import itertools
import numpy as np
import pytest
from pandas.errors import PerformanceWarning
import pandas as pd
import pandas.util.testing as tm
class TestSparseArrayConcat:
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_basic(self, kind):
a = pd.SparseArray([1, 0, 0, 2], kind=kind)
b = pd.SparseArray([1, 0, 2, 2], kind=kind)
result = pd.SparseArray._concat_same_type([a, b])
# Can't make any assertions about the sparse index itself
# since we aren't don't merge sparse blocs across arrays
# in to_concat
expected = np.array([1, 2, 1, 2, 2], dtype="int64")
tm.assert_numpy_array_equal(result.sp_values, expected)
assert result.kind == kind
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_uses_first_kind(self, kind):
other = "integer" if kind == "block" else "block"
a = pd.SparseArray([1, 0, 0, 2], kind=kind)
b = pd.SparseArray([1, 0, 2, 2], kind=other)
result = pd.SparseArray._concat_same_type([a, b])
expected = np.array([1, 2, 1, 2, 2], dtype="int64")
tm.assert_numpy_array_equal(result.sp_values, expected)
assert result.kind == kind
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
class TestSparseSeriesConcat:
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_concat(self, kind):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
sparse1 = pd.SparseSeries(val1, name="x", kind=kind)
sparse2 = pd.SparseSeries(val2, name="y", kind=kind)
res = pd.concat([sparse1, sparse2])
exp = pd.concat([pd.Series(val1), pd.Series(val2)])
exp = pd.SparseSeries(exp, kind=kind)
tm.assert_sp_series_equal(res, exp, consolidate_block_indices=True)
sparse1 = pd.SparseSeries(val1, fill_value=0, name="x", kind=kind)
sparse2 = pd.SparseSeries(val2, fill_value=0, name="y", kind=kind)
res = pd.concat([sparse1, sparse2])
exp = pd.concat([pd.Series(val1), pd.Series(val2)])
exp = pd.SparseSeries(exp, fill_value=0, kind=kind)
tm.assert_sp_series_equal(res, exp, consolidate_block_indices=True)
def test_concat_axis1(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
sparse1 = pd.SparseSeries(val1, name="x")
sparse2 = pd.SparseSeries(val2, name="y")
res = pd.concat([sparse1, sparse2], axis=1)
exp = pd.concat([pd.Series(val1, name="x"), pd.Series(val2, name="y")], axis=1)
exp = pd.SparseDataFrame(exp)
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
def test_concat_different_fill(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
for kind in ["integer", "block"]:
sparse1 = pd.SparseSeries(val1, name="x", kind=kind)
sparse2 = pd.SparseSeries(val2, name="y", kind=kind, fill_value=0)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
res = pd.concat([sparse1, sparse2])
exp = pd.concat([pd.Series(val1), pd.Series(val2)])
exp = pd.SparseSeries(exp, kind=kind)
tm.assert_sp_series_equal(res, exp)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
res = pd.concat([sparse2, sparse1])
exp = pd.concat([pd.Series(val2), pd.Series(val1)])
exp = pd.SparseSeries(exp, kind=kind, fill_value=0)
tm.assert_sp_series_equal(res, exp)
def test_concat_axis1_different_fill(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
sparse1 = pd.SparseSeries(val1, name="x")
sparse2 = pd.SparseSeries(val2, name="y", fill_value=0)
res = pd.concat([sparse1, sparse2], axis=1)
exp = pd.concat([pd.Series(val1, name="x"), pd.Series(val2, name="y")], axis=1)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
def test_concat_different_kind(self):
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
sparse1 = pd.SparseSeries(val1, name="x", kind="integer")
sparse2 = pd.SparseSeries(val2, name="y", kind="block")
res = pd.concat([sparse1, sparse2])
exp = pd.concat([pd.Series(val1), pd.Series(val2)])
exp = pd.SparseSeries(exp, kind=sparse1.kind)
tm.assert_sp_series_equal(res, exp)
res = pd.concat([sparse2, sparse1])
exp = pd.concat([pd.Series(val2), pd.Series(val1)])
exp = pd.SparseSeries(exp, kind=sparse2.kind)
tm.assert_sp_series_equal(res, exp, consolidate_block_indices=True)
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_concat_sparse_dense(self, kind):
# use first input's fill_value
val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
val2 = np.array([3, np.nan, 4, 0, 0])
sparse = pd.SparseSeries(val1, name="x", kind=kind)
dense = pd.Series(val2, name="y")
res = pd.concat([sparse, dense])
exp = pd.SparseSeries(pd.concat([pd.Series(val1), dense]), kind=kind)
tm.assert_sp_series_equal(res, exp)
res = pd.concat([dense, sparse, dense])
exp = pd.concat([dense, pd.Series(val1), dense])
# XXX: changed from SparseSeries to Series[sparse]
exp = pd.Series(pd.SparseArray(exp, kind=kind), index=exp.index, name=exp.name)
tm.assert_series_equal(res, exp)
sparse = pd.SparseSeries(val1, name="x", kind=kind, fill_value=0)
dense = pd.Series(val2, name="y")
res = pd.concat([sparse, dense])
