Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / sparse / frame / test_indexing.py

import numpy as np
import pytest

from pandas import DataFrame, SparseDataFrame
from pandas.util import testing as tm

pytestmark = pytest.mark.skip("Wrong SparseBlock initialization (GH 17386)")


@pytest.mark.parametrize(
    "data",
    [
        [[1, 1], [2, 2], [3, 3], [4, 4], [0, 0]],
        [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [np.nan, np.nan]],
        [
            [1.0, 1.0 + 1.0j],
            [2.0 + 2.0j, 2.0],
            [3.0, 3.0 + 3.0j],
            [4.0 + 4.0j, 4.0],
            [np.nan, np.nan],
        ],
    ],
)
@pytest.mark.xfail(reason="Wrong SparseBlock initialization (GH#17386)")
def test_where_with_numeric_data(data):
    # GH 17386
    lower_bound = 1.5

    sparse = SparseDataFrame(data)
    result = sparse.where(sparse > lower_bound)

    dense = DataFrame(data)
    dense_expected = dense.where(dense > lower_bound)
    sparse_expected = SparseDataFrame(dense_expected)

    tm.assert_frame_equal(result, dense_expected)
    tm.assert_sp_frame_equal(result, sparse_expected)


@pytest.mark.parametrize(
    "data",
    [
        [[1, 1], [2, 2], [3, 3], [4, 4], [0, 0]],
        [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [np.nan, np.nan]],
        [
            [1.0, 1.0 + 1.0j],
            [2.0 + 2.0j, 2.0],
            [3.0, 3.0 + 3.0j],
            [4.0 + 4.0j, 4.0],
            [np.nan, np.nan],
        ],
    ],
)
@pytest.mark.parametrize("other", [True, -100, 0.1, 100.0 + 100.0j])
@pytest.mark.xfail(reason="Wrong SparseBlock initialization (GH#17386)")
def test_where_with_numeric_data_and_other(data, other):
    # GH 17386
    lower_bound = 1.5

    sparse = SparseDataFrame(data)
    result = sparse.where(sparse > lower_bound, other)

    dense = DataFrame(data)
    dense_expected = dense.where(dense > lower_bound, other)
    sparse_expected = SparseDataFrame(dense_expected, default_fill_value=other)

    tm.assert_frame_equal(result, dense_expected)
    tm.assert_sp_frame_equal(result, sparse_expected)


@pytest.mark.xfail(reason="Wrong SparseBlock initialization (GH#17386)")
def test_where_with_bool_data():
    # GH 17386
    data = [[False, False], [True, True], [False, False]]
    cond = True

    sparse = SparseDataFrame(data)
    result = sparse.where(sparse == cond)

    dense = DataFrame(data)
    dense_expected = dense.where(dense == cond)
    sparse_expected = SparseDataFrame(dense_expected)

    tm.assert_frame_equal(result, dense_expected)
    tm.assert_sp_frame_equal(result, sparse_expected)


@pytest.mark.parametrize("other", [True, 0, 0.1, 100.0 + 100.0j])
@pytest.mark.xfail(reason="Wrong SparseBlock initialization (GH#17386)")
def test_where_with_bool_data_and_other(other):
    # GH 17386
    data = [[False, False], [True, True], [False, False]]
    cond = True

    sparse = SparseDataFrame(data)
    result = sparse.where(sparse == cond, other)

    dense = DataFrame(data)
    dense_expected = dense.where(dense == cond, other)
    sparse_expected = SparseDataFrame(dense_expected, default_fill_value=other)

    tm.assert_frame_equal(result, dense_expected)
    tm.assert_sp_frame_equal(result, sparse_expected)