Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scikit-learn   python

Repository URL to install this package:

Version: 0.22 

/ compose / tests / test_column_transformer.py

"""
Test the ColumnTransformer.
"""
import re
import pickle

import warnings
import numpy as np
from scipy import sparse
import pytest

from numpy.testing import assert_allclose
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_allclose_dense_sparse
from sklearn.utils._testing import assert_almost_equal

from sklearn.base import BaseEstimator
from sklearn.compose import (
    ColumnTransformer, make_column_transformer, make_column_selector
)
from sklearn.exceptions import NotFittedError
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import StandardScaler, Normalizer, OneHotEncoder
from sklearn.feature_extraction import DictVectorizer


class Trans(BaseEstimator):
    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        # 1D Series -> 2D DataFrame
        if hasattr(X, 'to_frame'):
            return X.to_frame()
        # 1D array -> 2D array
        if X.ndim == 1:
            return np.atleast_2d(X).T
        return X


class DoubleTrans(BaseEstimator):
    def fit(self, X, y=None):
        return self

    def transform(self, X):
        return 2*X


class SparseMatrixTrans(BaseEstimator):
    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        n_samples = len(X)
        return sparse.eye(n_samples, n_samples).tocsr()


class TransNo2D(BaseEstimator):
    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        return X


class TransRaise(BaseEstimator):

    def fit(self, X, y=None):
        raise ValueError("specific message")

    def transform(self, X, y=None):
        raise ValueError("specific message")


def test_column_transformer():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    X_res_first1D = np.array([0, 1, 2])
    X_res_second1D = np.array([2, 4, 6])
    X_res_first = X_res_first1D.reshape(-1, 1)
    X_res_both = X_array

    cases = [
        # single column 1D / 2D
        (0, X_res_first),
        ([0], X_res_first),
        # list-like
        ([0, 1], X_res_both),
        (np.array([0, 1]), X_res_both),
        # slice
        (slice(0, 1), X_res_first),
        (slice(0, 2), X_res_both),
        # boolean mask
        (np.array([True, False]), X_res_first),
    ]

    for selection, res in cases:
        ct = ColumnTransformer([('trans', Trans(), selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_array), res)
        assert_array_equal(ct.fit(X_array).transform(X_array), res)

        # callable that returns any of the allowed specifiers
        ct = ColumnTransformer([('trans', Trans(), lambda x: selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_array), res)
        assert_array_equal(ct.fit(X_array).transform(X_array), res)

    ct = ColumnTransformer([('trans1', Trans(), [0]),
                            ('trans2', Trans(), [1])])
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2

    # test with transformer_weights
    transformer_weights = {'trans1': .1, 'trans2': 10}
    both = ColumnTransformer([('trans1', Trans(), [0]),
                              ('trans2', Trans(), [1])],
                             transformer_weights=transformer_weights)
    res = np.vstack([transformer_weights['trans1'] * X_res_first1D,
                     transformer_weights['trans2'] * X_res_second1D]).T
    assert_array_equal(both.fit_transform(X_array), res)
    assert_array_equal(both.fit(X_array).transform(X_array), res)
    assert len(both.transformers_) == 2

    both = ColumnTransformer([('trans', Trans(), [0, 1])],
                             transformer_weights={'trans': .1})
    assert_array_equal(both.fit_transform(X_array), 0.1 * X_res_both)
    assert_array_equal(both.fit(X_array).transform(X_array), 0.1 * X_res_both)
    assert len(both.transformers_) == 1


def test_column_transformer_dataframe():
    pd = pytest.importorskip('pandas')

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])

    X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
    X_res_both = X_array

    cases = [
        # String keys: label based

        # scalar
        ('first', X_res_first),
        # list
        (['first'], X_res_first),
        (['first', 'second'], X_res_both),
        # slice
        (slice('first', 'second'), X_res_both),

        # int keys: positional

        # scalar
        (0, X_res_first),
        # list
        ([0], X_res_first),
        ([0, 1], X_res_both),
        (np.array([0, 1]), X_res_both),
        # slice
        (slice(0, 1), X_res_first),
        (slice(0, 2), X_res_both),

        # boolean mask
        (np.array([True, False]), X_res_first),
        (pd.Series([True, False], index=['first', 'second']), X_res_first),
    ]

    for selection, res in cases:
        ct = ColumnTransformer([('trans', Trans(), selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_df), res)
        assert_array_equal(ct.fit(X_df).transform(X_df), res)

