_tuples(tuples, names=["trains", "thresholds"])
        matrix = np.empty((len(index), len(trains)))
        matrix.fill(np.nan)
        df = pd.DataFrame(matrix, index=index, columns=trains, dtype=float)
        result = df.to_sparse()
        expected = pd.SparseDataFrame(matrix, index=index, columns=trains, dtype=float)
        tm.assert_sp_frame_equal(result, expected)

    def test_type_coercion_at_construction(self):
        # GH 15682
        result = pd.SparseDataFrame(
            {"a": [1, 0, 0], "b": [0, 1, 0], "c": [0, 0, 1]},
            dtype="uint8",
            default_fill_value=0,
        )
        expected = pd.SparseDataFrame(
            {
                "a": pd.SparseSeries([1, 0, 0], dtype="uint8"),
                "b": pd.SparseSeries([0, 1, 0], dtype="uint8"),
                "c": pd.SparseSeries([0, 0, 1], dtype="uint8"),
            },
            default_fill_value=0,
        )
        tm.assert_sp_frame_equal(result, expected)

    def test_default_dtype(self):
        result = pd.SparseDataFrame(columns=list("ab"), index=range(2))
        expected = pd.SparseDataFrame(
            [[np.nan, np.nan], [np.nan, np.nan]], columns=list("ab"), index=range(2)
        )
        tm.assert_sp_frame_equal(result, expected)

    def test_nan_data_with_int_dtype_raises_error(self):
        sdf = pd.SparseDataFrame(
            [[np.nan, np.nan], [np.nan, np.nan]], columns=list("ab"), index=range(2)
        )
        msg = "Cannot convert non-finite values"
        with pytest.raises(ValueError, match=msg):
            pd.SparseDataFrame(sdf, dtype=np.int64)

    def test_dtypes(self):
        df = DataFrame(np.random.randn(10000, 4))
        df.loc[:9998] = np.nan
        sdf = df.to_sparse()
        result = sdf.dtypes
        expected = Series(["Sparse[float64, nan]"] * 4)
        tm.assert_series_equal(result, expected)

    def test_shape(
        self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2
    ):
        # see gh-10452
        assert float_frame.shape == (10, 4)
        assert float_frame_int_kind.shape == (10, 4)
        assert float_frame_fill0.shape == (10, 4)
        assert float_frame_fill2.shape == (10, 4)

    def test_str(self):
        df = DataFrame(np.random.randn(10000, 4))
        df.loc[:9998] = np.nan

        sdf = df.to_sparse()
        str(sdf)

    def test_array_interface(self, float_frame):
        res = np.sqrt(float_frame)
        dres = np.sqrt(float_frame.to_dense())
        tm.assert_frame_equal(res.to_dense(), dres)

    def test_pickle(
        self,
        float_frame,
        float_frame_int_kind,
        float_frame_dense,
        float_frame_fill0,
        float_frame_fill0_dense,
        float_frame_fill2,
        float_frame_fill2_dense,
    ):
        def _test_roundtrip(frame, orig):
            result = tm.round_trip_pickle(frame)
            tm.assert_sp_frame_equal(frame, result)
            tm.assert_frame_equal(result.to_dense(), orig, check_dtype=False)

        _test_roundtrip(SparseDataFrame(), DataFrame())
        _test_roundtrip(float_frame, float_frame_dense)
        _test_roundtrip(float_frame_int_kind, float_frame_dense)
        _test_roundtrip(float_frame_fill0, float_frame_fill0_dense)
        _test_roundtrip(float_frame_fill2, float_frame_fill2_dense)

    def test_dense_to_sparse(self):
        df = DataFrame({"A": [nan, nan, nan, 1, 2], "B": [1, 2, nan, nan, nan]})
        sdf = df.to_sparse()
        assert isinstance(sdf, SparseDataFrame)
        assert np.isnan(sdf.default_fill_value)
        assert isinstance(sdf["A"].sp_index, BlockIndex)
        tm.assert_frame_equal(sdf.to_dense(), df)

        sdf = df.to_sparse(kind="integer")
        assert isinstance(sdf["A"].sp_index, IntIndex)

        df = DataFrame({"A": [0, 0, 0, 1, 2], "B": [1, 2, 0, 0, 0]}, dtype=float)
        sdf = df.to_sparse(fill_value=0)
        assert sdf.default_fill_value == 0
        tm.assert_frame_equal(sdf.to_dense(), df)

    def test_deprecated_dense_to_sparse(self):
        # GH 26557
        # Deprecated 0.25.0

        df = pd.DataFrame({"A": [1, np.nan, 3]})
        sparse_df = pd.SparseDataFrame({"A": [1, np.nan, 3]})

        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            result = df.to_sparse()
        tm.assert_frame_equal(result, sparse_df)

    def test_density(self):
        df = SparseSeries([nan, nan, nan, 0, 1, 2, 3, 4, 5, 6])
        assert df.density == 0.7

        df = SparseDataFrame(
            {
                "A": [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
                "B": [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
                "C": np.arange(10),
                "D": [0, 1, 2, 3, 4, 5, nan, nan, nan, nan],
            }
        )

        assert df.density == 0.75

    def test_sparse_to_dense(self):
        pass

    def test_sparse_series_ops(self, float_frame):
        self._check_frame_ops(float_frame)

    def test_sparse_series_ops_i(self, float_frame_int_kind):
        self._check_frame_ops(float_frame_int_kind)

    def test_sparse_series_ops_z(self, float_frame_fill0):
        self._check_frame_ops(float_frame_fill0)

    def test_sparse_series_ops_fill(self, float_frame_fill2):
        self._check_frame_ops(float_frame_fill2)

    def _check_frame_ops(self, frame):
        def _compare_to_dense(a, b, da, db, op):
            sparse_result = op(a, b)
            dense_result = op(da, db)

