import operator
from types import LambdaType
import numpy as np
from numpy import nan
import pytest
from pandas._libs.sparse import BlockIndex, IntIndex
from pandas.errors import PerformanceWarning
import pandas as pd
from pandas import DataFrame, Series, bdate_range, compat
from pandas.core import ops
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.sparse import frame as spf
from pandas.core.sparse.api import (
SparseArray,
SparseDataFrame,
SparseDtype,
SparseSeries,
)
from pandas.tests.frame.test_api import SharedWithSparse
from pandas.util import testing as tm
from pandas.tseries.offsets import BDay
def test_deprecated():
with tm.assert_produces_warning(FutureWarning):
pd.SparseDataFrame({"A": [1, 2]})
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
class TestSparseDataFrame(SharedWithSparse):
klass = SparseDataFrame
# SharedWithSparse tests use generic, klass-agnostic assertion
_assert_frame_equal = staticmethod(tm.assert_sp_frame_equal)
_assert_series_equal = staticmethod(tm.assert_sp_series_equal)
def test_iterrows(self, float_frame, float_string_frame):
# Same as parent, but we don't ensure the sparse kind is the same.
for k, v in float_frame.iterrows():
exp = float_frame.loc[k]
tm.assert_sp_series_equal(v, exp, check_kind=False)
for k, v in float_string_frame.iterrows():
exp = float_string_frame.loc[k]
tm.assert_sp_series_equal(v, exp, check_kind=False)
def test_itertuples(self, float_frame):
for i, tup in enumerate(float_frame.itertuples()):
s = self.klass._constructor_sliced(tup[1:])
s.name = tup[0]
expected = float_frame.iloc[i, :].reset_index(drop=True)
tm.assert_sp_series_equal(s, expected, check_kind=False)
def test_fill_value_when_combine_const(self):
# GH12723
dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float")
df = SparseDataFrame({"foo": dat}, index=range(6))
exp = df.fillna(0).add(2)
res = df.add(2, fill_value=0)
tm.assert_sp_frame_equal(res, exp)
def test_values(self, empty_frame, float_frame):
empty = empty_frame.values
assert empty.shape == (0, 0)
no_cols = SparseDataFrame(index=np.arange(10))
mat = no_cols.values
assert mat.shape == (10, 0)
no_index = SparseDataFrame(columns=np.arange(10))
mat = no_index.values
assert mat.shape == (0, 10)
def test_copy(self, float_frame):
cp = float_frame.copy()
assert isinstance(cp, SparseDataFrame)
tm.assert_sp_frame_equal(cp, float_frame)
# as of v0.15.0
# this is now identical (but not is_a )
assert cp.index.identical(float_frame.index)
def test_constructor(self, float_frame, float_frame_int_kind, float_frame_fill0):
for col, series in float_frame.items():
assert isinstance(series, SparseSeries)
assert isinstance(float_frame_int_kind["A"].sp_index, IntIndex)
# constructed zframe from matrix above
assert float_frame_fill0["A"].fill_value == 0
# XXX: changed asarray
expected = pd.SparseArray(
[0, 0, 0, 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], fill_value=0, kind="block"
)
tm.assert_sp_array_equal(expected, float_frame_fill0["A"].values)
tm.assert_numpy_array_equal(
np.array([0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]),
float_frame_fill0["A"].to_dense().values,
)
# construct no data
sdf = SparseDataFrame(columns=np.arange(10), index=np.arange(10))
for col, series in sdf.items():
assert isinstance(series, SparseSeries)
# construct from nested dict
data = {c: s.to_dict() for c, s in float_frame.items()}
sdf = SparseDataFrame(data)
tm.assert_sp_frame_equal(sdf, float_frame)
# TODO: test data is copied from inputs
# init dict with different index
idx = float_frame.index[:5]
cons = SparseDataFrame(
float_frame,
index=idx,
columns=float_frame.columns,
default_fill_value=float_frame.default_fill_value,
default_kind=float_frame.default_kind,
copy=True,
)
reindexed = float_frame.reindex(idx)
tm.assert_sp_frame_equal(cons, reindexed, exact_indices=False)
# assert level parameter breaks reindex
with pytest.raises(TypeError):
float_frame.reindex(idx, level=0)
repr(float_frame)
def test_constructor_fill_value_not_scalar_raises(self):
d = {"b": [2, 3], "a": [0, 1]}
fill_value = np.array(np.nan)
with pytest.raises(ValueError, match="must be a scalar"):
SparseDataFrame(data=d, default_fill_value=fill_value)
def test_constructor_dict_order(self):
# GH19018
# initialization ordering: by insertion order if python>= 3.6, else
# order by value
d = {"b": [2, 3], "a": [0, 1]}
frame = SparseDataFrame(data=d)
if compat.PY36:
expected = SparseDataFrame(data=d, columns=list("ba"))
else:
expected = SparseDataFrame(data=d, columns=list("ab"))
tm.assert_sp_frame_equal(frame, expected)
def test_constructor_ndarray(self, float_frame):
# no index or columns
sp = SparseDataFrame(float_frame.values)
# 1d
sp = SparseDataFrame(
float_frame["A"].values, index=float_frame.index, columns=["A"]
)
tm.assert_sp_frame_equal(sp, float_frame.reindex(columns=["A"]))
# raise on level argument
msg = "Reindex by level not supported for sparse"
with pytest.raises(TypeError, match=msg):
float_frame.reindex(columns=["A"], level=1)
# wrong length index / columns
with pytest.raises(ValueError, match="^Index length"):
SparseDataFrame(float_frame.values, index=float_frame.index[:-1])
