Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / test_sorting.py

from collections import defaultdict
from datetime import datetime
from itertools import product

import numpy as np
from numpy import nan
import pytest

from pandas import DataFrame, MultiIndex, Series, array, concat, merge
from pandas.core import common as com
from pandas.core.sorting import (
    decons_group_index,
    get_group_index,
    is_int64_overflow_possible,
    lexsort_indexer,
    nargsort,
    safe_sort,
)
from pandas.util import testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal


class TestSorting:
    @pytest.mark.slow
    def test_int64_overflow(self):

        B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500)))
        A = np.arange(2500)
        df = DataFrame(
            {
                "A": A,
                "B": B,
                "C": A,
                "D": B,
                "E": A,
                "F": B,
                "G": A,
                "H": B,
                "values": np.random.randn(2500),
            }
        )

        lg = df.groupby(["A", "B", "C", "D", "E", "F", "G", "H"])
        rg = df.groupby(["H", "G", "F", "E", "D", "C", "B", "A"])

        left = lg.sum()["values"]
        right = rg.sum()["values"]

        exp_index, _ = left.index.sortlevel()
        tm.assert_index_equal(left.index, exp_index)

        exp_index, _ = right.index.sortlevel(0)
        tm.assert_index_equal(right.index, exp_index)

        tups = list(map(tuple, df[["A", "B", "C", "D", "E", "F", "G", "H"]].values))
        tups = com.asarray_tuplesafe(tups)

        expected = df.groupby(tups).sum()["values"]

        for k, v in expected.items():
            assert left[k] == right[k[::-1]]
            assert left[k] == v
        assert len(left) == len(right)

    def test_int64_overflow_moar(self):

        # GH9096
        values = range(55109)
        data = DataFrame.from_dict({"a": values, "b": values, "c": values, "d": values})
        grouped = data.groupby(["a", "b", "c", "d"])
        assert len(grouped) == len(values)

        arr = np.random.randint(-1 << 12, 1 << 12, (1 << 15, 5))
        i = np.random.choice(len(arr), len(arr) * 4)
        arr = np.vstack((arr, arr[i]))  # add sume duplicate rows

        i = np.random.permutation(len(arr))
        arr = arr[i]  # shuffle rows

        df = DataFrame(arr, columns=list("abcde"))
        df["jim"], df["joe"] = np.random.randn(2, len(df)) * 10
        gr = df.groupby(list("abcde"))

        # verify this is testing what it is supposed to test!
        assert is_int64_overflow_possible(gr.grouper.shape)

        # manually compute groupings
        jim, joe = defaultdict(list), defaultdict(list)
        for key, a, b in zip(map(tuple, arr), df["jim"], df["joe"]):
            jim[key].append(a)
            joe[key].append(b)

        assert len(gr) == len(jim)
        mi = MultiIndex.from_tuples(jim.keys(), names=list("abcde"))

        def aggr(func):
            f = lambda a: np.fromiter(map(func, a), dtype="f8")
            arr = np.vstack((f(jim.values()), f(joe.values()))).T
            res = DataFrame(arr, columns=["jim", "joe"], index=mi)
            return res.sort_index()

        assert_frame_equal(gr.mean(), aggr(np.mean))
        assert_frame_equal(gr.median(), aggr(np.median))

    def test_lexsort_indexer(self):
        keys = [[nan] * 5 + list(range(100)) + [nan] * 5]
        # orders=True, na_position='last'
        result = lexsort_indexer(keys, orders=True, na_position="last")
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))

        # orders=True, na_position='first'
        result = lexsort_indexer(keys, orders=True, na_position="first")
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))

        # orders=False, na_position='last'
        result = lexsort_indexer(keys, orders=False, na_position="last")
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))

        # orders=False, na_position='first'
        result = lexsort_indexer(keys, orders=False, na_position="first")
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))

    def test_nargsort(self):
        # np.argsort(items) places NaNs last
        items = [nan] * 5 + list(range(100)) + [nan] * 5
        # np.argsort(items2) may not place NaNs first
        items2 = np.array(items, dtype="O")

        # mergesort is the most difficult to get right because we want it to be
        # stable.

        # According to numpy/core/tests/test_multiarray, """The number of
        # sorted items must be greater than ~50 to check the actual algorithm
        # because quick and merge sort fall over to insertion sort for small
        # arrays."""

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items, kind="mergesort", ascending=True, na_position="last")
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items, kind="mergesort", ascending=True, na_position="first")
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items, kind="mergesort", ascending=False, na_position="last")
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(items, kind="mergesort", ascending=False, na_position="first")
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items2, kind="mergesort", ascending=True, na_position="last")
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items2, kind="mergesort", ascending=True, na_position="first")
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items2, kind="mergesort", ascending=False, na_position="last")
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(
            items2, kind="mergesort", ascending=False, na_position="first"
        )
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)


class TestMerge:
    @pytest.mark.slow
    def test_int64_overflow_issues(self):

        # #2690, combinatorial explosion
        df1 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G1"])
        df2 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G2"])