            # catch lambdas but not non-lambdas e.g. operator.add
            if op in [operator.floordiv, ops.rfloordiv] or isinstance(op, LambdaType):
                # GH#27231 Series sets 1//0 to np.inf, which SparseArray
                #  does not do (yet)
                mask = np.isinf(dense_result) & ~np.isinf(sparse_result.to_dense())
                dense_result[mask] = np.nan

            fill = sparse_result.default_fill_value
            dense_result = dense_result.to_sparse(fill_value=fill)
            tm.assert_sp_frame_equal(sparse_result, dense_result, exact_indices=False)

            if isinstance(a, DataFrame) and isinstance(db, DataFrame):
                mixed_result = op(a, db)
                assert isinstance(mixed_result, SparseDataFrame)
                tm.assert_sp_frame_equal(
                    mixed_result, sparse_result, exact_indices=False
                )

        opnames = ["add", "sub", "mul", "truediv", "floordiv"]

        fidx = frame.index

        # time series operations

        series = [
            frame["A"],
            frame["B"],
            frame["C"],
            frame["D"],
            frame["A"].reindex(fidx[:7]),
            frame["A"].reindex(fidx[::2]),
            SparseSeries([], index=[]),
        ]

        for op in opnames:
            _compare_to_dense(
                frame,
                frame[::2],
                frame.to_dense(),
                frame[::2].to_dense(),
                getattr(operator, op),
            )

            # 2304, no auto-broadcasting
            for i, s in enumerate(series):
                f = lambda a, b: getattr(a, op)(b, axis="index")
                _compare_to_dense(frame, s, frame.to_dense(), s.to_dense(), f)

                # FIXME: dont leave commented-out
                # rops are not implemented
                # _compare_to_dense(s, frame, s.to_dense(),
                #                   frame.to_dense(), f)

                # cross-sectional operations
        series = [
            frame.xs(fidx[0]),
            frame.xs(fidx[3]),
            frame.xs(fidx[5]),
            frame.xs(fidx[7]),
            frame.xs(fidx[5])[:2],
        ]

        for name in opnames:
            op = getattr(operator, name)
            for s in series:
                _compare_to_dense(frame, s, frame.to_dense(), s, op)
                _compare_to_dense(s, frame, s, frame.to_dense(), op)

        # it works!
        frame + frame.loc[:, ["A", "B"]]

    def test_op_corners(self, float_frame, empty_frame):
        empty = empty_frame + empty_frame
        assert empty.empty

        foo = float_frame + empty_frame
        assert isinstance(foo.index, DatetimeIndex)
        tm.assert_frame_equal(foo, float_frame * np.nan)

        foo = empty_frame + float_frame
        tm.assert_frame_equal(foo, float_frame * np.nan)

    def test_scalar_ops(self):
        pass

    def test_getitem(self):
        # 1585 select multiple columns
        sdf = SparseDataFrame(index=[0, 1, 2], columns=["a", "b", "c"])

        result = sdf[["a", "b"]]
        exp = sdf.reindex(columns=["a", "b"])
        tm.assert_sp_frame_equal(result, exp)

        with pytest.raises(KeyError, match=r"\['d'\] not in index"):
            sdf[["a", "d"]]

    def test_iloc(self, float_frame):

        # GH 2227
        result = float_frame.iloc[:, 0]
        assert isinstance(result, SparseSeries)
        tm.assert_sp_series_equal(result, float_frame["A"])

        # preserve sparse index type. #2251
        data = {"A": [0, 1]}
        iframe = SparseDataFrame(data, default_kind="integer")
        tm.assert_class_equal(iframe["A"].sp_index, iframe.iloc[:, 0].sp_index)

    def test_set_value(self, float_frame):

        # ok, as the index gets converted to object
        frame = float_frame.copy()
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            res = frame.set_value("foobar", "B", 1.5)
        assert res.index.dtype == "object"

        res = float_frame
        res.index = res.index.astype(object)

        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            res = float_frame.set_value("foobar", "B", 1.5)
        assert res is not float_frame
        assert res.index[-1] == "foobar"
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            assert res.get_value("foobar", "B") == 1.5

        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            res2 = res.set_value("foobar", "qux", 1.5)
        assert res2 is not res
        tm.assert_index_equal(
            res2.columns, pd.Index(list(float_frame.columns) + ["qux"])
        )
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            assert res2.get_value("foobar", "qux") == 1.5

    def test_fancy_index_misc(self, float_frame):
        # axis = 0
        sliced = float_frame.iloc[-2:, :]
        expected = float_frame.reindex(index=float_frame.index[-2:])
        tm.assert_sp_frame_equal(sliced, expected)

        # axis = 1
        sliced = float_frame.iloc[:, -2:]
        expected = float_frame.reindex(columns=float_frame.columns[-2:])
        tm.assert_sp_frame_equal(sliced, expected)

    def test_getitem_overload(self, float_frame):
        # slicing
        sl = float_frame[:20]
        tm.assert_sp_frame_equal(sl, float_frame.reindex(float_frame.index[:20]))

        # boolean indexing
        d = float_frame.index[5]
        indexer = float_frame.index > d

        subindex = float_frame.index[indexer]
        subframe = float_frame[indexer]

        tm.assert_index_equal(subindex, subframe.index)
        msg = "Item wrong length 9 instead of 10"
        with pytest.raises(ValueError, match=msg):
            float_frame[indexer[:-1]]

    def test_setitem(
        self,
        float_frame,
        float_frame_int_kind,
        float_frame_dense,
        float_frame_fill0,
        float_frame_fill0_dense,
        float_frame_fill2,
        float_frame_fill2_dense,
    ):
        def _check_frame(frame, orig):
            N = len(frame)