with pytest.raises(ValueError, match="^Column length"):
SparseDataFrame(float_frame.values, columns=float_frame.columns[:-1])
# GH 9272
def test_constructor_empty(self):
sp = SparseDataFrame()
assert len(sp.index) == 0
assert len(sp.columns) == 0
def test_constructor_dataframe(self, float_frame):
dense = float_frame.to_dense()
sp = SparseDataFrame(dense)
tm.assert_sp_frame_equal(sp, float_frame)
def test_constructor_convert_index_once(self):
arr = np.array([1.5, 2.5, 3.5])
sdf = SparseDataFrame(columns=range(4), index=arr)
assert sdf[0].index is sdf[1].index
def test_constructor_from_series(self):
# GH 2873
x = Series(np.random.randn(10000), name="a")
x = x.to_sparse(fill_value=0)
assert isinstance(x, SparseSeries)
df = SparseDataFrame(x)
assert isinstance(df, SparseDataFrame)
x = Series(np.random.randn(10000), name="a")
y = Series(np.random.randn(10000), name="b")
x2 = x.astype(float)
x2.loc[:9998] = np.NaN
# TODO: x_sparse is unused...fix
x_sparse = x2.to_sparse(fill_value=np.NaN) # noqa
# Currently fails too with weird ufunc error
# df1 = SparseDataFrame([x_sparse, y])
y.loc[:9998] = 0
# TODO: y_sparse is unsused...fix
y_sparse = y.to_sparse(fill_value=0) # noqa
# without sparse value raises error
# df2 = SparseDataFrame([x2_sparse, y])
def test_constructor_from_dense_series(self):
# GH 19393
# series with name
x = Series(np.random.randn(10000), name="a")
result = SparseDataFrame(x)
expected = x.to_frame().to_sparse()
tm.assert_sp_frame_equal(result, expected)
# series with no name
x = Series(np.random.randn(10000))
result = SparseDataFrame(x)
expected = x.to_frame().to_sparse()
tm.assert_sp_frame_equal(result, expected)
def test_constructor_from_unknown_type(self):
# GH 19393
class Unknown:
pass
with pytest.raises(
TypeError,
match=(
"SparseDataFrame called with unknown type "
'"Unknown" for data argument'
),
):
SparseDataFrame(Unknown())
def test_constructor_preserve_attr(self):
# GH 13866
arr = pd.SparseArray([1, 0, 3, 0], dtype=np.int64, fill_value=0)
assert arr.dtype == SparseDtype(np.int64)
assert arr.fill_value == 0
df = pd.SparseDataFrame({"x": arr})
assert df["x"].dtype == SparseDtype(np.int64)
assert df["x"].fill_value == 0
s = pd.SparseSeries(arr, name="x")
assert s.dtype == SparseDtype(np.int64)
assert s.fill_value == 0
df = pd.SparseDataFrame(s)
assert df["x"].dtype == SparseDtype(np.int64)
assert df["x"].fill_value == 0
df = pd.SparseDataFrame({"x": s})
assert df["x"].dtype == SparseDtype(np.int64)
assert df["x"].fill_value == 0
def test_constructor_nan_dataframe(self):
# GH 10079
trains = np.arange(100)
thresholds = [10, 20, 30, 40, 50, 60]
tuples = [(i, j) for i in trains for j in thresholds]
index = pd.MultiIndex.from_tuples(tuples, names=["trains", "thresholds"])
matrix = np.empty((len(index), len(trains)))
matrix.fill(np.nan)
df = pd.DataFrame(matrix, index=index, columns=trains, dtype=float)
result = df.to_sparse()
expected = pd.SparseDataFrame(matrix, index=index, columns=trains, dtype=float)
tm.assert_sp_frame_equal(result, expected)
def test_type_coercion_at_construction(self):
# GH 15682
result = pd.SparseDataFrame(
{"a": [1, 0, 0], "b": [0, 1, 0], "c": [0, 0, 1]},
dtype="uint8",
default_fill_value=0,
)
expected = pd.SparseDataFrame(
{
"a": pd.SparseSeries([1, 0, 0], dtype="uint8"),
"b": pd.SparseSeries([0, 1, 0], dtype="uint8"),
"c": pd.SparseSeries([0, 0, 1], dtype="uint8"),
},
default_fill_value=0,
)
tm.assert_sp_frame_equal(result, expected)
def test_default_dtype(self):
result = pd.SparseDataFrame(columns=list("ab"), index=range(2))
expected = pd.SparseDataFrame(
[[np.nan, np.nan], [np.nan, np.nan]], columns=list("ab"), index=range(2)
)
tm.assert_sp_frame_equal(result, expected)
def test_nan_data_with_int_dtype_raises_error(self):
sdf = pd.SparseDataFrame(
[[np.nan, np.nan], [np.nan, np.nan]], columns=list("ab"), index=range(2)
)
msg = "Cannot convert non-finite values"
with pytest.raises(ValueError, match=msg):
pd.SparseDataFrame(sdf, dtype=np.int64)
def test_dtypes(self):
df = DataFrame(np.random.randn(10000, 4))
df.loc[:9998] = np.nan
sdf = df.to_sparse()
result = sdf.dtypes
expected = Series(["Sparse[float64, nan]"] * 4)
tm.assert_series_equal(result, expected)
def test_shape(
self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2
):
# see gh-10452
assert float_frame.shape == (10, 4)
assert float_frame_int_kind.shape == (10, 4)
assert float_frame_fill0.shape == (10, 4)
assert float_frame_fill2.shape == (10, 4)
def test_str(self):
df = DataFrame(np.random.randn(10000, 4))
df.loc[:9998] = np.nan
sdf = df.to_sparse()
str(sdf)
def test_array_interface(self, float_frame):
res = np.sqrt(float_frame)
dres = np.sqrt(float_frame.to_dense())
tm.assert_frame_equal(res.to_dense(), dres)
def test_pickle(
self,
float_frame,
float_frame_int_kind,
float_frame_dense,
float_frame_fill0,
float_frame_fill0_dense,
float_frame_fill2,
float_frame_fill2_dense,
):
def _test_roundtrip(frame, orig):
result = tm.round_trip_pickle(frame)
tm.assert_sp_frame_equal(frame, result)
tm.assert_frame_equal(result.to_dense(), orig, check_dtype=False)
_test_roundtrip(SparseDataFrame(), DataFrame())