        # callable that returns any of the allowed specifiers
        ct = ColumnTransformer([('trans', Trans(), lambda X: selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_df), res)
        assert_array_equal(ct.fit(X_df).transform(X_df), res)

    ct = ColumnTransformer([('trans1', Trans(), ['first']),
                            ('trans2', Trans(), ['second'])])
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    ct = ColumnTransformer([('trans1', Trans(), [0]),
                            ('trans2', Trans(), [1])])
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # test with transformer_weights
    transformer_weights = {'trans1': .1, 'trans2': 10}
    both = ColumnTransformer([('trans1', Trans(), ['first']),
                              ('trans2', Trans(), ['second'])],
                             transformer_weights=transformer_weights)
    res = np.vstack([transformer_weights['trans1'] * X_df['first'],
                     transformer_weights['trans2'] * X_df['second']]).T
    assert_array_equal(both.fit_transform(X_df), res)
    assert_array_equal(both.fit(X_df).transform(X_df), res)
    assert len(both.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # test multiple columns
    both = ColumnTransformer([('trans', Trans(), ['first', 'second'])],
                             transformer_weights={'trans': .1})
    assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
    assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
    assert len(both.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'

    both = ColumnTransformer([('trans', Trans(), [0, 1])],
                             transformer_weights={'trans': .1})
    assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
    assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
    assert len(both.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'

    # ensure pandas object is passes through

    class TransAssert(BaseEstimator):

        def fit(self, X, y=None):
            return self

        def transform(self, X, y=None):
            assert isinstance(X, (pd.DataFrame, pd.Series))
            if isinstance(X, pd.Series):
                X = X.to_frame()
            return X

    ct = ColumnTransformer([('trans', TransAssert(), 'first')],
                           remainder='drop')
    ct.fit_transform(X_df)
    ct = ColumnTransformer([('trans', TransAssert(), ['first', 'second'])])
    ct.fit_transform(X_df)

    # integer column spec + integer column names -> still use positional
    X_df2 = X_df.copy()
    X_df2.columns = [1, 0]
    ct = ColumnTransformer([('trans', Trans(), 0)], remainder='drop')
    assert_array_equal(ct.fit_transform(X_df2), X_res_first)
    assert_array_equal(ct.fit(X_df2).transform(X_df2), X_res_first)

    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'drop'
    assert_array_equal(ct.transformers_[-1][2], [1])


@pytest.mark.parametrize("pandas", [True, False], ids=['pandas', 'numpy'])
@pytest.mark.parametrize("column", [[], np.array([False, False])],
                         ids=['list', 'bool'])
def test_column_transformer_empty_columns(pandas, column):
    # test case that ensures that the column transformer does also work when
    # a given transformer doesn't have any columns to work on
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_both = X_array

    if pandas:
        pd = pytest.importorskip('pandas')
        X = pd.DataFrame(X_array, columns=['first', 'second'])
    else:
        X = X_array

    ct = ColumnTransformer([('trans1', Trans(), [0, 1]),
                            ('trans2', Trans(), column)])
    assert_array_equal(ct.fit_transform(X), X_res_both)
    assert_array_equal(ct.fit(X).transform(X), X_res_both)
    assert len(ct.transformers_) == 2
    assert isinstance(ct.transformers_[1][1], Trans)

    ct = ColumnTransformer([('trans1', Trans(), column),
                            ('trans2', Trans(), [0, 1])])
    assert_array_equal(ct.fit_transform(X), X_res_both)
    assert_array_equal(ct.fit(X).transform(X), X_res_both)
    assert len(ct.transformers_) == 2
    assert isinstance(ct.transformers_[0][1], Trans)

    ct = ColumnTransformer([('trans', Trans(), column)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X), X_res_both)
    assert_array_equal(ct.fit(X).transform(X), X_res_both)
    assert len(ct.transformers_) == 2  # including remainder
    assert isinstance(ct.transformers_[0][1], Trans)

    fixture = np.array([[], [], []])
    ct = ColumnTransformer([('trans', Trans(), column)],
                           remainder='drop')
    assert_array_equal(ct.fit_transform(X), fixture)
    assert_array_equal(ct.fit(X).transform(X), fixture)
    assert len(ct.transformers_) == 2  # including remainder
    assert isinstance(ct.transformers_[0][1], Trans)


def test_column_transformer_sparse_array():
    X_sparse = sparse.eye(3, 2).tocsr()

    # no distinction between 1D and 2D
    X_res_first = X_sparse[:, 0]
    X_res_both = X_sparse

    for col in [0, [0], slice(0, 1)]:
        for remainder, res in [('drop', X_res_first),
                               ('passthrough', X_res_both)]:
            ct = ColumnTransformer([('trans', Trans(), col)],
                                   remainder=remainder,
                                   sparse_threshold=0.8)
            assert sparse.issparse(ct.fit_transform(X_sparse))
            assert_allclose_dense_sparse(ct.fit_transform(X_sparse), res)
            assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
                                         res)

    for col in [[0, 1], slice(0, 2)]:
        ct = ColumnTransformer([('trans', Trans(), col)],
                               sparse_threshold=0.8)
        assert sparse.issparse(ct.fit_transform(X_sparse))
        assert_allclose_dense_sparse(ct.fit_transform(X_sparse), X_res_both)
        assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
                                     X_res_both)


def test_column_transformer_list():
    X_list = [
        [1, float('nan'), 'a'],
        [0, 0, 'b']
    ]
    expected_result = np.array([
        [1, float('nan'), 1, 0],
        [-1, 0, 0, 1],
    ])

    ct = ColumnTransformer([
        ('numerical', StandardScaler(), [0, 1]),
        ('categorical', OneHotEncoder(), [2]),
    ])