            # insert SparseSeries
            frame["E"] = frame["A"]
            assert isinstance(frame["E"], SparseSeries)
            tm.assert_sp_series_equal(frame["E"], frame["A"], check_names=False)

            # insert SparseSeries differently-indexed
            to_insert = frame["A"][::2]
            frame["E"] = to_insert
            expected = to_insert.to_dense().reindex(frame.index)
            result = frame["E"].to_dense()
            tm.assert_series_equal(result, expected, check_names=False)
            assert result.name == "E"

            # insert Series
            frame["F"] = frame["A"].to_dense()
            assert isinstance(frame["F"], SparseSeries)
            tm.assert_sp_series_equal(frame["F"], frame["A"], check_names=False)

            # insert Series differently-indexed
            to_insert = frame["A"].to_dense()[::2]
            frame["G"] = to_insert
            expected = to_insert.reindex(frame.index)
            expected.name = "G"
            tm.assert_series_equal(frame["G"].to_dense(), expected)

            # insert ndarray
            frame["H"] = np.random.randn(N)
            assert isinstance(frame["H"], SparseSeries)

            to_sparsify = np.random.randn(N)
            to_sparsify[N // 2 :] = frame.default_fill_value
            frame["I"] = to_sparsify
            assert len(frame["I"].sp_values) == N // 2

            # insert ndarray wrong size
            # GH 25484
            msg = "Length of values does not match length of index"
            with pytest.raises(ValueError, match=msg):
                frame["foo"] = np.random.randn(N - 1)

            # scalar value
            frame["J"] = 5
            assert len(frame["J"].sp_values) == N
            assert (frame["J"].sp_values == 5).all()

            frame["K"] = frame.default_fill_value
            assert len(frame["K"].sp_values) == 0

        _check_frame(float_frame, float_frame_dense)
        _check_frame(float_frame_int_kind, float_frame_dense)
        _check_frame(float_frame_fill0, float_frame_fill0_dense)
        _check_frame(float_frame_fill2, float_frame_fill2_dense)

    @pytest.mark.parametrize(
        "values",
        [
            [True, False],
            [0, 1],
            [1, None],
            ["a", "b"],
            [pd.Timestamp("2017"), pd.NaT],
            [pd.Timedelta("10s"), pd.NaT],
        ],
    )
    def test_setitem_more(self, values):
        df = pd.DataFrame({"A": values})
        df["A"] = pd.SparseArray(values)
        expected = pd.DataFrame({"A": pd.SparseArray(values)})
        tm.assert_frame_equal(df, expected)

    def test_setitem_corner(self, float_frame):
        float_frame["a"] = float_frame["B"]
        tm.assert_sp_series_equal(float_frame["a"], float_frame["B"], check_names=False)

    def test_setitem_array(self, float_frame):
        arr = float_frame["B"]

        float_frame["E"] = arr
        tm.assert_sp_series_equal(float_frame["E"], float_frame["B"], check_names=False)

        float_frame["F"] = arr[:-1]
        index = float_frame.index[:-1]
        tm.assert_sp_series_equal(
            float_frame["E"].reindex(index),
            float_frame["F"].reindex(index),
            check_names=False,
        )

    def test_setitem_chained_no_consolidate(self):
        # https://github.com/pandas-dev/pandas/pull/19268
        # issuecomment-361696418
        # chained setitem used to cause consolidation
        sdf = pd.SparseDataFrame([[np.nan, 1], [2, np.nan]])
        with pd.option_context("mode.chained_assignment", None):
            sdf[0][1] = 2
        assert len(sdf._data.blocks) == 2

    def test_delitem(self, float_frame):
        A = float_frame["A"]
        C = float_frame["C"]

        del float_frame["B"]
        assert "B" not in float_frame
        tm.assert_sp_series_equal(float_frame["A"], A)
        tm.assert_sp_series_equal(float_frame["C"], C)

        del float_frame["D"]
        assert "D" not in float_frame

        del float_frame["A"]
        assert "A" not in float_frame

    def test_set_columns(self, float_frame):
        float_frame.columns = float_frame.columns
        msg = (
            "Length mismatch: Expected axis has 4 elements, new values have"
            " 3 elements"
        )
        with pytest.raises(ValueError, match=msg):
            float_frame.columns = float_frame.columns[:-1]

    def test_set_index(self, float_frame):
        float_frame.index = float_frame.index
        msg = (
            "Length mismatch: Expected axis has 10 elements, new values"
            " have 9 elements"
        )
        with pytest.raises(ValueError, match=msg):
            float_frame.index = float_frame.index[:-1]

    def test_ctor_reindex(self):
        idx = pd.Index([0, 1, 2, 3])
        msg = "Length of passed values is 2, index implies 4"
        with pytest.raises(ValueError, match=msg):
            pd.SparseDataFrame({"A": [1, 2]}, index=idx)

    def test_append(self, float_frame):
        a = float_frame[:5]
        b = float_frame[5:]

        appended = a.append(b)
        tm.assert_sp_frame_equal(appended, float_frame, exact_indices=False)

        a = float_frame.iloc[:5, :3]
        b = float_frame.iloc[5:]
        with tm.assert_produces_warning(
            FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
        ):
            # Stacklevel is set for pd.concat, not append
            appended = a.append(b)
        tm.assert_sp_frame_equal(
            appended.iloc[:, :3], float_frame.iloc[:, :3], exact_indices=False
        )