_test_roundtrip(float_frame, float_frame_dense)
_test_roundtrip(float_frame_int_kind, float_frame_dense)
_test_roundtrip(float_frame_fill0, float_frame_fill0_dense)
_test_roundtrip(float_frame_fill2, float_frame_fill2_dense)
def test_dense_to_sparse(self):
df = DataFrame({"A": [nan, nan, nan, 1, 2], "B": [1, 2, nan, nan, nan]})
sdf = df.to_sparse()
assert isinstance(sdf, SparseDataFrame)
assert np.isnan(sdf.default_fill_value)
assert isinstance(sdf["A"].sp_index, BlockIndex)
tm.assert_frame_equal(sdf.to_dense(), df)
sdf = df.to_sparse(kind="integer")
assert isinstance(sdf["A"].sp_index, IntIndex)
df = DataFrame({"A": [0, 0, 0, 1, 2], "B": [1, 2, 0, 0, 0]}, dtype=float)
sdf = df.to_sparse(fill_value=0)
assert sdf.default_fill_value == 0
tm.assert_frame_equal(sdf.to_dense(), df)
def test_deprecated_dense_to_sparse(self):
# GH 26557
# Deprecated 0.25.0
df = pd.DataFrame({"A": [1, np.nan, 3]})
sparse_df = pd.SparseDataFrame({"A": [1, np.nan, 3]})
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = df.to_sparse()
tm.assert_frame_equal(result, sparse_df)
def test_density(self):
df = SparseSeries([nan, nan, nan, 0, 1, 2, 3, 4, 5, 6])
assert df.density == 0.7
df = SparseDataFrame(
{
"A": [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
"B": [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
"C": np.arange(10),
"D": [0, 1, 2, 3, 4, 5, nan, nan, nan, nan],
}
)
assert df.density == 0.75
def test_sparse_to_dense(self):
pass
def test_sparse_series_ops(self, float_frame):
self._check_frame_ops(float_frame)
def test_sparse_series_ops_i(self, float_frame_int_kind):
self._check_frame_ops(float_frame_int_kind)
def test_sparse_series_ops_z(self, float_frame_fill0):
self._check_frame_ops(float_frame_fill0)
def test_sparse_series_ops_fill(self, float_frame_fill2):
self._check_frame_ops(float_frame_fill2)
def _check_frame_ops(self, frame):
def _compare_to_dense(a, b, da, db, op):
sparse_result = op(a, b)
dense_result = op(da, db)
# catch lambdas but not non-lambdas e.g. operator.add
if op in [operator.floordiv, ops.rfloordiv] or isinstance(op, LambdaType):
# GH#27231 Series sets 1//0 to np.inf, which SparseArray
# does not do (yet)
mask = np.isinf(dense_result) & ~np.isinf(sparse_result.to_dense())
dense_result[mask] = np.nan
fill = sparse_result.default_fill_value
dense_result = dense_result.to_sparse(fill_value=fill)
tm.assert_sp_frame_equal(sparse_result, dense_result, exact_indices=False)
if isinstance(a, DataFrame) and isinstance(db, DataFrame):
mixed_result = op(a, db)
assert isinstance(mixed_result, SparseDataFrame)
tm.assert_sp_frame_equal(
mixed_result, sparse_result, exact_indices=False
)
opnames = ["add", "sub", "mul", "truediv", "floordiv"]
fidx = frame.index
# time series operations
series = [
frame["A"],
frame["B"],
frame["C"],
frame["D"],
frame["A"].reindex(fidx[:7]),
frame["A"].reindex(fidx[::2]),
SparseSeries([], index=[]),
]
for op in opnames:
_compare_to_dense(
frame,
frame[::2],
frame.to_dense(),
frame[::2].to_dense(),
getattr(operator, op),
)
# 2304, no auto-broadcasting
for i, s in enumerate(series):
f = lambda a, b: getattr(a, op)(b, axis="index")
_compare_to_dense(frame, s, frame.to_dense(), s.to_dense(), f)
# FIXME: dont leave commented-out
# rops are not implemented
# _compare_to_dense(s, frame, s.to_dense(),
# frame.to_dense(), f)
# cross-sectional operations
series = [
frame.xs(fidx[0]),
frame.xs(fidx[3]),
frame.xs(fidx[5]),
frame.xs(fidx[7]),
frame.xs(fidx[5])[:2],
]
for name in opnames:
op = getattr(operator, name)
for s in series:
_compare_to_dense(frame, s, frame.to_dense(), s, op)
_compare_to_dense(s, frame, s, frame.to_dense(), op)
# it works!
frame + frame.loc[:, ["A", "B"]]
def test_op_corners(self, float_frame, empty_frame):
empty = empty_frame + empty_frame
assert empty.empty
foo = float_frame + empty_frame
assert isinstance(foo.index, DatetimeIndex)
tm.assert_frame_equal(foo, float_frame * np.nan)
foo = empty_frame + float_frame
tm.assert_frame_equal(foo, float_frame * np.nan)
def test_scalar_ops(self):
pass
def test_getitem(self):
# 1585 select multiple columns
sdf = SparseDataFrame(index=[0, 1, 2], columns=["a", "b", "c"])
result = sdf[["a", "b"]]
exp = sdf.reindex(columns=["a", "b"])
tm.assert_sp_frame_equal(result, exp)
with pytest.raises(KeyError, match=r"\['d'\] not in index"):
sdf[["a", "d"]]
def test_iloc(self, float_frame):
# GH 2227
result = float_frame.iloc[:, 0]
assert isinstance(result, SparseSeries)
tm.assert_sp_series_equal(result, float_frame["A"])
# preserve sparse index type. #2251
data = {"A": [0, 1]}
iframe = SparseDataFrame(data, default_kind="integer")
tm.assert_class_equal(iframe["A"].sp_index, iframe.iloc[:, 0].sp_index)
def test_set_value(self, float_frame):
# ok, as the index gets converted to object
frame = float_frame.copy()
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
res = frame.set_value("foobar", "B", 1.5)
assert res.index.dtype == "object"
res = float_frame
res.index = res.index.astype(object)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
res = float_frame.set_value("foobar", "B", 1.5)
assert res is not float_frame
assert res.index[-1] == "foobar"