    assert_array_equal(ct.fit_transform(X_list), expected_result)
    assert_array_equal(ct.fit(X_list).transform(X_list), expected_result)


def test_column_transformer_sparse_stacking():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    col_trans = ColumnTransformer([('trans1', Trans(), [0]),
                                   ('trans2', SparseMatrixTrans(), 1)],
                                  sparse_threshold=0.8)
    col_trans.fit(X_array)
    X_trans = col_trans.transform(X_array)
    assert sparse.issparse(X_trans)
    assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
    assert_array_equal(X_trans.toarray()[:, 1:], np.eye(X_trans.shape[0]))
    assert len(col_trans.transformers_) == 2
    assert col_trans.transformers_[-1][0] != 'remainder'

    col_trans = ColumnTransformer([('trans1', Trans(), [0]),
                                   ('trans2', SparseMatrixTrans(), 1)],
                                  sparse_threshold=0.1)
    col_trans.fit(X_array)
    X_trans = col_trans.transform(X_array)
    assert not sparse.issparse(X_trans)
    assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
    assert_array_equal(X_trans[:, 1:], np.eye(X_trans.shape[0]))


def test_column_transformer_mixed_cols_sparse():
    df = np.array([['a', 1, True],
                   ['b', 2, False]],
                  dtype='O')

    ct = make_column_transformer(
        (OneHotEncoder(), [0]),
        ('passthrough', [1, 2]),
        sparse_threshold=1.0
    )

    # this shouldn't fail, since boolean can be coerced into a numeric
    # See: https://github.com/scikit-learn/scikit-learn/issues/11912
    X_trans = ct.fit_transform(df)
    assert X_trans.getformat() == 'csr'
    assert_array_equal(X_trans.toarray(), np.array([[1, 0, 1, 1],
                                                    [0, 1, 2, 0]]))

    ct = make_column_transformer(
        (OneHotEncoder(), [0]),
        ('passthrough', [0]),
        sparse_threshold=1.0
    )
    with pytest.raises(ValueError,
                       match="For a sparse output, all columns should"):
        # this fails since strings `a` and `b` cannot be
        # coerced into a numeric.
        ct.fit_transform(df)


def test_column_transformer_sparse_threshold():
    X_array = np.array([['a', 'b'], ['A', 'B']], dtype=object).T
    # above data has sparsity of 4 / 8 = 0.5

    # apply threshold even if all sparse
    col_trans = ColumnTransformer([('trans1', OneHotEncoder(), [0]),
                                   ('trans2', OneHotEncoder(), [1])],
                                  sparse_threshold=0.2)
    res = col_trans.fit_transform(X_array)
    assert not sparse.issparse(res)
    assert not col_trans.sparse_output_

    # mixed -> sparsity of (4 + 2) / 8 = 0.75
    for thres in [0.75001, 1]:
        col_trans = ColumnTransformer(
            [('trans1', OneHotEncoder(sparse=True), [0]),
             ('trans2', OneHotEncoder(sparse=False), [1])],
            sparse_threshold=thres)
        res = col_trans.fit_transform(X_array)
        assert sparse.issparse(res)
        assert col_trans.sparse_output_

    for thres in [0.75, 0]:
        col_trans = ColumnTransformer(
            [('trans1', OneHotEncoder(sparse=True), [0]),
             ('trans2', OneHotEncoder(sparse=False), [1])],
            sparse_threshold=thres)
        res = col_trans.fit_transform(X_array)
        assert not sparse.issparse(res)
        assert not col_trans.sparse_output_

    # if nothing is sparse -> no sparse
    for thres in [0.33, 0, 1]:
        col_trans = ColumnTransformer(
            [('trans1', OneHotEncoder(sparse=False), [0]),
             ('trans2', OneHotEncoder(sparse=False), [1])],
            sparse_threshold=thres)
        res = col_trans.fit_transform(X_array)
        assert not sparse.issparse(res)
        assert not col_trans.sparse_output_


def test_column_transformer_error_msg_1D():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T

    col_trans = ColumnTransformer([('trans', StandardScaler(), 0)])
    assert_raise_message(ValueError, "1D data passed to a transformer",
                         col_trans.fit, X_array)
    assert_raise_message(ValueError, "1D data passed to a transformer",
                         col_trans.fit_transform, X_array)

    col_trans = ColumnTransformer([('trans', TransRaise(), 0)])
    for func in [col_trans.fit, col_trans.fit_transform]:
        assert_raise_message(ValueError, "specific message", func, X_array)


def test_2D_transformer_output():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    # if one transformer is dropped, test that name is still correct
    ct = ColumnTransformer([('trans1', 'drop', 0),
                            ('trans2', TransNo2D(), 1)])
    assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
                         ct.fit_transform, X_array)
    # because fit is also doing transform, this raises already on fit
    assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
                         ct.fit, X_array)


def test_2D_transformer_output_pandas():
    pd = pytest.importorskip('pandas')

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['col1', 'col2'])