        a = a[["B", "C", "A"]].head(2)
        b = b.head(2)

        expected = pd.SparseDataFrame(
            {
                "B": [0.0, 1, None, 3],
                "C": [0.0, 1, 5, 6],
                "A": [None, None, 2, 3],
                "D": [None, None, 5, None],
            },
            index=a.index | b.index,
            columns=["B", "C", "A", "D"],
        )
        with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
            appended = a.append(b, sort=False)

        tm.assert_frame_equal(appended, expected)

        with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
            appended = a.append(b, sort=True)

        tm.assert_sp_frame_equal(
            appended,
            expected[["A", "B", "C", "D"]],
            consolidate_block_indices=True,
            check_kind=False,
        )

    def test_astype(self):
        sparse = pd.SparseDataFrame(
            {
                "A": SparseArray([1, 2, 3, 4], dtype=np.int64),
                "B": SparseArray([4, 5, 6, 7], dtype=np.int64),
            }
        )
        assert sparse["A"].dtype == SparseDtype(np.int64)
        assert sparse["B"].dtype == SparseDtype(np.int64)

        # retain fill_value
        res = sparse.astype(np.float64)
        exp = pd.SparseDataFrame(
            {
                "A": SparseArray([1.0, 2.0, 3.0, 4.0], fill_value=0, kind="integer"),
                "B": SparseArray([4.0, 5.0, 6.0, 7.0], fill_value=0, kind="integer"),
            },
            default_fill_value=np.nan,
        )
        tm.assert_sp_frame_equal(res, exp)
        assert res["A"].dtype == SparseDtype(np.float64, 0)
        assert res["B"].dtype == SparseDtype(np.float64, 0)

        # update fill_value
        res = sparse.astype(SparseDtype(np.float64, np.nan))
        exp = pd.SparseDataFrame(
            {
                "A": SparseArray(
                    [1.0, 2.0, 3.0, 4.0], fill_value=np.nan, kind="integer"
                ),
                "B": SparseArray(
                    [4.0, 5.0, 6.0, 7.0], fill_value=np.nan, kind="integer"
                ),
            },
            default_fill_value=np.nan,
        )
        tm.assert_sp_frame_equal(res, exp)
        assert res["A"].dtype == SparseDtype(np.float64, np.nan)
        assert res["B"].dtype == SparseDtype(np.float64, np.nan)

    def test_astype_bool(self):
        sparse = pd.SparseDataFrame(
            {
                "A": SparseArray([0, 2, 0, 4], fill_value=0, dtype=np.int64),
                "B": SparseArray([0, 5, 0, 7], fill_value=0, dtype=np.int64),
            },
            default_fill_value=0,
        )
        assert sparse["A"].dtype == SparseDtype(np.int64)
        assert sparse["B"].dtype == SparseDtype(np.int64)

        res = sparse.astype(SparseDtype(bool, False))
        exp = pd.SparseDataFrame(
            {
                "A": SparseArray(
                    [False, True, False, True],
                    dtype=np.bool,
                    fill_value=False,
                    kind="integer",
                ),
                "B": SparseArray(
                    [False, True, False, True],
                    dtype=np.bool,
                    fill_value=False,
                    kind="integer",
                ),
            },
            default_fill_value=False,
        )
        tm.assert_sp_frame_equal(res, exp)
        assert res["A"].dtype == SparseDtype(np.bool)
        assert res["B"].dtype == SparseDtype(np.bool)

    def test_astype_object(self):
        # This may change in GH-23125
        df = pd.DataFrame({"A": SparseArray([0, 1]), "B": SparseArray([0, 1])})
        result = df.astype(object)
        dtype = SparseDtype(object, 0)
        expected = pd.DataFrame(
            {
                "A": SparseArray([0, 1], dtype=dtype),
                "B": SparseArray([0, 1], dtype=dtype),
            }
        )
        tm.assert_frame_equal(result, expected)

    def test_fillna(self, float_frame_fill0, float_frame_fill0_dense):
        df = float_frame_fill0.reindex(list(range(5)))
        dense = float_frame_fill0_dense.reindex(list(range(5)))

        result = df.fillna(0)
        expected = dense.fillna(0)
        tm.assert_sp_frame_equal(
            result, expected.to_sparse(fill_value=0), exact_indices=False
        )
        tm.assert_frame_equal(result.to_dense(), expected)

        result = df.copy()
        result.fillna(0, inplace=True)
        expected = dense.fillna(0)

        tm.assert_sp_frame_equal(
            result, expected.to_sparse(fill_value=0), exact_indices=False
        )
        tm.assert_frame_equal(result.to_dense(), expected)

        result = df.copy()
        result = df["A"]
        result.fillna(0, inplace=True)

        expected = dense["A"].fillna(0)
        # this changes internal SparseArray repr
        # tm.assert_sp_series_equal(result, expected.to_sparse(fill_value=0))
        tm.assert_series_equal(result.to_dense(), expected)

    def test_fillna_fill_value(self):
        df = pd.DataFrame({"A": [1, 0, 0], "B": [np.nan, np.nan, 4]})

        sparse = pd.SparseDataFrame(df)
        tm.assert_frame_equal(
            sparse.fillna(-1).to_dense(), df.fillna(-1), check_dtype=False
        )

        sparse = pd.SparseDataFrame(df, default_fill_value=0)
        tm.assert_frame_equal(
            sparse.fillna(-1).to_dense(), df.fillna(-1), check_dtype=False
        )

    def test_sparse_frame_pad_backfill_limit(self):
        index = np.arange(10)
        df = DataFrame(np.random.randn(10, 4), index=index)
        sdf = df.to_sparse()

        result = sdf[:2].reindex(index, method="pad", limit=5)