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
assert res.get_value("foobar", "B") == 1.5
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
res2 = res.set_value("foobar", "qux", 1.5)
assert res2 is not res
tm.assert_index_equal(
res2.columns, pd.Index(list(float_frame.columns) + ["qux"])
)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
assert res2.get_value("foobar", "qux") == 1.5
def test_fancy_index_misc(self, float_frame):
# axis = 0
sliced = float_frame.iloc[-2:, :]
expected = float_frame.reindex(index=float_frame.index[-2:])
tm.assert_sp_frame_equal(sliced, expected)
# axis = 1
sliced = float_frame.iloc[:, -2:]
expected = float_frame.reindex(columns=float_frame.columns[-2:])
tm.assert_sp_frame_equal(sliced, expected)
def test_getitem_overload(self, float_frame):
# slicing
sl = float_frame[:20]
tm.assert_sp_frame_equal(sl, float_frame.reindex(float_frame.index[:20]))
# boolean indexing
d = float_frame.index[5]
indexer = float_frame.index > d
subindex = float_frame.index[indexer]
subframe = float_frame[indexer]
tm.assert_index_equal(subindex, subframe.index)
msg = "Item wrong length 9 instead of 10"
with pytest.raises(ValueError, match=msg):
float_frame[indexer[:-1]]
def test_setitem(
self,
float_frame,
float_frame_int_kind,
float_frame_dense,
float_frame_fill0,
float_frame_fill0_dense,
float_frame_fill2,
float_frame_fill2_dense,
):
def _check_frame(frame, orig):
N = len(frame)
# insert SparseSeries
frame["E"] = frame["A"]
assert isinstance(frame["E"], SparseSeries)
tm.assert_sp_series_equal(frame["E"], frame["A"], check_names=False)
# insert SparseSeries differently-indexed
to_insert = frame["A"][::2]
frame["E"] = to_insert
expected = to_insert.to_dense().reindex(frame.index)
result = frame["E"].to_dense()
tm.assert_series_equal(result, expected, check_names=False)
assert result.name == "E"
# insert Series
frame["F"] = frame["A"].to_dense()
assert isinstance(frame["F"], SparseSeries)
tm.assert_sp_series_equal(frame["F"], frame["A"], check_names=False)
# insert Series differently-indexed
to_insert = frame["A"].to_dense()[::2]
frame["G"] = to_insert
expected = to_insert.reindex(frame.index)
expected.name = "G"
tm.assert_series_equal(frame["G"].to_dense(), expected)
# insert ndarray
frame["H"] = np.random.randn(N)
assert isinstance(frame["H"], SparseSeries)
to_sparsify = np.random.randn(N)
to_sparsify[N // 2 :] = frame.default_fill_value
frame["I"] = to_sparsify
assert len(frame["I"].sp_values) == N // 2
# insert ndarray wrong size
# GH 25484
msg = "Length of values does not match length of index"
with pytest.raises(ValueError, match=msg):
frame["foo"] = np.random.randn(N - 1)
# scalar value
frame["J"] = 5
assert len(frame["J"].sp_values) == N
assert (frame["J"].sp_values == 5).all()
frame["K"] = frame.default_fill_value
assert len(frame["K"].sp_values) == 0
_check_frame(float_frame, float_frame_dense)
_check_frame(float_frame_int_kind, float_frame_dense)
_check_frame(float_frame_fill0, float_frame_fill0_dense)
_check_frame(float_frame_fill2, float_frame_fill2_dense)
@pytest.mark.parametrize(
"values",
[
[True, False],
[0, 1],
[1, None],
["a", "b"],
[pd.Timestamp("2017"), pd.NaT],
[pd.Timedelta("10s"), pd.NaT],
],
)
def test_setitem_more(self, values):
df = pd.DataFrame({"A": values})
df["A"] = pd.SparseArray(values)
expected = pd.DataFrame({"A": pd.SparseArray(values)})
tm.assert_frame_equal(df, expected)
def test_setitem_corner(self, float_frame):
float_frame["a"] = float_frame["B"]
tm.assert_sp_series_equal(float_frame["a"], float_frame["B"], check_names=False)
def test_setitem_array(self, float_frame):
arr = float_frame["B"]
float_frame["E"] = arr
tm.assert_sp_series_equal(float_frame["E"], float_frame["B"], check_names=False)
float_frame["F"] = arr[:-1]
index = float_frame.index[:-1]
tm.assert_sp_series_equal(
float_frame["E"].reindex(index),
float_frame["F"].reindex(index),
check_names=False,
)
def test_setitem_chained_no_consolidate(self):
# https://github.com/pandas-dev/pandas/pull/19268
# issuecomment-361696418
# chained setitem used to cause consolidation
sdf = pd.SparseDataFrame([[np.nan, 1], [2, np.nan]])
with pd.option_context("mode.chained_assignment", None):
sdf[0][1] = 2
assert len(sdf._data.blocks) == 2
def test_delitem(self, float_frame):
A = float_frame["A"]
C = float_frame["C"]
del float_frame["B"]
assert "B" not in float_frame
tm.assert_sp_series_equal(float_frame["A"], A)
tm.assert_sp_series_equal(float_frame["C"], C)
del float_frame["D"]
assert "D" not in float_frame
del float_frame["A"]
assert "A" not in float_frame
def test_set_columns(self, float_frame):
float_frame.columns = float_frame.columns
msg = (
"Length mismatch: Expected axis has 4 elements, new values have"
" 3 elements"
)
with pytest.raises(ValueError, match=msg):
float_frame.columns = float_frame.columns[:-1]
def test_set_index(self, float_frame):
float_frame.index = float_frame.index
msg = (
"Length mismatch: Expected axis has 10 elements, new values"
" have 9 elements"
)
with pytest.raises(ValueError, match=msg):
float_frame.index = float_frame.index[:-1]
def test_ctor_reindex(self):
idx = pd.Index([0, 1, 2, 3])