        # it works!
        result = merge(df1, df2, how="outer")
        assert len(result) == 2000

        low, high, n = -1 << 10, 1 << 10, 1 << 20
        left = DataFrame(np.random.randint(low, high, (n, 7)), columns=list("ABCDEFG"))
        left["left"] = left.sum(axis=1)

        # one-2-one match
        i = np.random.permutation(len(left))
        right = left.iloc[i].copy()
        right.columns = right.columns[:-1].tolist() + ["right"]
        right.index = np.arange(len(right))
        right["right"] *= -1

        out = merge(left, right, how="outer")
        assert len(out) == len(left)
        assert_series_equal(out["left"], -out["right"], check_names=False)
        result = out.iloc[:, :-2].sum(axis=1)
        assert_series_equal(out["left"], result, check_names=False)
        assert result.name is None

        out.sort_values(out.columns.tolist(), inplace=True)
        out.index = np.arange(len(out))
        for how in ["left", "right", "outer", "inner"]:
            assert_frame_equal(out, merge(left, right, how=how, sort=True))

        # check that left merge w/ sort=False maintains left frame order
        out = merge(left, right, how="left", sort=False)
        assert_frame_equal(left, out[left.columns.tolist()])

        out = merge(right, left, how="left", sort=False)
        assert_frame_equal(right, out[right.columns.tolist()])

        # one-2-many/none match
        n = 1 << 11
        left = DataFrame(
            np.random.randint(low, high, (n, 7)).astype("int64"),
            columns=list("ABCDEFG"),
        )

        # confirm that this is checking what it is supposed to check
        shape = left.apply(Series.nunique).values
        assert is_int64_overflow_possible(shape)

        # add duplicates to left frame
        left = concat([left, left], ignore_index=True)

        right = DataFrame(
            np.random.randint(low, high, (n // 2, 7)).astype("int64"),
            columns=list("ABCDEFG"),
        )

        # add duplicates & overlap with left to the right frame
        i = np.random.choice(len(left), n)
        right = concat([right, right, left.iloc[i]], ignore_index=True)

        left["left"] = np.random.randn(len(left))
        right["right"] = np.random.randn(len(right))

        # shuffle left & right frames
        i = np.random.permutation(len(left))
        left = left.iloc[i].copy()
        left.index = np.arange(len(left))

        i = np.random.permutation(len(right))
        right = right.iloc[i].copy()
        right.index = np.arange(len(right))

        # manually compute outer merge
        ldict, rdict = defaultdict(list), defaultdict(list)

        for idx, row in left.set_index(list("ABCDEFG")).iterrows():
            ldict[idx].append(row["left"])

        for idx, row in right.set_index(list("ABCDEFG")).iterrows():
            rdict[idx].append(row["right"])

        vals = []
        for k, lval in ldict.items():
            rval = rdict.get(k, [np.nan])
            for lv, rv in product(lval, rval):
                vals.append(k + tuple([lv, rv]))

        for k, rval in rdict.items():
            if k not in ldict:
                for rv in rval:
                    vals.append(k + tuple([np.nan, rv]))

        def align(df):
            df = df.sort_values(df.columns.tolist())
            df.index = np.arange(len(df))
            return df

        def verify_order(df):
            kcols = list("ABCDEFG")
            assert_frame_equal(
                df[kcols].copy(), df[kcols].sort_values(kcols, kind="mergesort")
            )

        out = DataFrame(vals, columns=list("ABCDEFG") + ["left", "right"])
        out = align(out)

        jmask = {
            "left": out["left"].notna(),
            "right": out["right"].notna(),
            "inner": out["left"].notna() & out["right"].notna(),
            "outer": np.ones(len(out), dtype="bool"),
        }

        for how in "left", "right", "outer", "inner":
            mask = jmask[how]
            frame = align(out[mask].copy())
            assert mask.all() ^ mask.any() or how == "outer"

            for sort in [False, True]:
                res = merge(left, right, how=how, sort=sort)
                if sort:
                    verify_order(res)

                # as in GH9092 dtypes break with outer/right join
                assert_frame_equal(
                    frame, align(res), check_dtype=how not in ("right", "outer")
                )


def test_decons():
    def testit(label_list, shape):
        group_index = get_group_index(label_list, shape, sort=True, xnull=True)
        label_list2 = decons_group_index(group_index, shape)

        for a, b in zip(label_list, label_list2):
            tm.assert_numpy_array_equal(a, b)

    shape = (4, 5, 6)
    label_list = [
        np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100).astype(np.int64),
        np.tile([0, 2, 4, 3, 0, 1, 2, 3], 100).astype(np.int64),
        np.tile([5, 1, 0, 2, 3, 0, 5, 4], 100).astype(np.int64),
    ]
    testit(label_list, shape)

    shape = (10000, 10000)
    label_list = [
        np.tile(np.arange(10000, dtype=np.int64), 5),
        np.tile(np.arange(10000, dtype=np.int64), 5),
    ]
    testit(label_list, shape)


class TestSafeSort:
    def test_basic_sort(self):
        values = [3, 1, 2, 0, 4]
        result = safe_sort(values)
        expected = np.array([0, 1, 2, 3, 4])
        tm.assert_numpy_array_equal(result, expected)

        values = list("baaacb")
        result = safe_sort(values)
        expected = np.array(list("aaabbc"), dtype="object")
        tm.assert_numpy_array_equal(result, expected)

        values = []
        result = safe_sort(values)
        expected = np.array([])
        tm.assert_numpy_array_equal(result, expected)