        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            expected = sdf[:2].reindex(index).fillna(method="pad")
        expected = expected.to_dense()
        expected.values[-3:] = np.nan
        expected = expected.to_sparse()
        tm.assert_frame_equal(result, expected)

        result = sdf[-2:].reindex(index, method="backfill", limit=5)

        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            expected = sdf[-2:].reindex(index).fillna(method="backfill")
        expected = expected.to_dense()
        expected.values[:3] = np.nan
        expected = expected.to_sparse()
        tm.assert_frame_equal(result, expected)

    def test_sparse_frame_fillna_limit(self):
        index = np.arange(10)
        df = DataFrame(np.random.randn(10, 4), index=index)
        sdf = df.to_sparse()

        result = sdf[:2].reindex(index)
        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            result = result.fillna(method="pad", limit=5)

        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            expected = sdf[:2].reindex(index).fillna(method="pad")
        expected = expected.to_dense()
        expected.values[-3:] = np.nan
        expected = expected.to_sparse()
        tm.assert_frame_equal(result, expected)

        result = sdf[-2:].reindex(index)
        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            result = result.fillna(method="backfill", limit=5)

        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            expected = sdf[-2:].reindex(index).fillna(method="backfill")
        expected = expected.to_dense()
        expected.values[:3] = np.nan
        expected = expected.to_sparse()
        tm.assert_frame_equal(result, expected)

    def test_rename(self, float_frame):
        result = float_frame.rename(index=str)
        expected = SparseDataFrame(
            float_frame.values,
            index=float_frame.index.strftime("%Y-%m-%d %H:%M:%S"),
            columns=list("ABCD"),
        )
        tm.assert_sp_frame_equal(result, expected)

        result = float_frame.rename(columns="{}1".format)
        data = {
            "A1": [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
            "B1": [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
            "C1": np.arange(10, dtype=np.float64),
            "D1": [0, 1, 2, 3, 4, 5, nan, nan, nan, nan],
        }
        expected = SparseDataFrame(data, index=float_frame.index)
        tm.assert_sp_frame_equal(result, expected)

    def test_corr(self, float_frame):
        res = float_frame.corr()
        # XXX: this stays sparse
        tm.assert_frame_equal(res, float_frame.to_dense().corr().to_sparse())

    def test_describe(self, float_frame):
        float_frame["foo"] = np.nan
        float_frame.dtypes.value_counts()
        str(float_frame)
        desc = float_frame.describe()  # noqa

    def test_join(self, float_frame):
        left = float_frame.loc[:, ["A", "B"]]
        right = float_frame.loc[:, ["C", "D"]]
        joined = left.join(right)
        tm.assert_sp_frame_equal(joined, float_frame, exact_indices=False)

        right = float_frame.loc[:, ["B", "D"]]
        msg = (
            r"columns overlap but no suffix specified: Index\(\['B'\],"
            r" dtype='object'\)"
        )
        with pytest.raises(ValueError, match=msg):
            left.join(right)

        with pytest.raises(ValueError, match="Other Series must have a name"):
            float_frame.join(
                Series(np.random.randn(len(float_frame)), index=float_frame.index)
            )

    def test_reindex(
        self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2
    ):
        def _check_frame(frame):
            index = frame.index
            sidx = index[::2]
            sidx2 = index[:5]  # noqa

            sparse_result = frame.reindex(sidx)
            dense_result = frame.to_dense().reindex(sidx)
            tm.assert_frame_equal(sparse_result.to_dense(), dense_result)

            tm.assert_frame_equal(frame.reindex(list(sidx)).to_dense(), dense_result)

            sparse_result2 = sparse_result.reindex(index)
            dense_result2 = dense_result.reindex(index)
            tm.assert_frame_equal(sparse_result2.to_dense(), dense_result2)

            # propagate CORRECT fill value
            tm.assert_almost_equal(
                sparse_result.default_fill_value, frame.default_fill_value
            )
            tm.assert_almost_equal(sparse_result["A"].fill_value, frame["A"].fill_value)

            # length zero
            length_zero = frame.reindex([])
            assert len(length_zero) == 0
            assert len(length_zero.columns) == len(frame.columns)
            assert len(length_zero["A"]) == 0

            # frame being reindexed has length zero
            length_n = length_zero.reindex(index)
            assert len(length_n) == len(frame)
            assert len(length_n.columns) == len(frame.columns)
            assert len(length_n["A"]) == len(frame)

            # reindex columns
            reindexed = frame.reindex(columns=["A", "B", "Z"])
            assert len(reindexed.columns) == 3
            tm.assert_almost_equal(reindexed["Z"].fill_value, frame.default_fill_value)
            assert np.isnan(reindexed["Z"].sp_values).all()

        _check_frame(float_frame)
        _check_frame(float_frame_int_kind)
        _check_frame(float_frame_fill0)
        _check_frame(float_frame_fill2)

        # with copy=False
        reindexed = float_frame.reindex(float_frame.index, copy=False)
        reindexed["F"] = reindexed["A"]
        assert "F" in float_frame

        reindexed = float_frame.reindex(float_frame.index)
        reindexed["G"] = reindexed["A"]
        assert "G" not in float_frame

    def test_reindex_fill_value(self, float_frame_fill0, float_frame_fill0_dense):
        rng = bdate_range("20110110", periods=20)

        result = float_frame_fill0.reindex(rng, fill_value=0)
        exp = float_frame_fill0_dense.reindex(rng, fill_value=0)
        exp = exp.to_sparse(float_frame_fill0.default_fill_value)
        tm.assert_sp_frame_equal(result, exp)

    def test_reindex_method(self):

        sparse = SparseDataFrame(
            data=[[11.0, 12.0, 14.0], [21.0, 22.0, 24.0], [41.0, 42.0, 44.0]],
            index=[1, 2, 4],
            columns=[1, 2, 4],
            dtype=float,
        )