# XXX: changed from SparseSeries to Series[sparse]
exp = pd.concat([pd.Series(val1), dense])
exp = pd.Series(
pd.SparseArray(exp, kind=kind, fill_value=0), index=exp.index, name=exp.name
)
tm.assert_series_equal(res, exp)
res = pd.concat([dense, sparse, dense])
exp = pd.concat([dense, pd.Series(val1), dense])
# XXX: changed from SparseSeries to Series[sparse]
exp = pd.Series(
pd.SparseArray(exp, kind=kind, fill_value=0), index=exp.index, name=exp.name
)
tm.assert_series_equal(res, exp)
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
class TestSparseDataFrameConcat:
def setup_method(self, method):
self.dense1 = pd.DataFrame(
{
"A": [0.0, 1.0, 2.0, np.nan],
"B": [0.0, 0.0, 0.0, 0.0],
"C": [np.nan, np.nan, np.nan, np.nan],
"D": [1.0, 2.0, 3.0, 4.0],
}
)
self.dense2 = pd.DataFrame(
{
"A": [5.0, 6.0, 7.0, 8.0],
"B": [np.nan, 0.0, 7.0, 8.0],
"C": [5.0, 6.0, np.nan, np.nan],
"D": [np.nan, np.nan, np.nan, np.nan],
}
)
self.dense3 = pd.DataFrame(
{
"E": [5.0, 6.0, 7.0, 8.0],
"F": [np.nan, 0.0, 7.0, 8.0],
"G": [5.0, 6.0, np.nan, np.nan],
"H": [np.nan, np.nan, np.nan, np.nan],
}
)
def test_concat(self):
# fill_value = np.nan
sparse = self.dense1.to_sparse()
sparse2 = self.dense2.to_sparse()
res = pd.concat([sparse, sparse])
exp = pd.concat([self.dense1, self.dense1]).to_sparse()
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
res = pd.concat([sparse2, sparse2])
exp = pd.concat([self.dense2, self.dense2]).to_sparse()
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
res = pd.concat([sparse, sparse2])
exp = pd.concat([self.dense1, self.dense2]).to_sparse()
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
res = pd.concat([sparse2, sparse])
exp = pd.concat([self.dense2, self.dense1]).to_sparse()
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
# fill_value = 0
sparse = self.dense1.to_sparse(fill_value=0)
sparse2 = self.dense2.to_sparse(fill_value=0)
res = pd.concat([sparse, sparse])
exp = pd.concat([self.dense1, self.dense1]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
res = pd.concat([sparse2, sparse2])
exp = pd.concat([self.dense2, self.dense2]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
res = pd.concat([sparse, sparse2])
exp = pd.concat([self.dense1, self.dense2]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
res = pd.concat([sparse2, sparse])
exp = pd.concat([self.dense2, self.dense1]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
def test_concat_different_fill_value(self):
# 1st fill_value will be used
sparse = self.dense1.to_sparse()
sparse2 = self.dense2.to_sparse(fill_value=0)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
res = pd.concat([sparse, sparse2])
exp = pd.concat([self.dense1, self.dense2]).to_sparse()
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
with tm.assert_produces_warning(
PerformanceWarning, raise_on_extra_warnings=False
):
res = pd.concat([sparse2, sparse])
exp = pd.concat([self.dense2, self.dense1]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp, consolidate_block_indices=True)
def test_concat_different_columns_sort_warns(self):
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse()
# stacklevel is wrong since we have two FutureWarnings,
# one for depr, one for sorting.
with tm.assert_produces_warning(
FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
):
res = pd.concat([sparse, sparse3])
with tm.assert_produces_warning(
FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
):
exp = pd.concat([self.dense1, self.dense3])
exp = exp.to_sparse()
tm.assert_sp_frame_equal(res, exp, check_kind=False)
def test_concat_different_columns(self):
# fill_value = np.nan
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse()
res = pd.concat([sparse, sparse3], sort=True)
exp = pd.concat([self.dense1, self.dense3], sort=True).to_sparse()
tm.assert_sp_frame_equal(res, exp, check_kind=False)
res = pd.concat([sparse3, sparse], sort=True)
exp = pd.concat([self.dense3, self.dense1], sort=True).to_sparse()
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp, check_kind=False)
def test_concat_bug(self):
from pandas.core.sparse.api import SparseDtype
x = pd.SparseDataFrame({"A": pd.SparseArray([np.nan, np.nan], fill_value=0)})
y = pd.SparseDataFrame({"B": []})
res = pd.concat([x, y], sort=False)[["A"]]
exp = pd.DataFrame(
{"A": pd.SparseArray([np.nan, np.nan], dtype=SparseDtype(float, 0))}
)
tm.assert_frame_equal(res, exp)
def test_concat_different_columns_buggy(self):
sparse = self.dense1.to_sparse(fill_value=0)
sparse3 = self.dense3.to_sparse(fill_value=0)
res = pd.concat([sparse, sparse3], sort=True)
exp = pd.concat([self.dense1, self.dense3], sort=True).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(
res, exp, check_kind=False, consolidate_block_indices=True
)
res = pd.concat([sparse3, sparse], sort=True)