    # if one transformer is dropped, test that name is still correct
    ct = ColumnTransformer([('trans1', TransNo2D(), 'col1')])
    assert_raise_message(ValueError, "the 'trans1' transformer should be 2D",
                         ct.fit_transform, X_df)
    # because fit is also doing transform, this raises already on fit
    assert_raise_message(ValueError, "the 'trans1' transformer should be 2D",
                         ct.fit, X_df)


@pytest.mark.parametrize("remainder", ['drop', 'passthrough'])
def test_column_transformer_invalid_columns(remainder):
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    # general invalid
    for col in [1.5, ['string', 1], slice(1, 's'), np.array([1.])]:
        ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
        assert_raise_message(ValueError, "No valid specification",
                             ct.fit, X_array)

    # invalid for arrays
    for col in ['string', ['string', 'other'], slice('a', 'b')]:
        ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
        assert_raise_message(ValueError, "Specifying the columns",
                             ct.fit, X_array)

    # transformed n_features does not match fitted n_features
    col = [0, 1]
    ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
    ct.fit(X_array)
    X_array_more = np.array([[0, 1, 2], [2, 4, 6], [3, 6, 9]]).T
    msg = ("Given feature/column names or counts do not match the ones for "
           "the data given during fit.")
    with pytest.warns(FutureWarning, match=msg):
        ct.transform(X_array_more)  # Should accept added columns, for now
    X_array_fewer = np.array([[0, 1, 2], ]).T
    err_msg = 'Number of features'
    with pytest.raises(ValueError, match=err_msg):
        ct.transform(X_array_fewer)


def test_column_transformer_invalid_transformer():

    class NoTrans(BaseEstimator):
        def fit(self, X, y=None):
            return self

        def predict(self, X):
            return X

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    ct = ColumnTransformer([('trans', NoTrans(), [0])])
    assert_raise_message(TypeError, "All estimators should implement fit",
                         ct.fit, X_array)


def test_make_column_transformer():
    scaler = StandardScaler()
    norm = Normalizer()
    ct = make_column_transformer((scaler, 'first'), (norm, ['second']))
    names, transformers, columns = zip(*ct.transformers)
    assert names == ("standardscaler", "normalizer")
    assert transformers == (scaler, norm)
    assert columns == ('first', ['second'])


def test_make_column_transformer_pandas():
    pd = pytest.importorskip('pandas')
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])
    norm = Normalizer()
    ct1 = ColumnTransformer([('norm', Normalizer(), X_df.columns)])
    ct2 = make_column_transformer((norm, X_df.columns))
    assert_almost_equal(ct1.fit_transform(X_df),
                        ct2.fit_transform(X_df))


def test_make_column_transformer_kwargs():
    scaler = StandardScaler()
    norm = Normalizer()
    ct = make_column_transformer((scaler, 'first'), (norm, ['second']),
                                 n_jobs=3, remainder='drop',
                                 sparse_threshold=0.5)
    assert ct.transformers == make_column_transformer(
        (scaler, 'first'), (norm, ['second'])).transformers
    assert ct.n_jobs == 3
    assert ct.remainder == 'drop'
    assert ct.sparse_threshold == 0.5
    # invalid keyword parameters should raise an error message
    assert_raise_message(
        TypeError,
        'Unknown keyword arguments: "transformer_weights"',
        make_column_transformer, (scaler, 'first'), (norm, ['second']),
        transformer_weights={'pca': 10, 'Transf': 1}
    )


def test_make_column_transformer_remainder_transformer():
    scaler = StandardScaler()
    norm = Normalizer()
    remainder = StandardScaler()
    ct = make_column_transformer((scaler, 'first'), (norm, ['second']),
                                 remainder=remainder)
    assert ct.remainder == remainder


def test_column_transformer_get_set_params():
    ct = ColumnTransformer([('trans1', StandardScaler(), [0]),
                            ('trans2', StandardScaler(), [1])])

    exp = {'n_jobs': None,
           'remainder': 'drop',
           'sparse_threshold': 0.3,
           'trans1': ct.transformers[0][1],
           'trans1__copy': True,
           'trans1__with_mean': True,
           'trans1__with_std': True,
           'trans2': ct.transformers[1][1],
           'trans2__copy': True,
           'trans2__with_mean': True,
           'trans2__with_std': True,
           'transformers': ct.transformers,
           'transformer_weights': None,
           'verbose': False}

    assert ct.get_params() == exp

    ct.set_params(trans1__with_mean=False)
    assert not ct.get_params()['trans1__with_mean']

    ct.set_params(trans1='passthrough')
    exp = {'n_jobs': None,
           'remainder': 'drop',
           'sparse_threshold': 0.3,
           'trans1': 'passthrough',
           'trans2': ct.transformers[1][1],
           'trans2__copy': True,
           'trans2__with_mean': True,
           'trans2__with_std': True,
           'transformers': ct.transformers,
           'transformer_weights': None,
           'verbose': False}

    assert ct.get_params() == exp


def test_column_transformer_named_estimators():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer([('trans1', StandardScaler(), [0]),
                            ('trans2', StandardScaler(with_std=False), [1])])
    assert not hasattr(ct, 'transformers_')
    ct.fit(X_array)
    assert hasattr(ct, 'transformers_')
    assert isinstance(ct.named_transformers_['trans1'], StandardScaler)
    assert isinstance(ct.named_transformers_.trans1, StandardScaler)
    assert isinstance(ct.named_transformers_['trans2'], StandardScaler)
    assert isinstance(ct.named_transformers_.trans2, StandardScaler)
    assert not ct.named_transformers_.trans2.with_std
    # check it are fitted transformers
    assert ct.named_transformers_.trans1.mean_ == 1.