        # Over indices

        # default method
        result = sparse.reindex(index=range(6))
        expected = SparseDataFrame(
            data=[
                [nan, nan, nan],
                [11.0, 12.0, 14.0],
                [21.0, 22.0, 24.0],
                [nan, nan, nan],
                [41.0, 42.0, 44.0],
                [nan, nan, nan],
            ],
            index=range(6),
            columns=[1, 2, 4],
            dtype=float,
        )
        tm.assert_sp_frame_equal(result, expected)

        # method='bfill'
        result = sparse.reindex(index=range(6), method="bfill")
        expected = SparseDataFrame(
            data=[
                [11.0, 12.0, 14.0],
                [11.0, 12.0, 14.0],
                [21.0, 22.0, 24.0],
                [41.0, 42.0, 44.0],
                [41.0, 42.0, 44.0],
                [nan, nan, nan],
            ],
            index=range(6),
            columns=[1, 2, 4],
            dtype=float,
        )
        tm.assert_sp_frame_equal(result, expected)

        # method='ffill'
        result = sparse.reindex(index=range(6), method="ffill")
        expected = SparseDataFrame(
            data=[
                [nan, nan, nan],
                [11.0, 12.0, 14.0],
                [21.0, 22.0, 24.0],
                [21.0, 22.0, 24.0],
                [41.0, 42.0, 44.0],
                [41.0, 42.0, 44.0],
            ],
            index=range(6),
            columns=[1, 2, 4],
            dtype=float,
        )
        tm.assert_sp_frame_equal(result, expected)

        # Over columns

        # default method
        result = sparse.reindex(columns=range(6))
        expected = SparseDataFrame(
            data=[
                [nan, 11.0, 12.0, nan, 14.0, nan],
                [nan, 21.0, 22.0, nan, 24.0, nan],
                [nan, 41.0, 42.0, nan, 44.0, nan],
            ],
            index=[1, 2, 4],
            columns=range(6),
            dtype=float,
        )
        tm.assert_sp_frame_equal(result, expected)

        # method='bfill'
        with pytest.raises(NotImplementedError):
            sparse.reindex(columns=range(6), method="bfill")

        # method='ffill'
        with pytest.raises(NotImplementedError):
            sparse.reindex(columns=range(6), method="ffill")

    def test_take(self, float_frame):
        result = float_frame.take([1, 0, 2], axis=1)
        expected = float_frame.reindex(columns=["B", "A", "C"])
        tm.assert_sp_frame_equal(result, expected)

    def test_to_dense(
        self,
        float_frame,
        float_frame_int_kind,
        float_frame_dense,
        float_frame_fill0,
        float_frame_fill0_dense,
        float_frame_fill2,
        float_frame_fill2_dense,
    ):
        def _check(frame, orig):
            dense_dm = frame.to_dense()
            # Sparse[float] != float
            tm.assert_frame_equal(frame, dense_dm, check_dtype=False)
            tm.assert_frame_equal(dense_dm, orig, check_dtype=False)

        _check(float_frame, float_frame_dense)
        _check(float_frame_int_kind, float_frame_dense)
        _check(float_frame_fill0, float_frame_fill0_dense)
        _check(float_frame_fill2, float_frame_fill2_dense)

    def test_stack_sparse_frame(
        self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2
    ):
        def _check(frame):
            dense_frame = frame.to_dense()  # noqa

            from_dense_lp = frame.stack().to_frame()

            from_sparse_lp = spf.stack_sparse_frame(frame)

            tm.assert_numpy_array_equal(from_dense_lp.values, from_sparse_lp.values)

        _check(float_frame)
        _check(float_frame_int_kind)

        # for now
        msg = "This routine assumes NaN fill value"
        with pytest.raises(TypeError, match=msg):
            _check(float_frame_fill0)
        with pytest.raises(TypeError, match=msg):
            _check(float_frame_fill2)

    def test_transpose(
        self,
        float_frame,
        float_frame_int_kind,
        float_frame_dense,
        float_frame_fill0,
        float_frame_fill0_dense,
        float_frame_fill2,
        float_frame_fill2_dense,
    ):
        def _check(frame, orig):
            transposed = frame.T
            untransposed = transposed.T
            tm.assert_sp_frame_equal(frame, untransposed)

            tm.assert_frame_equal(frame.T.to_dense(), orig.T)
            tm.assert_frame_equal(frame.T.T.to_dense(), orig.T.T)
            tm.assert_sp_frame_equal(frame, frame.T.T, exact_indices=False)

        _check(float_frame, float_frame_dense)
        _check(float_frame_int_kind, float_frame_dense)
        _check(float_frame_fill0, float_frame_fill0_dense)
        _check(float_frame_fill2, float_frame_fill2_dense)

    def test_shift(
        self,
        float_frame,
        float_frame_int_kind,
        float_frame_dense,
        float_frame_fill0,
        float_frame_fill0_dense,
        float_frame_fill2,
        float_frame_fill2_dense,
    ):
        def _check(frame, orig):
            shifted = frame.shift(0)
            exp = orig.shift(0)
            tm.assert_frame_equal(shifted.to_dense(), exp)

            shifted = frame.shift(1)
            exp = orig.shift(1)
            tm.assert_frame_equal(shifted.to_dense(), exp)

            shifted = frame.shift(-2)
            exp = orig.shift(-2)
            tm.assert_frame_equal(shifted.to_dense(), exp)

            shifted = frame.shift(2, freq="B")
            exp = orig.shift(2, freq="B")
            exp = exp.to_sparse(frame.default_fill_value, kind=frame.default_kind)
            tm.assert_frame_equal(shifted, exp)

            shifted = frame.shift(2, freq=BDay())
            exp = orig.shift(2, freq=BDay())
            exp = exp.to_sparse(frame.default_fill_value, kind=frame.default_kind)
            tm.assert_frame_equal(shifted, exp)