exp = pd.concat([self.dense3, self.dense1], sort=True).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(
res, exp, check_kind=False, consolidate_block_indices=True
)
# different fill values
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse(fill_value=0)
# each columns keeps its fill_value, thus compare in dense
res = pd.concat([sparse, sparse3], sort=True)
exp = pd.concat([self.dense1, self.dense3], sort=True)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
res = pd.concat([sparse3, sparse], sort=True)
exp = pd.concat([self.dense3, self.dense1], sort=True)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
def test_concat_series(self):
# fill_value = np.nan
sparse = self.dense1.to_sparse()
sparse2 = self.dense2.to_sparse()
for col in ["A", "D"]:
res = pd.concat([sparse, sparse2[col]])
exp = pd.concat([self.dense1, self.dense2[col]]).to_sparse()
tm.assert_sp_frame_equal(res, exp, check_kind=False)
res = pd.concat([sparse2[col], sparse])
exp = pd.concat([self.dense2[col], self.dense1]).to_sparse()
tm.assert_sp_frame_equal(res, exp, check_kind=False)
# fill_value = 0
sparse = self.dense1.to_sparse(fill_value=0)
sparse2 = self.dense2.to_sparse(fill_value=0)
for col in ["C", "D"]:
res = pd.concat([sparse, sparse2[col]])
exp = pd.concat([self.dense1, self.dense2[col]]).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(
res, exp, check_kind=False, consolidate_block_indices=True
)
res = pd.concat([sparse2[col], sparse])
exp = pd.concat([self.dense2[col], self.dense1]).to_sparse(fill_value=0)
exp["C"] = res["C"]
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(
res, exp, consolidate_block_indices=True, check_kind=False
)
def test_concat_axis1(self):
# fill_value = np.nan
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse()
res = pd.concat([sparse, sparse3], axis=1)
exp = pd.concat([self.dense1, self.dense3], axis=1).to_sparse()
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse3, sparse], axis=1)
exp = pd.concat([self.dense3, self.dense1], axis=1).to_sparse()
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# fill_value = 0
sparse = self.dense1.to_sparse(fill_value=0)
sparse3 = self.dense3.to_sparse(fill_value=0)
res = pd.concat([sparse, sparse3], axis=1)
exp = pd.concat([self.dense1, self.dense3], axis=1).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
res = pd.concat([sparse3, sparse], axis=1)
exp = pd.concat([self.dense3, self.dense1], axis=1).to_sparse(fill_value=0)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# different fill values
sparse = self.dense1.to_sparse()
sparse3 = self.dense3.to_sparse(fill_value=0)
# each columns keeps its fill_value, thus compare in dense
res = pd.concat([sparse, sparse3], axis=1)
exp = pd.concat([self.dense1, self.dense3], axis=1)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
res = pd.concat([sparse3, sparse], axis=1)
exp = pd.concat([self.dense3, self.dense1], axis=1)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
@pytest.mark.parametrize(
"fill_value,sparse_idx,dense_idx",
itertools.product([None, 0, 1, np.nan], [0, 1], [1, 0]),
)
def test_concat_sparse_dense_rows(self, fill_value, sparse_idx, dense_idx):
frames = [self.dense1, self.dense2]
sparse_frame = [
frames[dense_idx],
frames[sparse_idx].to_sparse(fill_value=fill_value),
]
dense_frame = [frames[dense_idx], frames[sparse_idx]]
# This will try both directions sparse + dense and dense + sparse
for _ in range(2):
res = pd.concat(sparse_frame)
exp = pd.concat(dense_frame)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
sparse_frame = sparse_frame[::-1]
dense_frame = dense_frame[::-1]
@pytest.mark.parametrize(
"fill_value,sparse_idx,dense_idx",
itertools.product([None, 0, 1, np.nan], [0, 1], [1, 0]),
)
@pytest.mark.xfail(reason="The iloc fails and I can't make expected", strict=True)
def test_concat_sparse_dense_cols(self, fill_value, sparse_idx, dense_idx):
# See GH16874, GH18914 and #18686 for why this should be a DataFrame
from pandas.core.dtypes.common import is_sparse
frames = [self.dense1, self.dense3]
sparse_frame = [
frames[dense_idx],
frames[sparse_idx].to_sparse(fill_value=fill_value),
]
dense_frame = [frames[dense_idx], frames[sparse_idx]]
# This will try both directions sparse + dense and dense + sparse
for _ in range(2):
res = pd.concat(sparse_frame, axis=1)
exp = pd.concat(dense_frame, axis=1)
cols = [i for (i, x) in enumerate(res.dtypes) if is_sparse(x)]
for col in cols:
exp.iloc[:, col] = exp.iloc[:, col].astype("Sparse")
for column in frames[dense_idx].columns:
if dense_idx == sparse_idx:
tm.assert_frame_equal(res[column], exp[column])
else:
tm.assert_series_equal(res[column], exp[column])
tm.assert_frame_equal(res, exp)
sparse_frame = sparse_frame[::-1]
dense_frame = dense_frame[::-1]