def test_column_transformer_cloning():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T

    ct = ColumnTransformer([('trans', StandardScaler(), [0])])
    ct.fit(X_array)
    assert not hasattr(ct.transformers[0][1], 'mean_')
    assert hasattr(ct.transformers_[0][1], 'mean_')

    ct = ColumnTransformer([('trans', StandardScaler(), [0])])
    ct.fit_transform(X_array)
    assert not hasattr(ct.transformers[0][1], 'mean_')
    assert hasattr(ct.transformers_[0][1], 'mean_')


def test_column_transformer_get_feature_names():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer([('trans', Trans(), [0, 1])])
    # raise correct error when not fitted
    with pytest.raises(NotFittedError):
        ct.get_feature_names()
    # raise correct error when no feature names are available
    ct.fit(X_array)
    assert_raise_message(AttributeError,
                         "Transformer trans (type Trans) does not provide "
                         "get_feature_names", ct.get_feature_names)

    # working example
    X = np.array([[{'a': 1, 'b': 2}, {'a': 3, 'b': 4}],
                  [{'c': 5}, {'c': 6}]], dtype=object).T
    ct = ColumnTransformer(
        [('col' + str(i), DictVectorizer(), i) for i in range(2)])
    ct.fit(X)
    assert ct.get_feature_names() == ['col0__a', 'col0__b', 'col1__c']

    # passthrough transformers not supported
    ct = ColumnTransformer([('trans', 'passthrough', [0, 1])])
    ct.fit(X)
    assert_raise_message(
        NotImplementedError, 'get_feature_names is not yet supported',
        ct.get_feature_names)

    ct = ColumnTransformer([('trans', DictVectorizer(), 0)],
                           remainder='passthrough')
    ct.fit(X)
    assert_raise_message(
        NotImplementedError, 'get_feature_names is not yet supported',
        ct.get_feature_names)

    # drop transformer
    ct = ColumnTransformer(
        [('col0', DictVectorizer(), 0), ('col1', 'drop', 1)])
    ct.fit(X)
    assert ct.get_feature_names() == ['col0__a', 'col0__b']


def test_column_transformer_special_strings():

    # one 'drop' -> ignore
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer(
        [('trans1', Trans(), [0]), ('trans2', 'drop', [1])])
    exp = np.array([[0.], [1.], [2.]])
    assert_array_equal(ct.fit_transform(X_array), exp)
    assert_array_equal(ct.fit(X_array).transform(X_array), exp)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # all 'drop' -> return shape 0 array
    ct = ColumnTransformer(
        [('trans1', 'drop', [0]), ('trans2', 'drop', [1])])
    assert_array_equal(ct.fit(X_array).transform(X_array).shape, (3, 0))
    assert_array_equal(ct.fit_transform(X_array).shape, (3, 0))
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # 'passthrough'
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer(
        [('trans1', Trans(), [0]), ('trans2', 'passthrough', [1])])
    exp = X_array
    assert_array_equal(ct.fit_transform(X_array), exp)
    assert_array_equal(ct.fit(X_array).transform(X_array), exp)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # None itself / other string is not valid
    for val in [None, 'other']:
        ct = ColumnTransformer(
            [('trans1', Trans(), [0]), ('trans2', None, [1])])
        assert_raise_message(TypeError, "All estimators should implement",
                             ct.fit_transform, X_array)
        assert_raise_message(TypeError, "All estimators should implement",
                             ct.fit, X_array)


def test_column_transformer_remainder():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
    X_res_second = np.array([2, 4, 6]).reshape(-1, 1)
    X_res_both = X_array

    # default drop
    ct = ColumnTransformer([('trans1', Trans(), [0])])
    assert_array_equal(ct.fit_transform(X_array), X_res_first)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'drop'
    assert_array_equal(ct.transformers_[-1][2], [1])

    # specify passthrough
    ct = ColumnTransformer([('trans', Trans(), [0])], remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])

    # column order is not preserved (passed through added to end)
    ct = ColumnTransformer([('trans1', Trans(), [1])],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both[:, ::-1])
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both[:, ::-1])
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [0])

    # passthrough when all actual transformers are skipped
    ct = ColumnTransformer([('trans1', 'drop', [0])],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_second)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_second)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])

    # error on invalid arg
    ct = ColumnTransformer([('trans1', Trans(), [0])], remainder=1)
    assert_raise_message(
        ValueError,
        "remainder keyword needs to be one of \'drop\', \'passthrough\', "
        "or estimator.", ct.fit, X_array)
    assert_raise_message(
        ValueError,
        "remainder keyword needs to be one of \'drop\', \'passthrough\', "
        "or estimator.", ct.fit_transform, X_array)