        _check(float_frame, float_frame_dense)
        _check(float_frame_int_kind, float_frame_dense)
        _check(float_frame_fill0, float_frame_fill0_dense)
        _check(float_frame_fill2, float_frame_fill2_dense)

    def test_count(self, float_frame):
        dense_result = float_frame.to_dense().count()

        result = float_frame.count()
        tm.assert_series_equal(result.to_dense(), dense_result)

        result = float_frame.count(axis=None)
        tm.assert_series_equal(result.to_dense(), dense_result)

        result = float_frame.count(axis=0)
        tm.assert_series_equal(result.to_dense(), dense_result)

        result = float_frame.count(axis=1)
        dense_result = float_frame.to_dense().count(axis=1)

        # win32 don't check dtype
        tm.assert_series_equal(result, dense_result, check_dtype=False)

    def test_numpy_transpose(self):
        sdf = SparseDataFrame([1, 2, 3], index=[1, 2, 3], columns=["a"])
        result = np.transpose(np.transpose(sdf))
        tm.assert_sp_frame_equal(result, sdf)

        msg = "the 'axes' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.transpose(sdf, axes=1)

    def test_combine_first(self, float_frame):
        df = float_frame

        result = df[::2].combine_first(df)

        expected = df[::2].to_dense().combine_first(df.to_dense())
        expected = expected.to_sparse(fill_value=df.default_fill_value)

        tm.assert_sp_frame_equal(result, expected)

    @pytest.mark.xfail(reason="No longer supported.")
    def test_combine_first_with_dense(self):
        # We could support this if we allow
        # pd.core.dtypes.cast.find_common_type to special case SparseDtype
        # but I don't think that's worth it.
        df = self.frame

        result = df[::2].combine_first(df.to_dense())
        expected = df[::2].to_dense().combine_first(df.to_dense())
        expected = expected.to_sparse(fill_value=df.default_fill_value)

        tm.assert_sp_frame_equal(result, expected)

    def test_combine_add(self, float_frame):
        df = float_frame.to_dense()
        df2 = df.copy()
        df2["C"][:3] = np.nan
        df["A"][:3] = 5.7

        result = df.to_sparse().add(df2.to_sparse(), fill_value=0)
        expected = df.add(df2, fill_value=0).to_sparse()
        tm.assert_sp_frame_equal(result, expected)

    def test_isin(self):
        sparse_df = DataFrame({"flag": [1.0, 0.0, 1.0]}).to_sparse(fill_value=0.0)
        xp = sparse_df[sparse_df.flag == 1.0]
        rs = sparse_df[sparse_df.flag.isin([1.0])]
        tm.assert_frame_equal(xp, rs)

    def test_sparse_pow_issue(self):
        # 2220
        df = SparseDataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]})

        # note : no error without nan
        df = SparseDataFrame({"A": [nan, 0, 1]})

        # note that 2 ** df works fine, also df ** 1
        result = 1 ** df

        r1 = result.take([0], 1)["A"]
        r2 = result["A"]

        assert len(r2.sp_values) == len(r1.sp_values)

    def test_as_blocks(self):
        df = SparseDataFrame({"A": [1.1, 3.3], "B": [nan, -3.9]}, dtype="float64")

        # deprecated 0.21.0
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            df_blocks = df.blocks
        assert list(df_blocks.keys()) == ["Sparse[float64, nan]"]
        tm.assert_frame_equal(df_blocks["Sparse[float64, nan]"], df)

    @pytest.mark.xfail(reason="nan column names in _init_dict problematic (GH#16894)")
    def test_nan_columnname(self):
        # GH 8822
        nan_colname = DataFrame(Series(1.0, index=[0]), columns=[nan])
        nan_colname_sparse = nan_colname.to_sparse()
        assert np.isnan(nan_colname_sparse.columns[0])

    def test_isna(self):
        # GH 8276
        df = pd.SparseDataFrame(
            {"A": [np.nan, np.nan, 1, 2, np.nan], "B": [0, np.nan, np.nan, 2, np.nan]}
        )

        res = df.isna()
        exp = pd.SparseDataFrame(
            {
                "A": [True, True, False, False, True],
                "B": [False, True, True, False, True],
            },
            default_fill_value=True,
        )
        exp._default_fill_value = np.nan
        tm.assert_sp_frame_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        df = pd.SparseDataFrame(
            {"A": [0, 0, 1, 2, np.nan], "B": [0, np.nan, 0, 2, np.nan]},
            default_fill_value=0.0,
        )
        res = df.isna()
        assert isinstance(res, pd.SparseDataFrame)
        exp = pd.DataFrame(
            {
                "A": [False, False, False, False, True],
                "B": [False, True, False, False, True],
            }
        )
        tm.assert_frame_equal(res.to_dense(), exp)

    def test_notna(self):
        # GH 8276
        df = pd.SparseDataFrame(
            {"A": [np.nan, np.nan, 1, 2, np.nan], "B": [0, np.nan, np.nan, 2, np.nan]}
        )