msg = "Length of passed values is 2, index implies 4"
with pytest.raises(ValueError, match=msg):
pd.SparseDataFrame({"A": [1, 2]}, index=idx)
def test_append(self, float_frame):
a = float_frame[:5]
b = float_frame[5:]
appended = a.append(b)
tm.assert_sp_frame_equal(appended, float_frame, exact_indices=False)
a = float_frame.iloc[:5, :3]
b = float_frame.iloc[5:]
with tm.assert_produces_warning(
FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
):
# Stacklevel is set for pd.concat, not append
appended = a.append(b)
tm.assert_sp_frame_equal(
appended.iloc[:, :3], float_frame.iloc[:, :3], exact_indices=False
)
a = a[["B", "C", "A"]].head(2)
b = b.head(2)
expected = pd.SparseDataFrame(
{
"B": [0.0, 1, None, 3],
"C": [0.0, 1, 5, 6],
"A": [None, None, 2, 3],
"D": [None, None, 5, None],
},
index=a.index | b.index,
columns=["B", "C", "A", "D"],
)
with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
appended = a.append(b, sort=False)
tm.assert_frame_equal(appended, expected)
with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
appended = a.append(b, sort=True)
tm.assert_sp_frame_equal(
appended,
expected[["A", "B", "C", "D"]],
consolidate_block_indices=True,
check_kind=False,
)
def test_astype(self):
sparse = pd.SparseDataFrame(
{
"A": SparseArray([1, 2, 3, 4], dtype=np.int64),
"B": SparseArray([4, 5, 6, 7], dtype=np.int64),
}
)
assert sparse["A"].dtype == SparseDtype(np.int64)
assert sparse["B"].dtype == SparseDtype(np.int64)
# retain fill_value
res = sparse.astype(np.float64)
exp = pd.SparseDataFrame(
{
"A": SparseArray([1.0, 2.0, 3.0, 4.0], fill_value=0, kind="integer"),
"B": SparseArray([4.0, 5.0, 6.0, 7.0], fill_value=0, kind="integer"),
},
default_fill_value=np.nan,
)
tm.assert_sp_frame_equal(res, exp)
assert res["A"].dtype == SparseDtype(np.float64, 0)
assert res["B"].dtype == SparseDtype(np.float64, 0)
# update fill_value
res = sparse.astype(SparseDtype(np.float64, np.nan))
exp = pd.SparseDataFrame(
{
"A": SparseArray(
[1.0, 2.0, 3.0, 4.0], fill_value=np.nan, kind="integer"
),
"B": SparseArray(
[4.0, 5.0, 6.0, 7.0], fill_value=np.nan, kind="integer"
),
},
default_fill_value=np.nan,
)
tm.assert_sp_frame_equal(res, exp)
assert res["A"].dtype == SparseDtype(np.float64, np.nan)
assert res["B"].dtype == SparseDtype(np.float64, np.nan)
def test_astype_bool(self):
sparse = pd.SparseDataFrame(
{
"A": SparseArray([0, 2, 0, 4], fill_value=0, dtype=np.int64),
"B": SparseArray([0, 5, 0, 7], fill_value=0, dtype=np.int64),
},
default_fill_value=0,
)
assert sparse["A"].dtype == SparseDtype(np.int64)
assert sparse["B"].dtype == SparseDtype(np.int64)
res = sparse.astype(SparseDtype(bool, False))
exp = pd.SparseDataFrame(
{
"A": SparseArray(
[False, True, False, True],
dtype=np.bool,
fill_value=False,
kind="integer",
),
"B": SparseArray(
[False, True, False, True],
dtype=np.bool,
fill_value=False,
kind="integer",
),
},
default_fill_value=False,
)
tm.assert_sp_frame_equal(res, exp)
assert res["A"].dtype == SparseDtype(np.bool)
assert res["B"].dtype == SparseDtype(np.bool)
def test_astype_object(self):
# This may change in GH-23125
df = pd.DataFrame({"A": SparseArray([0, 1]), "B": SparseArray([0, 1])})
result = df.astype(object)
dtype = SparseDtype(object, 0)
expected = pd.DataFrame(
{
"A": SparseArray([0, 1], dtype=dtype),
"B": SparseArray([0, 1], dtype=dtype),
}
)
tm.assert_frame_equal(result, expected)
def test_fillna(self, float_frame_fill0, float_frame_fill0_dense):
df = float_frame_fill0.reindex(list(range(5)))
dense = float_frame_fill0_dense.reindex(list(range(5)))
result = df.fillna(0)
expected = dense.fillna(0)
tm.assert_sp_frame_equal(
result, expected.to_sparse(fill_value=0), exact_indices=False
)
tm.assert_frame_equal(result.to_dense(), expected)
result = df.copy()
result.fillna(0, inplace=True)
expected = dense.fillna(0)
tm.assert_sp_frame_equal(
result, expected.to_sparse(fill_value=0), exact_indices=False
)
tm.assert_frame_equal(result.to_dense(), expected)
result = df.copy()
result = df["A"]
result.fillna(0, inplace=True)
expected = dense["A"].fillna(0)
# this changes internal SparseArray repr
# tm.assert_sp_series_equal(result, expected.to_sparse(fill_value=0))
tm.assert_series_equal(result.to_dense(), expected)
def test_fillna_fill_value(self):
df = pd.DataFrame({"A": [1, 0, 0], "B": [np.nan, np.nan, 4]})
sparse = pd.SparseDataFrame(df)
tm.assert_frame_equal(
sparse.fillna(-1).to_dense(), df.fillna(-1), check_dtype=False
)
sparse = pd.SparseDataFrame(df, default_fill_value=0)
tm.assert_frame_equal(
sparse.fillna(-1).to_dense(), df.fillna(-1), check_dtype=False
)
def test_sparse_frame_pad_backfill_limit(self):
index = np.arange(10)
df = DataFrame(np.random.randn(10, 4), index=index)
sdf = df.to_sparse()
result = sdf[:2].reindex(index, method="pad", limit=5)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
expected = sdf[:2].reindex(index).fillna(method="pad")
expected = expected.to_dense()
expected.values[-3:] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
result = sdf[-2:].reindex(index, method="backfill", limit=5)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
expected = sdf[-2:].reindex(index).fillna(method="backfill")
