Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scikit-learn   python

Repository URL to install this package:

Version: 0.22 

/ metrics / _plot / tests / test_plot_precision_recall.py

import pytest
import numpy as np
from numpy.testing import assert_allclose

from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.metrics import plot_precision_recall_curve
from sklearn.metrics import average_precision_score
from sklearn.metrics import precision_recall_curve
from sklearn.datasets import make_classification
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.linear_model import LogisticRegression
from sklearn.exceptions import NotFittedError
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.compose import make_column_transformer


# TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved
pytestmark = pytest.mark.filterwarnings(
    "ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:"
    "matplotlib.*")


def test_errors(pyplot):
    X, y_multiclass = make_classification(n_classes=3, n_samples=50,
                                          n_informative=3,
                                          random_state=0)
    y_binary = y_multiclass == 0

    # Unfitted classifer
    binary_clf = DecisionTreeClassifier()
    with pytest.raises(NotFittedError):
        plot_precision_recall_curve(binary_clf, X, y_binary)
    binary_clf.fit(X, y_binary)

    multi_clf = DecisionTreeClassifier().fit(X, y_multiclass)

    # Fitted multiclass classifier with binary data
    msg = "DecisionTreeClassifier should be a binary classifer"
    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(multi_clf, X, y_binary)

    reg = DecisionTreeRegressor().fit(X, y_multiclass)
    msg = "DecisionTreeRegressor should be a binary classifer"
    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(reg, X, y_binary)


@pytest.mark.parametrize(
    "response_method, msg",
    [("predict_proba", "response method predict_proba is not defined in "
                       "MyClassifier"),
     ("decision_function", "response method decision_function is not defined "
                           "in MyClassifier"),
     ("auto", "response method decision_function or predict_proba is not "
              "defined in MyClassifier"),
     ("bad_method", "response_method must be 'predict_proba', "
                    "'decision_function' or 'auto'")])
def test_error_bad_response(pyplot, response_method, msg):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)

    class MyClassifier(BaseEstimator, ClassifierMixin):
        def fit(self, X, y):
            self.fitted_ = True
            self.classes_ = [0, 1]
            return self

    clf = MyClassifier().fit(X, y)

    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(clf, X, y, response_method=response_method)


@pytest.mark.parametrize("response_method",
                         ["predict_proba", "decision_function"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
def test_plot_precision_recall(pyplot, response_method, with_sample_weight):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)

    lr = LogisticRegression().fit(X, y)

    if with_sample_weight:
        rng = np.random.RandomState(42)
        sample_weight = rng.randint(0, 4, size=X.shape[0])
    else:
        sample_weight = None

    disp = plot_precision_recall_curve(lr, X, y, alpha=0.8,
                                       response_method=response_method,
                                       sample_weight=sample_weight)

    y_score = getattr(lr, response_method)(X)
    if response_method == 'predict_proba':
        y_score = y_score[:, 1]

    prec, recall, _ = precision_recall_curve(y, y_score,
                                             sample_weight=sample_weight)
    avg_prec = average_precision_score(y, y_score, sample_weight=sample_weight)

    assert_allclose(disp.precision, prec)
    assert_allclose(disp.recall, recall)
    assert disp.average_precision == pytest.approx(avg_prec)

    assert disp.estimator_name == "LogisticRegression"

    # cannot fail thanks to pyplot fixture
    import matplotlib as mpl  # noqa
    assert isinstance(disp.line_, mpl.lines.Line2D)
    assert disp.line_.get_alpha() == 0.8
    assert isinstance(disp.ax_, mpl.axes.Axes)
    assert isinstance(disp.figure_, mpl.figure.Figure)

    expected_label = "LogisticRegression (AP = {:0.2f})".format(avg_prec)
    assert disp.line_.get_label() == expected_label
    assert disp.ax_.get_xlabel() == "Recall"
    assert disp.ax_.get_ylabel() == "Precision"

    # draw again with another label
    disp.plot(name="MySpecialEstimator")
    expected_label = "MySpecialEstimator (AP = {:0.2f})".format(avg_prec)
    assert disp.line_.get_label() == expected_label


@pytest.mark.parametrize(
    "clf", [make_pipeline(StandardScaler(), LogisticRegression()),
            make_pipeline(make_column_transformer((StandardScaler(), [0, 1])),
                          LogisticRegression())])
def test_precision_recall_curve_pipeline(pyplot, clf):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
    with pytest.raises(NotFittedError):
        plot_precision_recall_curve(clf, X, y)
    clf.fit(X, y)
    disp = plot_precision_recall_curve(clf, X, y)
    assert disp.estimator_name == clf.__class__.__name__


def test_precision_recall_curve_string_labels(pyplot):
    # regression test #15738
    cancer = load_breast_cancer()
    X = cancer.data
    y = cancer.target_names[cancer.target]

    lr = make_pipeline(StandardScaler(), LogisticRegression())
    lr.fit(X, y)
    for klass in cancer.target_names:
        assert klass in lr.classes_
    disp = plot_precision_recall_curve(lr, X, y)

    y_pred = lr.predict_proba(X)[:, 1]
    avg_prec = average_precision_score(y, y_pred,
                                       pos_label=lr.classes_[1])

    assert disp.average_precision == pytest.approx(avg_prec)
    assert disp.estimator_name == lr.__class__.__name__