        res = df.notna()
        exp = pd.SparseDataFrame(
            {
                "A": [False, False, True, True, False],
                "B": [True, False, False, True, False],
            },
            default_fill_value=False,
        )
        exp._default_fill_value = np.nan
        tm.assert_sp_frame_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        df = pd.SparseDataFrame(
            {"A": [0, 0, 1, 2, np.nan], "B": [0, np.nan, 0, 2, np.nan]},
            default_fill_value=0.0,
        )
        res = df.notna()
        assert isinstance(res, pd.SparseDataFrame)
        exp = pd.DataFrame(
            {
                "A": [True, True, True, True, False],
                "B": [True, False, True, True, False],
            }
        )
        tm.assert_frame_equal(res.to_dense(), exp)

    def test_default_fill_value_with_no_data(self):
        # GH 16807
        expected = pd.SparseDataFrame(
            [[1.0, 1.0], [1.0, 1.0]], columns=list("ab"), index=range(2)
        )
        result = pd.SparseDataFrame(
            columns=list("ab"), index=range(2), default_fill_value=1.0
        )
        tm.assert_frame_equal(expected, result)


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
class TestSparseDataFrameArithmetic:
    def test_numeric_op_scalar(self):
        df = pd.DataFrame(
            {
                "A": [nan, nan, 0, 1],
                "B": [0, 1, 2, nan],
                "C": [1.0, 2.0, 3.0, 4.0],
                "D": [nan, nan, nan, nan],
            }
        )
        sparse = df.to_sparse()

        tm.assert_sp_frame_equal(sparse + 1, (df + 1).to_sparse())

    def test_comparison_op_scalar(self):
        # GH 13001
        df = pd.DataFrame(
            {
                "A": [nan, nan, 0, 1],
                "B": [0, 1, 2, nan],
                "C": [1.0, 2.0, 3.0, 4.0],
                "D": [nan, nan, nan, nan],
            }
        )
        sparse = df.to_sparse()

        # comparison changes internal repr, compare with dense
        res = sparse > 1
        assert isinstance(res, pd.SparseDataFrame)
        tm.assert_frame_equal(res.to_dense(), df > 1)

        res = sparse != 0
        assert isinstance(res, pd.SparseDataFrame)
        tm.assert_frame_equal(res.to_dense(), df != 0)


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
class TestSparseDataFrameAnalytics:
    def test_cumsum(self, float_frame):
        expected = SparseDataFrame(float_frame.to_dense().cumsum())

        result = float_frame.cumsum()
        tm.assert_sp_frame_equal(result, expected)

        result = float_frame.cumsum(axis=None)
        tm.assert_sp_frame_equal(result, expected)

        result = float_frame.cumsum(axis=0)
        tm.assert_sp_frame_equal(result, expected)

    def test_numpy_cumsum(self, float_frame):
        result = np.cumsum(float_frame)
        expected = SparseDataFrame(float_frame.to_dense().cumsum())
        tm.assert_sp_frame_equal(result, expected)

        msg = "the 'dtype' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.cumsum(float_frame, dtype=np.int64)

        msg = "the 'out' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.cumsum(float_frame, out=result)

    def test_numpy_func_call(self, float_frame):
        # no exception should be raised even though
        # numpy passes in 'axis=None' or `axis=-1'
        funcs = ["sum", "cumsum", "var", "mean", "prod", "cumprod", "std", "min", "max"]
        for func in funcs:
            getattr(np, func)(float_frame)

    @pytest.mark.xfail(reason="Wrong SparseBlock initialization (GH 17386)")
    def test_quantile(self):
        # GH 17386
        data = [[1, 1], [2, 10], [3, 100], [nan, nan]]
        q = 0.1

        sparse_df = SparseDataFrame(data)
        result = sparse_df.quantile(q)

        dense_df = DataFrame(data)
        dense_expected = dense_df.quantile(q)
        sparse_expected = SparseSeries(dense_expected)

        tm.assert_series_equal(result, dense_expected)
        tm.assert_sp_series_equal(result, sparse_expected)

    @pytest.mark.xfail(reason="Wrong SparseBlock initialization (GH 17386)")
    def test_quantile_multi(self):
        # GH 17386
        data = [[1, 1], [2, 10], [3, 100], [nan, nan]]
        q = [0.1, 0.5]

        sparse_df = SparseDataFrame(data)
        result = sparse_df.quantile(q)

        dense_df = DataFrame(data)
        dense_expected = dense_df.quantile(q)
        sparse_expected = SparseDataFrame(dense_expected)

        tm.assert_frame_equal(result, dense_expected)
        tm.assert_sp_frame_equal(result, sparse_expected)

    def test_assign_with_sparse_frame(self):
        # GH 19163
        df = pd.DataFrame({"a": [1, 2, 3]})
        res = df.to_sparse(fill_value=False).assign(newcol=False)
        exp = df.assign(newcol=False).to_sparse(fill_value=False)

        tm.assert_sp_frame_equal(res, exp)

        for column in res.columns:
            assert type(res[column]) is SparseSeries

    @pytest.mark.parametrize("inplace", [True, False])
    @pytest.mark.parametrize("how", ["all", "any"])
    def test_dropna(self, inplace, how):
        # Tests regression #21172.
        expected = pd.SparseDataFrame({"F2": [0, 1]})
        input_df = pd.SparseDataFrame(
            {"F1": [float("nan"), float("nan")], "F2": [0, 1]}
        )
        result_df = input_df.dropna(axis=1, inplace=inplace, how=how)
        if inplace:
            result_df = input_df
        tm.assert_sp_frame_equal(expected, result_df)