import numpy as np
from scipy.stats.mstats import mquantiles
import pytest
from numpy.testing import assert_allclose
from sklearn.datasets import load_boston
from sklearn.datasets import load_iris
from sklearn.datasets import make_classification, make_regression
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LinearRegression
from sklearn.utils._testing import _convert_container
from sklearn.inspection import plot_partial_dependence
# TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
pytestmark = pytest.mark.filterwarnings(
"ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
"matplotlib.*")
@pytest.fixture(scope="module")
def boston():
return load_boston()
@pytest.fixture(scope="module")
def clf_boston(boston):
clf = GradientBoostingRegressor(n_estimators=10, random_state=1)
clf.fit(boston.data, boston.target)
return clf
@pytest.mark.parametrize("grid_resolution", [10, 20])
def test_plot_partial_dependence(grid_resolution, pyplot, clf_boston, boston):
# Test partial dependence plot function.
feature_names = boston.feature_names
disp = plot_partial_dependence(clf_boston, boston.data,
[0, 1, (0, 1)],
grid_resolution=grid_resolution,
feature_names=feature_names,
contour_kw={"cmap": "jet"})
fig = pyplot.gcf()
axs = fig.get_axes()
assert disp.figure_ is fig
assert len(axs) == 4
assert disp.bounding_ax_ is not None
assert disp.axes_.shape == (1, 3)
assert disp.lines_.shape == (1, 3)
assert disp.contours_.shape == (1, 3)
assert disp.lines_[0, 2] is None
assert disp.contours_[0, 0] is None
assert disp.contours_[0, 1] is None
assert disp.features == [(0, ), (1, ), (0, 1)]
assert np.all(disp.feature_names == feature_names)
assert len(disp.deciles) == 2
for i in [0, 1]:
assert_allclose(disp.deciles[i],
mquantiles(boston.data[:, i],
prob=np.arange(0.1, 1.0, 0.1)))
single_feature_positions = [(0, 0), (0, 1)]
expected_ylabels = ["Partial dependence", ""]
for i, pos in enumerate(single_feature_positions):
ax = disp.axes_[pos]
assert ax.get_ylabel() == expected_ylabels[i]
assert ax.get_xlabel() == boston.feature_names[i]
assert_allclose(ax.get_ylim(), disp.pdp_lim[1])
line = disp.lines_[pos]
avg_preds, values = disp.pd_results[i]
assert avg_preds.shape == (1, grid_resolution)
target_idx = disp.target_idx
line_data = line.get_data()
assert_allclose(line_data[0], values[0])
assert_allclose(line_data[1], avg_preds[target_idx].ravel())
# two feature position
ax = disp.axes_[0, 2]
coutour = disp.contours_[0, 2]
expected_levels = np.linspace(*disp.pdp_lim[2], num=8)
assert_allclose(coutour.levels, expected_levels)
assert coutour.get_cmap().name == "jet"
assert ax.get_xlabel() == boston.feature_names[0]
assert ax.get_ylabel() == boston.feature_names[1]
@pytest.mark.parametrize(
"input_type, feature_names_type",
[('dataframe', None),
('dataframe', 'list'), ('list', 'list'), ('array', 'list'),
('dataframe', 'array'), ('list', 'array'), ('array', 'array'),
('dataframe', 'series'), ('list', 'series'), ('array', 'series'),
('dataframe', 'index'), ('list', 'index'), ('array', 'index')]
)
def test_plot_partial_dependence_str_features(pyplot, clf_boston, boston,
input_type, feature_names_type):
if input_type == 'dataframe':
pd = pytest.importorskip("pandas")
X = pd.DataFrame(boston.data, columns=boston.feature_names)
elif input_type == 'list':
X = boston.data.tolist()
else:
X = boston.data
if feature_names_type is None:
feature_names = None
else:
feature_names = _convert_container(boston.feature_names,
feature_names_type)
grid_resolution = 25
# check with str features and array feature names and single column
disp = plot_partial_dependence(clf_boston, X,