expected = expected.to_dense()
expected.values[:3] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
def test_sparse_frame_fillna_limit(self):
index = np.arange(10)
df = DataFrame(np.random.randn(10, 4), index=index)
sdf = df.to_sparse()
result = sdf[:2].reindex(index)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
result = result.fillna(method="pad", limit=5)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
expected = sdf[:2].reindex(index).fillna(method="pad")
expected = expected.to_dense()
expected.values[-3:] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
result = sdf[-2:].reindex(index)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
result = result.fillna(method="backfill", limit=5)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
expected = sdf[-2:].reindex(index).fillna(method="backfill")
expected = expected.to_dense()
expected.values[:3] = np.nan
expected = expected.to_sparse()
tm.assert_frame_equal(result, expected)
def test_rename(self, float_frame):
result = float_frame.rename(index=str)
expected = SparseDataFrame(
float_frame.values,
index=float_frame.index.strftime("%Y-%m-%d %H:%M:%S"),
columns=list("ABCD"),
)
tm.assert_sp_frame_equal(result, expected)
result = float_frame.rename(columns="{}1".format)
data = {
"A1": [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
"B1": [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
"C1": np.arange(10, dtype=np.float64),
"D1": [0, 1, 2, 3, 4, 5, nan, nan, nan, nan],
}
expected = SparseDataFrame(data, index=float_frame.index)
tm.assert_sp_frame_equal(result, expected)
def test_corr(self, float_frame):
res = float_frame.corr()
# XXX: this stays sparse
tm.assert_frame_equal(res, float_frame.to_dense().corr().to_sparse())
def test_describe(self, float_frame):
float_frame["foo"] = np.nan
float_frame.dtypes.value_counts()
str(float_frame)
desc = float_frame.describe() # noqa
def test_join(self, float_frame):
left = float_frame.loc[:, ["A", "B"]]
right = float_frame.loc[:, ["C", "D"]]
joined = left.join(right)
tm.assert_sp_frame_equal(joined, float_frame, exact_indices=False)
right = float_frame.loc[:, ["B", "D"]]
msg = (
r"columns overlap but no suffix specified: Index\(\['B'\],"
r" dtype='object'\)"
)
with pytest.raises(ValueError, match=msg):
left.join(right)
with pytest.raises(ValueError, match="Other Series must have a name"):
float_frame.join(
Series(np.random.randn(len(float_frame)), index=float_frame.index)
)
def test_reindex(
self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2
):
def _check_frame(frame):
index = frame.index
sidx = index[::2]
sidx2 = index[:5] # noqa
sparse_result = frame.reindex(sidx)
dense_result = frame.to_dense().reindex(sidx)
tm.assert_frame_equal(sparse_result.to_dense(), dense_result)
tm.assert_frame_equal(frame.reindex(list(sidx)).to_dense(), dense_result)
sparse_result2 = sparse_result.reindex(index)
dense_result2 = dense_result.reindex(index)
tm.assert_frame_equal(sparse_result2.to_dense(), dense_result2)
# propagate CORRECT fill value
tm.assert_almost_equal(
sparse_result.default_fill_value, frame.default_fill_value
)
tm.assert_almost_equal(sparse_result["A"].fill_value, frame["A"].fill_value)
# length zero
length_zero = frame.reindex([])
assert len(length_zero) == 0
assert len(length_zero.columns) == len(frame.columns)
assert len(length_zero["A"]) == 0
# frame being reindexed has length zero
length_n = length_zero.reindex(index)
assert len(length_n) == len(frame)
assert len(length_n.columns) == len(frame.columns)
assert len(length_n["A"]) == len(frame)
# reindex columns
reindexed = frame.reindex(columns=["A", "B", "Z"])
assert len(reindexed.columns) == 3
tm.assert_almost_equal(reindexed["Z"].fill_value, frame.default_fill_value)
assert np.isnan(reindexed["Z"].sp_values).all()
_check_frame(float_frame)
_check_frame(float_frame_int_kind)
_check_frame(float_frame_fill0)
_check_frame(float_frame_fill2)
# with copy=False
reindexed = float_frame.reindex(float_frame.index, copy=False)
reindexed["F"] = reindexed["A"]
assert "F" in float_frame
reindexed = float_frame.reindex(float_frame.index)
reindexed["G"] = reindexed["A"]
assert "G" not in float_frame
def test_reindex_fill_value(self, float_frame_fill0, float_frame_fill0_dense):
rng = bdate_range("20110110", periods=20)
result = float_frame_fill0.reindex(rng, fill_value=0)
exp = float_frame_fill0_dense.reindex(rng, fill_value=0)
exp = exp.to_sparse(float_frame_fill0.default_fill_value)
tm.assert_sp_frame_equal(result, exp)
def test_reindex_method(self):
sparse = SparseDataFrame(
data=[[11.0, 12.0, 14.0], [21.0, 22.0, 24.0], [41.0, 42.0, 44.0]],
index=[1, 2, 4],
columns=[1, 2, 4],
dtype=float,
)
# Over indices
# default method
result = sparse.reindex(index=range(6))
expected = SparseDataFrame(
data=[
[nan, nan, nan],
[11.0, 12.0, 14.0],
[21.0, 22.0, 24.0],
[nan, nan, nan],
[41.0, 42.0, 44.0],
[nan, nan, nan],
],
index=range(6),
columns=[1, 2, 4],
dtype=float,
)
tm.assert_sp_frame_equal(result, expected)
# method='bfill'
result = sparse.reindex(index=range(6), method="bfill")
expected = SparseDataFrame(
data=[
[11.0, 12.0, 14.0],