    @pytest.mark.parametrize("verify", [True, False])
    def test_labels(self, verify):
        values = [3, 1, 2, 0, 4]
        expected = np.array([0, 1, 2, 3, 4])

        labels = [0, 1, 1, 2, 3, 0, -1, 4]
        result, result_labels = safe_sort(values, labels, verify=verify)
        expected_labels = np.array([3, 1, 1, 2, 0, 3, -1, 4], dtype=np.intp)
        tm.assert_numpy_array_equal(result, expected)
        tm.assert_numpy_array_equal(result_labels, expected_labels)

        # na_sentinel
        labels = [0, 1, 1, 2, 3, 0, 99, 4]
        result, result_labels = safe_sort(values, labels, na_sentinel=99, verify=verify)
        expected_labels = np.array([3, 1, 1, 2, 0, 3, 99, 4], dtype=np.intp)
        tm.assert_numpy_array_equal(result, expected)
        tm.assert_numpy_array_equal(result_labels, expected_labels)

        labels = []
        result, result_labels = safe_sort(values, labels, verify=verify)
        expected_labels = np.array([], dtype=np.intp)
        tm.assert_numpy_array_equal(result, expected)
        tm.assert_numpy_array_equal(result_labels, expected_labels)

    @pytest.mark.parametrize("na_sentinel", [-1, 99])
    def test_labels_out_of_bound(self, na_sentinel):
        values = [3, 1, 2, 0, 4]
        expected = np.array([0, 1, 2, 3, 4])

        # out of bound indices
        labels = [0, 101, 102, 2, 3, 0, 99, 4]
        result, result_labels = safe_sort(values, labels, na_sentinel=na_sentinel)
        expected_labels = np.array(
            [3, na_sentinel, na_sentinel, 2, 0, 3, na_sentinel, 4], dtype=np.intp
        )
        tm.assert_numpy_array_equal(result, expected)
        tm.assert_numpy_array_equal(result_labels, expected_labels)

    def test_mixed_integer(self):
        values = np.array(["b", 1, 0, "a", 0, "b"], dtype=object)
        result = safe_sort(values)
        expected = np.array([0, 0, 1, "a", "b", "b"], dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        values = np.array(["b", 1, 0, "a"], dtype=object)
        labels = [0, 1, 2, 3, 0, -1, 1]
        result, result_labels = safe_sort(values, labels)
        expected = np.array([0, 1, "a", "b"], dtype=object)
        expected_labels = np.array([3, 1, 0, 2, 3, -1, 1], dtype=np.intp)
        tm.assert_numpy_array_equal(result, expected)
        tm.assert_numpy_array_equal(result_labels, expected_labels)

    def test_mixed_integer_from_list(self):
        values = ["b", 1, 0, "a", 0, "b"]
        result = safe_sort(values)
        expected = np.array([0, 0, 1, "a", "b", "b"], dtype=object)
        tm.assert_numpy_array_equal(result, expected)

    def test_unsortable(self):
        # GH 13714
        arr = np.array([1, 2, datetime.now(), 0, 3], dtype=object)
        msg = (
            "unorderable types: .* [<>] .*"
            "|"  # the above case happens for numpy < 1.14
            "'[<>]' not supported between instances of .*"
        )
        with pytest.raises(TypeError, match=msg):
            safe_sort(arr)

    def test_exceptions(self):
        with pytest.raises(TypeError, match="Only list-like objects are allowed"):
            safe_sort(values=1)

        with pytest.raises(TypeError, match="Only list-like objects or None"):
            safe_sort(values=[0, 1, 2], labels=1)

        with pytest.raises(ValueError, match="values should be unique"):
            safe_sort(values=[0, 1, 2, 1], labels=[0, 1])

    def test_extension_array(self):
        # a = array([1, 3, np.nan, 2], dtype='Int64')
        a = array([1, 3, 2], dtype="Int64")
        result = safe_sort(a)
        # expected = array([1, 2, 3, np.nan], dtype='Int64')
        expected = array([1, 2, 3], dtype="Int64")
        tm.assert_extension_array_equal(result, expected)

    @pytest.mark.parametrize("verify", [True, False])
    @pytest.mark.parametrize("na_sentinel", [-1, 99])
    def test_extension_array_labels(self, verify, na_sentinel):
        a = array([1, 3, 2], dtype="Int64")
        result, labels = safe_sort(
            a, [0, 1, na_sentinel, 2], na_sentinel=na_sentinel, verify=verify
        )
        expected_values = array([1, 2, 3], dtype="Int64")
        expected_labels = np.array([0, 2, na_sentinel, 1], dtype=np.intp)
        tm.assert_extension_array_equal(result, expected_values)
        tm.assert_numpy_array_equal(labels, expected_labels)