[('CRIM', 'ZN'), 'ZN'],
grid_resolution=grid_resolution,
feature_names=feature_names,
n_cols=1, line_kw={"alpha": 0.8})
fig = pyplot.gcf()
axs = fig.get_axes()
assert len(axs) == 3
assert disp.figure_ is fig
assert disp.axes_.shape == (2, 1)
assert disp.lines_.shape == (2, 1)
assert disp.contours_.shape == (2, 1)
assert disp.lines_[0, 0] is None
assert disp.contours_[1, 0] is None
# line
ax = disp.axes_[1, 0]
assert ax.get_xlabel() == "ZN"
assert ax.get_ylabel() == "Partial dependence"
line = disp.lines_[1, 0]
avg_preds, values = disp.pd_results[1]
target_idx = disp.target_idx
assert line.get_alpha() == 0.8
line_data = line.get_data()
assert_allclose(line_data[0], values[0])
assert_allclose(line_data[1], avg_preds[target_idx].ravel())
# contour
ax = disp.axes_[0, 0]
coutour = disp.contours_[0, 0]
expect_levels = np.linspace(*disp.pdp_lim[2], num=8)
assert_allclose(coutour.levels, expect_levels)
assert ax.get_xlabel() == "CRIM"
assert ax.get_ylabel() == "ZN"
def test_plot_partial_dependence_custom_axes(pyplot, clf_boston, boston):
grid_resolution = 25
fig, (ax1, ax2) = pyplot.subplots(1, 2)
feature_names = boston.feature_names.tolist()
disp = plot_partial_dependence(clf_boston, boston.data,
['CRIM', ('CRIM', 'ZN')],
grid_resolution=grid_resolution,
feature_names=feature_names, ax=[ax1, ax2])
assert fig is disp.figure_
assert disp.bounding_ax_ is None
assert disp.axes_.shape == (2, )
assert disp.axes_[0] is ax1
assert disp.axes_[1] is ax2
ax = disp.axes_[0]
assert ax.get_xlabel() == "CRIM"
assert ax.get_ylabel() == "Partial dependence"
line = disp.lines_[0]
avg_preds, values = disp.pd_results[0]
target_idx = disp.target_idx
line_data = line.get_data()
assert_allclose(line_data[0], values[0])
assert_allclose(line_data[1], avg_preds[target_idx].ravel())
# contour
ax = disp.axes_[1]
coutour = disp.contours_[1]
expect_levels = np.linspace(*disp.pdp_lim[2], num=8)
assert_allclose(coutour.levels, expect_levels)
assert ax.get_xlabel() == "CRIM"
assert ax.get_ylabel() == "ZN"
def test_plot_partial_dependence_passing_numpy_axes(pyplot, clf_boston,
boston):
grid_resolution = 25
feature_names = boston.feature_names.tolist()
disp1 = plot_partial_dependence(clf_boston, boston.data,
['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=feature_names)
assert disp1.axes_.shape == (1, 2)
assert disp1.axes_[0, 0].get_ylabel() == "Partial dependence"
assert disp1.axes_[0, 1].get_ylabel() == ""
assert len(disp1.axes_[0, 0].get_lines()) == 1
assert len(disp1.axes_[0, 1].get_lines()) == 1
lr = LinearRegression()
lr.fit(boston.data, boston.target)
disp2 = plot_partial_dependence(lr, boston.data,
['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=feature_names,
ax=disp1.axes_)
assert np.all(disp1.axes_ == disp2.axes_)
assert len(disp2.axes_[0, 0].get_lines()) == 2
assert len(disp2.axes_[0, 1].get_lines()) == 2
def test_plot_partial_dependence_incorrent_num_axes(pyplot, clf_boston,
boston):
grid_resolution = 25
fig, (ax1, ax2, ax3) = pyplot.subplots(1, 3)
msg = r"Expected len\(ax\) == len\(features\), got len\(ax\) = 3"
with pytest.raises(ValueError, match=msg):
plot_partial_dependence(clf_boston, boston.data,
['CRIM', ('CRIM', 'ZN')],
grid_resolution=grid_resolution,
feature_names=boston.feature_names,
ax=[ax1, ax2, ax3])
disp = plot_partial_dependence(clf_boston, boston.data,
['CRIM', ('CRIM', 'ZN')],
grid_resolution=grid_resolution,
feature_names=boston.feature_names)
with pytest.raises(ValueError, match=msg):
disp.plot(ax=[ax1, ax2, ax3])
def test_plot_partial_dependence_with_same_axes(pyplot, clf_boston, boston):