    # check default for make_column_transformer
    ct = make_column_transformer((Trans(), [0]))
    assert ct.remainder == 'drop'


@pytest.mark.parametrize("key", [[0], np.array([0]), slice(0, 1),
                                 np.array([True, False])])
def test_column_transformer_remainder_numpy(key):
    # test different ways that columns are specified with passthrough
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_both = X_array

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])


@pytest.mark.parametrize(
    "key", [[0], slice(0, 1), np.array([True, False]), ['first'], 'pd-index',
            np.array(['first']), np.array(['first'], dtype=object),
            slice(None, 'first'), slice('first', 'first')])
def test_column_transformer_remainder_pandas(key):
    # test different ways that columns are specified with passthrough
    pd = pytest.importorskip('pandas')
    if isinstance(key, str) and key == 'pd-index':
        key = pd.Index(['first'])

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])
    X_res_both = X_array

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])


@pytest.mark.parametrize("key", [[0], np.array([0]), slice(0, 1),
                                 np.array([True, False, False])])
def test_column_transformer_remainder_transformer(key):
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T
    X_res_both = X_array.copy()

    # second and third columns are doubled when remainder = DoubleTrans
    X_res_both[:, 1:3] *= 2

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], DoubleTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])


def test_column_transformer_no_remaining_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T

    ct = ColumnTransformer([('trans1', Trans(), [0, 1, 2])],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_array)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_array)
    assert len(ct.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'


def test_column_transformer_drops_all_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T

    # columns are doubled when remainder = DoubleTrans
    X_res_both = 2 * X_array.copy()[:, 1:3]

    ct = ColumnTransformer([('trans1', 'drop', [0])],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], DoubleTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])


def test_column_transformer_sparse_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T

    ct = ColumnTransformer([('trans1', Trans(), [0])],
                           remainder=SparseMatrixTrans(),
                           sparse_threshold=0.8)

    X_trans = ct.fit_transform(X_array)
    assert sparse.issparse(X_trans)
    # SparseMatrixTrans creates 3 features for each column. There is
    # one column in ``transformers``, thus:
    assert X_trans.shape == (3, 3 + 1)

    exp_array = np.hstack(
        (X_array[:, 0].reshape(-1, 1), np.eye(3)))
    assert_array_equal(X_trans.toarray(), exp_array)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])


def test_column_transformer_drop_all_sparse_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T
    ct = ColumnTransformer([('trans1', 'drop', [0])],
                           remainder=SparseMatrixTrans(),
                           sparse_threshold=0.8)

    X_trans = ct.fit_transform(X_array)
    assert sparse.issparse(X_trans)

    #  SparseMatrixTrans creates 3 features for each column, thus:
    assert X_trans.shape == (3, 3)
    assert_array_equal(X_trans.toarray(), np.eye(3))
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])


def test_column_transformer_get_set_params_with_remainder():
    ct = ColumnTransformer([('trans1', StandardScaler(), [0])],
                           remainder=StandardScaler())

    exp = {'n_jobs': None,
           'remainder': ct.remainder,
           'remainder__copy': True,
           'remainder__with_mean': True,
           'remainder__with_std': True,
           'sparse_threshold': 0.3,
           'trans1': ct.transformers[0][1],
           'trans1__copy': True,
           'trans1__with_mean': True,
           'trans1__with_std': True,
           'transformers': ct.transformers,
           'transformer_weights': None,
           'verbose': False}

    assert ct.get_params() == exp

    ct.set_params(remainder__with_std=False)
    assert not ct.get_params()['remainder__with_std']

    ct.set_params(trans1='passthrough')
    exp = {'n_jobs': None,
           'remainder': ct.remainder,
           'remainder__copy': True,
           'remainder__with_mean': True,
           'remainder__with_std': False,
           'sparse_threshold': 0.3,
           'trans1': 'passthrough',
           'transformers': ct.transformers,
           'transformer_weights': None,
           'verbose': False}

    assert ct.get_params() == exp


def test_column_transformer_no_estimators():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).astype('float').T
    ct = ColumnTransformer([], remainder=StandardScaler())

    params = ct.get_params()
    assert params['remainder__with_mean']

    X_trans = ct.fit_transform(X_array)
    assert X_trans.shape == X_array.shape
    assert len(ct.transformers_) == 1
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][2] == [0, 1, 2]