[11.0, 12.0, 14.0],
[21.0, 22.0, 24.0],
[41.0, 42.0, 44.0],
[41.0, 42.0, 44.0],
[nan, nan, nan],
],
index=range(6),
columns=[1, 2, 4],
dtype=float,
)
tm.assert_sp_frame_equal(result, expected)
# method='ffill'
result = sparse.reindex(index=range(6), method="ffill")
expected = SparseDataFrame(
data=[
[nan, nan, nan],
[11.0, 12.0, 14.0],
[21.0, 22.0, 24.0],
[21.0, 22.0, 24.0],
[41.0, 42.0, 44.0],
[41.0, 42.0, 44.0],
],
index=range(6),
columns=[1, 2, 4],
dtype=float,
)
tm.assert_sp_frame_equal(result, expected)
# Over columns
# default method
result = sparse.reindex(columns=range(6))
expected = SparseDataFrame(
data=[
[nan, 11.0, 12.0, nan, 14.0, nan],
[nan, 21.0, 22.0, nan, 24.0, nan],
[nan, 41.0, 42.0, nan, 44.0, nan],
],
index=[1, 2, 4],
columns=range(6),
dtype=float,
)
tm.assert_sp_frame_equal(result, expected)
# method='bfill'
with pytest.raises(NotImplementedError):
sparse.reindex(columns=range(6), method="bfill")
# method='ffill'
with pytest.raises(NotImplementedError):
sparse.reindex(columns=range(6), method="ffill")
def test_take(self, float_frame):
result = float_frame.take([1, 0, 2], axis=1)
expected = float_frame.reindex(columns=["B", "A", "C"])
tm.assert_sp_frame_equal(result, expected)
def test_to_dense(
self,
float_frame,
float_frame_int_kind,
float_frame_dense,
float_frame_fill0,
float_frame_fill0_dense,
float_frame_fill2,
float_frame_fill2_dense,
):
def _check(frame, orig):
dense_dm = frame.to_dense()
# Sparse[float] != float
tm.assert_frame_equal(frame, dense_dm, check_dtype=False)
tm.assert_frame_equal(dense_dm, orig, check_dtype=False)
_check(float_frame, float_frame_dense)
_check(float_frame_int_kind, float_frame_dense)
_check(float_frame_fill0, float_frame_fill0_dense)
_check(float_frame_fill2, float_frame_fill2_dense)
def test_stack_sparse_frame(
self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2
):
def _check(frame):
dense_frame = frame.to_dense() # noqa
from_dense_lp = frame.stack().to_frame()
from_sparse_lp = spf.stack_sparse_frame(frame)
tm.assert_numpy_array_equal(from_dense_lp.values, from_sparse_lp.values)
_check(float_frame)
_check(float_frame_int_kind)
# for now
msg = "This routine assumes NaN fill value"
with pytest.raises(TypeError, match=msg):
_check(float_frame_fill0)
with pytest.raises(TypeError, match=msg):
_check(float_frame_fill2)
def test_transpose(
self,
float_frame,
float_frame_int_kind,
float_frame_dense,
float_frame_fill0,
float_frame_fill0_dense,
float_frame_fill2,
float_frame_fill2_dense,
):
def _check(frame, orig):
transposed = frame.T
untransposed = transposed.T
tm.assert_sp_frame_equal(frame, untransposed)
tm.assert_frame_equal(frame.T.to_dense(), orig.T)
tm.assert_frame_equal(frame.T.T.to_dense(), orig.T.T)
tm.assert_sp_frame_equal(frame, frame.T.T, exact_indices=False)
_check(float_frame, float_frame_dense)
_check(float_frame_int_kind, float_frame_dense)
_check(float_frame_fill0, float_frame_fill0_dense)
_check(float_frame_fill2, float_frame_fill2_dense)
def test_shift(
self,
float_frame,
float_frame_int_kind,
float_frame_dense,
float_frame_fill0,
float_frame_fill0_dense,
float_frame_fill2,
float_frame_fill2_dense,
):
def _check(frame, orig):
shifted = frame.shift(0)
exp = orig.shift(0)
tm.assert_frame_equal(shifted.to_dense(), exp)
shifted = frame.shift(1)
exp = orig.shift(1)
tm.assert_frame_equal(shifted.to_dense(), exp)
shifted = frame.shift(-2)
exp = orig.shift(-2)
tm.assert_frame_equal(shifted.to_dense(), exp)
shifted = frame.shift(2, freq="B")
exp = orig.shift(2, freq="B")
exp = exp.to_sparse(frame.default_fill_value, kind=frame.default_kind)
tm.assert_frame_equal(shifted, exp)
shifted = frame.shift(2, freq=BDay())
exp = orig.shift(2, freq=BDay())
exp = exp.to_sparse(frame.default_fill_value, kind=frame.default_kind)
tm.assert_frame_equal(shifted, exp)
_check(float_frame, float_frame_dense)
_check(float_frame_int_kind, float_frame_dense)
_check(float_frame_fill0, float_frame_fill0_dense)
_check(float_frame_fill2, float_frame_fill2_dense)
def test_count(self, float_frame):
dense_result = float_frame.to_dense().count()
result = float_frame.count()
tm.assert_series_equal(result.to_dense(), dense_result)
result = float_frame.count(axis=None)
tm.assert_series_equal(result.to_dense(), dense_result)
result = float_frame.count(axis=0)
tm.assert_series_equal(result.to_dense(), dense_result)
result = float_frame.count(axis=1)
dense_result = float_frame.to_dense().count(axis=1)
# win32 don't check dtype
tm.assert_series_equal(result, dense_result, check_dtype=False)
def test_numpy_transpose(self):
sdf = SparseDataFrame([1, 2, 3], index=[1, 2, 3], columns=["a"])
result = np.transpose(np.transpose(sdf))
tm.assert_sp_frame_equal(result, sdf)
msg = "the 'axes' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.transpose(sdf, axes=1)
def test_combine_first(self, float_frame):
df = float_frame
result = df[::2].combine_first(df)
expected = df[::2].to_dense().combine_first(df.to_dense())
expected = expected.to_sparse(fill_value=df.default_fill_value)
tm.assert_sp_frame_equal(result, expected)
@pytest.mark.xfail(reason="No longer supported.")
def test_combine_first_with_dense(self):