# The first call to plot_partial_dependence will create two new axes to
# place in the space of the passed in axes, which results in a total of
# three axes in the figure.
# Currently the API does not allow for the second call to
# plot_partial_dependence to use the same axes again, because it will
# create two new axes in the space resulting in five axes. To get the
# expected behavior one needs to pass the generated axes into the second
# call:
# disp1 = plot_partial_dependence(...)
# disp2 = plot_partial_dependence(..., ax=disp1.axes_)
grid_resolution = 25
fig, ax = pyplot.subplots()
plot_partial_dependence(clf_boston, boston.data, ['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=boston.feature_names, ax=ax)
msg = ("The ax was already used in another plot function, please set "
"ax=display.axes_ instead")
with pytest.raises(ValueError, match=msg):
plot_partial_dependence(clf_boston, boston.data,
['CRIM', 'ZN'],
grid_resolution=grid_resolution,
feature_names=boston.feature_names, ax=ax)
def test_plot_partial_dependence_feature_name_reuse(pyplot, clf_boston,
boston):
# second call to plot does not change the feature names from the first
# call
feature_names = boston.feature_names
disp = plot_partial_dependence(clf_boston, boston.data,
[0, 1],
grid_resolution=10,
feature_names=feature_names)
plot_partial_dependence(clf_boston, boston.data, [0, 1],
grid_resolution=10, ax=disp.axes_)
for i, ax in enumerate(disp.axes_.ravel()):
assert ax.get_xlabel() == feature_names[i]
def test_plot_partial_dependence_multiclass(pyplot):
grid_resolution = 25
clf_int = GradientBoostingClassifier(n_estimators=10, random_state=1)
iris = load_iris()
# Test partial dependence plot function on multi-class input.
clf_int.fit(iris.data, iris.target)
disp_target_0 = plot_partial_dependence(clf_int, iris.data, [0, 1],
target=0,
grid_resolution=grid_resolution)
assert disp_target_0.figure_ is pyplot.gcf()
assert disp_target_0.axes_.shape == (1, 2)
assert disp_target_0.lines_.shape == (1, 2)
assert disp_target_0.contours_.shape == (1, 2)
assert all(c is None for c in disp_target_0.contours_.flat)
assert disp_target_0.target_idx == 0
# now with symbol labels
target = iris.target_names[iris.target]
clf_symbol = GradientBoostingClassifier(n_estimators=10, random_state=1)
clf_symbol.fit(iris.data, target)
disp_symbol = plot_partial_dependence(clf_symbol, iris.data, [0, 1],
target='setosa',
grid_resolution=grid_resolution)
assert disp_symbol.figure_ is pyplot.gcf()
assert disp_symbol.axes_.shape == (1, 2)
assert disp_symbol.lines_.shape == (1, 2)
assert disp_symbol.contours_.shape == (1, 2)
assert all(c is None for c in disp_symbol.contours_.flat)
assert disp_symbol.target_idx == 0
for int_result, symbol_result in zip(disp_target_0.pd_results,
disp_symbol.pd_results):
avg_preds_int, values_int = int_result
avg_preds_symbol, values_symbol = symbol_result
assert_allclose(avg_preds_int, avg_preds_symbol)
assert_allclose(values_int, values_symbol)
# check that the pd plots are different for another target
disp_target_1 = plot_partial_dependence(clf_int, iris.data, [0, 1],
target=1,
grid_resolution=grid_resolution)
target_0_data_y = disp_target_0.lines_[0, 0].get_data()[1]
target_1_data_y = disp_target_1.lines_[0, 0].get_data()[1]
assert any(target_0_data_y != target_1_data_y)
multioutput_regression_data = make_regression(n_samples=50, n_targets=2,
random_state=0)
@pytest.mark.parametrize("target", [0, 1])
def test_plot_partial_dependence_multioutput(pyplot, target):