@pytest.mark.parametrize(
    ['est', 'pattern'],
    [(ColumnTransformer([('trans1', Trans(), [0]), ('trans2', Trans(), [1])],
                        remainder=DoubleTrans()),
      (r'\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n'
       r'\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n'
       r'\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$'
       )),
     (ColumnTransformer([('trans1', Trans(), [0]), ('trans2', Trans(), [1])],
                        remainder='passthrough'),
      (r'\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n'
       r'\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n'
       r'\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$'
       )),
     (ColumnTransformer([('trans1', Trans(), [0]), ('trans2', 'drop', [1])],
                        remainder='passthrough'),
      (r'\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n'
       r'\[ColumnTransformer\].*\(2 of 2\) Processing remainder.* total=.*\n$'
       )),
     (ColumnTransformer([('trans1', Trans(), [0]),
                         ('trans2', 'passthrough', [1])],
                        remainder='passthrough'),
      (r'\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n'
       r'\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n'
       r'\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$'
       )),
     (ColumnTransformer([('trans1', Trans(), [0])], remainder='passthrough'),
      (r'\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n'
       r'\[ColumnTransformer\].*\(2 of 2\) Processing remainder.* total=.*\n$'
       )),
     (ColumnTransformer([('trans1', Trans(), [0]), ('trans2', Trans(), [1])],
                        remainder='drop'),
      (r'\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n'
       r'\[ColumnTransformer\].*\(2 of 2\) Processing trans2.* total=.*\n$')),
     (ColumnTransformer([('trans1', Trans(), [0])], remainder='drop'),
      (r'\[ColumnTransformer\].*\(1 of 1\) Processing trans1.* total=.*\n$'))])
@pytest.mark.parametrize('method', ['fit', 'fit_transform'])
def test_column_transformer_verbose(est, pattern, method, capsys):
    X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T

    func = getattr(est, method)
    est.set_params(verbose=False)
    func(X_array)
    assert not capsys.readouterr().out, 'Got output for verbose=False'

    est.set_params(verbose=True)
    func(X_array)
    assert re.match(pattern, capsys.readouterr()[0])


def test_column_transformer_no_estimators_set_params():
    ct = ColumnTransformer([]).set_params(n_jobs=2)
    assert ct.n_jobs == 2


def test_column_transformer_callable_specifier():
    # assert that function gets the full array / dataframe
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_first = np.array([[0, 1, 2]]).T

    def func(X):
        assert_array_equal(X, X_array)
        return [0]

    ct = ColumnTransformer([('trans', Trans(), func)],
                           remainder='drop')
    assert_array_equal(ct.fit_transform(X_array), X_res_first)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
    assert callable(ct.transformers[0][2])
    assert ct.transformers_[0][2] == [0]

    pd = pytest.importorskip('pandas')
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])

    def func(X):
        assert_array_equal(X.columns, X_df.columns)
        assert_array_equal(X.values, X_df.values)
        return ['first']

    ct = ColumnTransformer([('trans', Trans(), func)],
                           remainder='drop')
    assert_array_equal(ct.fit_transform(X_df), X_res_first)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_first)
    assert callable(ct.transformers[0][2])
    assert ct.transformers_[0][2] == ['first']


def test_column_transformer_negative_column_indexes():
    X = np.random.randn(2, 2)
    X_categories = np.array([[1], [2]])
    X = np.concatenate([X, X_categories], axis=1)

    ohe = OneHotEncoder()

    tf_1 = ColumnTransformer([('ohe', ohe, [-1])], remainder='passthrough')
    tf_2 = ColumnTransformer([('ohe', ohe,  [2])], remainder='passthrough')
    assert_array_equal(tf_1.fit_transform(X), tf_2.fit_transform(X))


@pytest.mark.parametrize("explicit_colname", ['first', 'second'])
def test_column_transformer_reordered_column_names_remainder(explicit_colname):
    """Regression test for issue #14223: 'Named col indexing fails with
       ColumnTransformer remainder on changing DataFrame column ordering'

       Should raise error on changed order combined with remainder.
       Should allow for added columns in `transform` input DataFrame
       as long as all preceding columns match.
    """
    pd = pytest.importorskip('pandas')

    X_fit_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_fit_df = pd.DataFrame(X_fit_array, columns=['first', 'second'])

    X_trans_array = np.array([[2, 4, 6], [0, 1, 2]]).T
    X_trans_df = pd.DataFrame(X_trans_array, columns=['second', 'first'])

    tf = ColumnTransformer([('bycol', Trans(), explicit_colname)],
                           remainder=Trans())

    tf.fit(X_fit_df)
    err_msg = 'Column ordering must be equal'
    warn_msg = ("Given feature/column names or counts do not match the ones "
                "for the data given during fit.")
    with pytest.raises(ValueError, match=err_msg):
        tf.transform(X_trans_df)

    # No error for added columns if ordering is identical
    X_extended_df = X_fit_df.copy()
    X_extended_df['third'] = [3, 6, 9]
    with pytest.warns(FutureWarning, match=warn_msg):
        tf.transform(X_extended_df)  # No error should be raised, for now

    # No 'columns' AttributeError when transform input is a numpy array
    X_array = X_fit_array.copy()
    err_msg = 'Specifying the columns'
    with pytest.raises(ValueError, match=err_msg):
        tf.transform(X_array)


def test_feature_name_validation():
    """Tests if the proper warning/error is raised if the columns do not match
    during fit and transform."""
    pd = pytest.importorskip("pandas")