# We could support this if we allow
# pd.core.dtypes.cast.find_common_type to special case SparseDtype
# but I don't think that's worth it.
df = self.frame
result = df[::2].combine_first(df.to_dense())
expected = df[::2].to_dense().combine_first(df.to_dense())
expected = expected.to_sparse(fill_value=df.default_fill_value)
tm.assert_sp_frame_equal(result, expected)
def test_combine_add(self, float_frame):
df = float_frame.to_dense()
df2 = df.copy()
df2["C"][:3] = np.nan
df["A"][:3] = 5.7
result = df.to_sparse().add(df2.to_sparse(), fill_value=0)
expected = df.add(df2, fill_value=0).to_sparse()
tm.assert_sp_frame_equal(result, expected)
def test_isin(self):
sparse_df = DataFrame({"flag": [1.0, 0.0, 1.0]}).to_sparse(fill_value=0.0)
xp = sparse_df[sparse_df.flag == 1.0]
rs = sparse_df[sparse_df.flag.isin([1.0])]
tm.assert_frame_equal(xp, rs)
def test_sparse_pow_issue(self):
# 2220
df = SparseDataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]})
# note : no error without nan
df = SparseDataFrame({"A": [nan, 0, 1]})
# note that 2 ** df works fine, also df ** 1
result = 1 ** df
r1 = result.take([0], 1)["A"]
r2 = result["A"]
assert len(r2.sp_values) == len(r1.sp_values)
def test_as_blocks(self):
df = SparseDataFrame({"A": [1.1, 3.3], "B": [nan, -3.9]}, dtype="float64")
# deprecated 0.21.0
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
df_blocks = df.blocks
assert list(df_blocks.keys()) == ["Sparse[float64, nan]"]
tm.assert_frame_equal(df_blocks["Sparse[float64, nan]"], df)
@pytest.mark.xfail(reason="nan column names in _init_dict problematic (GH#16894)")
def test_nan_columnname(self):
# GH 8822
nan_colname = DataFrame(Series(1.0, index=[0]), columns=[nan])
nan_colname_sparse = nan_colname.to_sparse()
assert np.isnan(nan_colname_sparse.columns[0])
def test_isna(self):
# GH 8276
df = pd.SparseDataFrame(
{"A": [np.nan, np.nan, 1, 2, np.nan], "B": [0, np.nan, np.nan, 2, np.nan]}
)
res = df.isna()
exp = pd.SparseDataFrame(
{
"A": [True, True, False, False, True],
"B": [False, True, True, False, True],
},
default_fill_value=True,
)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# if fill_value is not nan, True can be included in sp_values
df = pd.SparseDataFrame(
{"A": [0, 0, 1, 2, np.nan], "B": [0, np.nan, 0, 2, np.nan]},
default_fill_value=0.0,
)
res = df.isna()
assert isinstance(res, pd.SparseDataFrame)
exp = pd.DataFrame(
{
"A": [False, False, False, False, True],
"B": [False, True, False, False, True],
}
)
tm.assert_frame_equal(res.to_dense(), exp)
def test_notna(self):
# GH 8276
df = pd.SparseDataFrame(
{"A": [np.nan, np.nan, 1, 2, np.nan], "B": [0, np.nan, np.nan, 2, np.nan]}
)
res = df.notna()
exp = pd.SparseDataFrame(
{
"A": [False, False, True, True, False],
"B": [True, False, False, True, False],
},
default_fill_value=False,
)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# if fill_value is not nan, True can be included in sp_values
df = pd.SparseDataFrame(
{"A": [0, 0, 1, 2, np.nan], "B": [0, np.nan, 0, 2, np.nan]},
default_fill_value=0.0,
)
res = df.notna()
assert isinstance(res, pd.SparseDataFrame)
exp = pd.DataFrame(
{
"A": [True, True, True, True, False],
"B": [True, False, True, True, False],
}
)
tm.assert_frame_equal(res.to_dense(), exp)
def test_default_fill_value_with_no_data(self):
# GH 16807
expected = pd.SparseDataFrame(
[[1.0, 1.0], [1.0, 1.0]], columns=list("ab"), index=range(2)
)
result = pd.SparseDataFrame(
columns=list("ab"), index=range(2), default_fill_value=1.0
)
tm.assert_frame_equal(expected, result)
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
class TestSparseDataFrameArithmetic:
def test_numeric_op_scalar(self):
df = pd.DataFrame(
{
"A": [nan, nan, 0, 1],
"B": [0, 1, 2, nan],
"C": [1.0, 2.0, 3.0, 4.0],
"D": [nan, nan, nan, nan],
}
)
sparse = df.to_sparse()
tm.assert_sp_frame_equal(sparse + 1, (df + 1).to_sparse())
def test_comparison_op_scalar(self):
# GH 13001
df = pd.DataFrame(
{
"A": [nan, nan, 0, 1],
"B": [0, 1, 2, nan],
"C": [1.0, 2.0, 3.0, 4.0],
"D": [nan, nan, nan, nan],
}
)
sparse = df.to_sparse()
# comparison changes internal repr, compare with dense
res = sparse > 1
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), df > 1)
res = sparse != 0
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), df != 0)
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
class TestSparseDataFrameAnalytics:
def test_cumsum(self, float_frame):
expected = SparseDataFrame(float_frame.to_dense().cumsum())
result = float_frame.cumsum()
tm.assert_sp_frame_equal(result, expected)
result = float_frame.cumsum(axis=None)
tm.assert_sp_frame_equal(result, expected)
result = float_frame.cumsum(axis=0)
tm.assert_sp_frame_equal(result, expected)
def test_numpy_cumsum(self, float_frame):
result = np.cumsum(float_frame)
expected = SparseDataFrame(float_frame.to_dense().cumsum())
tm.assert_sp_frame_equal(result, expected)
msg = "the 'dtype' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.cumsum(float_frame, dtype=np.int64)
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.cumsum(float_frame, out=result)
def test_numpy_func_call(self, float_frame):
# no exception should be raised even though
# numpy passes in 'axis=None' or `axis=-1'
funcs = ["sum", "cumsum", "var", "mean", "prod", "cumprod", "std", "min", "max"]
for func in funcs:
getattr(np, func)(float_frame)
@pytest.mark.xfail(reason="Wrong SparseBlock initialization (GH 17386)")
def test_quantile(self):
# GH 17386
data = [[1, 1], [2, 10], [3, 100], [nan, nan]]
q = 0.1
sparse_df = SparseDataFrame(data)
result = sparse_df.quantile(q)
dense_df = DataFrame(data)
dense_expected = dense_df.quantile(q)
sparse_expected = SparseSeries(dense_expected)
tm.assert_series_equal(result, dense_expected)
tm.assert_sp_series_equal(result, sparse_expected)
@pytest.mark.xfail(reason="Wrong SparseBlock initialization (GH 17386)")
def test_quantile_multi(self):
# GH 17386
data = [[1, 1], [2, 10], [3, 100], [nan, nan]]
q = [0.1, 0.5]
sparse_df = SparseDataFrame(data)
result = sparse_df.quantile(q)
dense_df = DataFrame(data)
dense_expected = dense_df.quantile(q)
sparse_expected = SparseDataFrame(dense_expected)
tm.assert_frame_equal(result, dense_expected)
tm.assert_sp_frame_equal(result, sparse_expected)
def test_assign_with_sparse_frame(self):
# GH 19163
df = pd.DataFrame({"a": [1, 2, 3]})
res = df.to_sparse(fill_value=False).assign(newcol=False)
exp = df.assign(newcol=False).to_sparse(fill_value=False)
tm.assert_sp_frame_equal(res, exp)
for column in res.columns:
assert type(res[column]) is SparseSeries
@pytest.mark.parametrize("inplace", [True, False])
@pytest.mark.parametrize("how", ["all", "any"])
def test_dropna(self, inplace, how):
# Tests regression #21172.
expected = pd.SparseDataFrame({"F2": [0, 1]})
input_df = pd.SparseDataFrame(
{"F1": [float("nan"), float("nan")], "F2": [0, 1]}
)
result_df = input_df.dropna(axis=1, inplace=inplace, how=how)
if inplace:
result_df = input_df
tm.assert_sp_frame_equal(expected, result_df)