# Test partial dependence plot function on multi-output input.
X, y = multioutput_regression_data
clf = LinearRegression().fit(X, y)
grid_resolution = 25
disp = plot_partial_dependence(clf, X, [0, 1], target=target,
grid_resolution=grid_resolution)
fig = pyplot.gcf()
axs = fig.get_axes()
assert len(axs) == 3
assert disp.target_idx == target
assert disp.bounding_ax_ is not None
positions = [(0, 0), (0, 1)]
expected_label = ["Partial dependence", ""]
for i, pos in enumerate(positions):
ax = disp.axes_[pos]
assert ax.get_ylabel() == expected_label[i]
assert ax.get_xlabel() == "{}".format(i)
def test_plot_partial_dependence_dataframe(pyplot, clf_boston, boston):
pd = pytest.importorskip('pandas')
df = pd.DataFrame(boston.data, columns=boston.feature_names)
grid_resolution = 25
plot_partial_dependence(
clf_boston, df, ['TAX', 'AGE'], grid_resolution=grid_resolution,
feature_names=df.columns.tolist()
)
dummy_classification_data = make_classification(random_state=0)
@pytest.mark.parametrize(
"data, params, err_msg",
[(multioutput_regression_data, {"target": None, 'features': [0]},
"target must be specified for multi-output"),
(multioutput_regression_data, {"target": -1, 'features': [0]},
r'target must be in \[0, n_tasks\]'),
(multioutput_regression_data, {"target": 100, 'features': [0]},
r'target must be in \[0, n_tasks\]'),
(dummy_classification_data,
{'features': ['foobar'], 'feature_names': None},
'Feature foobar not in feature_names'),
(dummy_classification_data,
{'features': ['foobar'], 'feature_names': ['abcd', 'def']},
'Feature foobar not in feature_names'),
(dummy_classification_data, {'features': [(1, 2, 3)]},
'Each entry in features must be either an int, '),
(dummy_classification_data, {'features': [1, {}]},
'Each entry in features must be either an int, '),
(dummy_classification_data, {'features': [tuple()]},
'Each entry in features must be either an int, '),
(dummy_classification_data,
{'features': [123], 'feature_names': ['blahblah']},
'All entries of features must be less than '),
(dummy_classification_data,
{'features': [0, 1, 2], 'feature_names': ['a', 'b', 'a']},
'feature_names should not contain duplicates')]
)
def test_plot_partial_dependence_error(pyplot, data, params, err_msg):
X, y = data
estimator = LinearRegression().fit(X, y)
with pytest.raises(ValueError, match=err_msg):
plot_partial_dependence(estimator, X, **params)
@pytest.mark.parametrize("params, err_msg", [
({'target': 4, 'features': [0]},
'target not in est.classes_, got 4'),
({'target': None, 'features': [0]},
'target must be specified for multi-class'),
({'target': 1, 'features': [4.5]},
'Each entry in features must be either an int,'),
])
def test_plot_partial_dependence_multiclass_error(pyplot, params, err_msg):
iris = load_iris()
clf = GradientBoostingClassifier(n_estimators=10, random_state=1)
clf.fit(iris.data, iris.target)
with pytest.raises(ValueError, match=err_msg):
plot_partial_dependence(clf, iris.data, **params)
def test_plot_partial_dependence_fig_deprecated(pyplot):
# Make sure fig object is correctly used if not None
X, y = make_regression(n_samples=50, random_state=0)
clf = LinearRegression()
clf.fit(X, y)
fig = pyplot.figure()
grid_resolution = 25
msg = ("The fig parameter is deprecated in version 0.22 and will be "
"removed in version 0.24")
with pytest.warns(FutureWarning, match=msg):
plot_partial_dependence(
clf, X, [0, 1], target=0, grid_resolution=grid_resolution, fig=fig)
assert pyplot.gcf() is fig