    X = np.ones(shape=(3, 2))
    X_extra = np.ones(shape=(3, 3))
    df = pd.DataFrame(X, columns=['a', 'b'])
    df_extra = pd.DataFrame(X_extra, columns=['a', 'b', 'c'])

    tf = ColumnTransformer([('bycol', Trans(), ['a', 'b'])])
    tf.fit(df)

    msg = ("Given feature/column names or counts do not match the ones for "
           "the data given during fit.")
    with pytest.warns(FutureWarning, match=msg):
        tf.transform(df_extra)

    tf = ColumnTransformer([('bycol', Trans(), [0])])
    tf.fit(df)

    with pytest.warns(FutureWarning, match=msg):
        tf.transform(X_extra)

    with warnings.catch_warnings(record=True) as warns:
        tf.transform(X)
    assert not warns

    tf = ColumnTransformer([('bycol', Trans(), ['a'])],
                           remainder=Trans())
    tf.fit(df)
    with pytest.warns(FutureWarning, match=msg):
        tf.transform(df_extra)

    tf = ColumnTransformer([('bycol', Trans(), [0, -1])])
    tf.fit(df)
    msg = "At least one negative column was used to"
    with pytest.raises(RuntimeError, match=msg):
        tf.transform(df_extra)

    tf = ColumnTransformer([('bycol', Trans(), slice(-1, -3, -1))])
    tf.fit(df)
    with pytest.raises(RuntimeError, match=msg):
        tf.transform(df_extra)

    with warnings.catch_warnings(record=True) as warns:
        tf.transform(df)
    assert not warns


@pytest.mark.parametrize("array_type", [np.asarray, sparse.csr_matrix])
def test_column_transformer_mask_indexing(array_type):
    # Regression test for #14510
    # Boolean array-like does not behave as boolean array with NumPy < 1.12
    # and sparse matrices as well
    X = np.transpose([[1, 2, 3], [4, 5, 6], [5, 6, 7], [8, 9, 10]])
    X = array_type(X)
    column_transformer = ColumnTransformer(
        [('identity', FunctionTransformer(), [False, True, False, True])]
    )
    X_trans = column_transformer.fit_transform(X)
    assert X_trans.shape == (3, 2)


@pytest.mark.parametrize('cols, pattern, include, exclude', [
    (['col_int', 'col_float'], None, np.number, None),
    (['col_int', 'col_float'], None, None, object),
    (['col_int', 'col_float'], None, [np.int, np.float], None),
    (['col_str'], None, [np.object], None),
    (['col_str'], None, np.object, None),
    (['col_float'], None, float, None),
    (['col_float'], 'at$', [np.number], None),
    (['col_int'], None, [np.int], None),
    (['col_int'], '^col_int', [np.number], None),
    (['col_float', 'col_str'], 'float|str', None, None),
    (['col_str'], '^col_s', None, [np.int]),
    ([], 'str$', np.float, None),
    (['col_int', 'col_float', 'col_str'], None, [np.number, np.object], None),
])
def test_make_column_selector_with_select_dtypes(cols, pattern, include,
                                                 exclude):
    pd = pytest.importorskip('pandas')

    X_df = pd.DataFrame({
        'col_int': np.array([0, 1, 2], dtype=np.int),
        'col_float': np.array([0.0, 1.0, 2.0], dtype=np.float),
        'col_str': ["one", "two", "three"],
    }, columns=['col_int', 'col_float', 'col_str'])

    selector = make_column_selector(
            dtype_include=include, dtype_exclude=exclude, pattern=pattern)

    assert_array_equal(selector(X_df), cols)


def test_column_transformer_with_make_column_selector():
    # Functional test for column transformer + column selector
    pd = pytest.importorskip('pandas')
    X_df = pd.DataFrame({
        'col_int': np.array([0, 1, 2], dtype=np.int),
        'col_float': np.array([0.0, 1.0, 2.0], dtype=np.float),
        'col_cat': ["one", "two", "one"],
        'col_str': ["low", "middle", "high"]
    }, columns=['col_int', 'col_float', 'col_cat', 'col_str'])
    X_df['col_str'] = X_df['col_str'].astype('category')

    cat_selector = make_column_selector(dtype_include=['category', object])
    num_selector = make_column_selector(dtype_include=np.number)

    ohe = OneHotEncoder()
    scaler = StandardScaler()

    ct_selector = make_column_transformer((ohe, cat_selector),
                                          (scaler, num_selector))
    ct_direct = make_column_transformer((ohe, ['col_cat', 'col_str']),
                                        (scaler, ['col_float', 'col_int']))

    X_selector = ct_selector.fit_transform(X_df)
    X_direct = ct_direct.fit_transform(X_df)

    assert_allclose(X_selector, X_direct)


def test_make_column_selector_error():
    selector = make_column_selector(dtype_include=np.number)
    X = np.array([[0.1, 0.2]])
    msg = ("make_column_selector can only be applied to pandas dataframes")
    with pytest.raises(ValueError, match=msg):
        selector(X)


def test_make_column_selector_pickle():
    pd = pytest.importorskip('pandas')

    X_df = pd.DataFrame({
        'col_int': np.array([0, 1, 2], dtype=np.int),
        'col_float': np.array([0.0, 1.0, 2.0], dtype=np.float),
        'col_str': ["one", "two", "three"],
    }, columns=['col_int', 'col_float', 'col_str'])

    selector = make_column_selector(dtype_include=[object])
    selector_picked = pickle.loads(pickle.dumps(selector))

    assert_array_equal(selector(X_df), selector_picked(X_df))