"""Metrics to assess performance on classification task given scores
Functions named as ``*_score`` return a scalar value to maximize: the higher
the better
Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize:
the lower the better
"""
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Mathieu Blondel <mathieu@mblondel.org>
# Olivier Grisel <olivier.grisel@ensta.org>
# Arnaud Joly <a.joly@ulg.ac.be>
# Jochen Wersdorfer <jochen@wersdoerfer.de>
# Lars Buitinck
# Joel Nothman <joel.nothman@gmail.com>
# Noel Dawe <noel@dawe.me>
# License: BSD 3 clause
import warnings
from functools import partial
import numpy as np
from scipy.sparse import csr_matrix
from scipy.stats import rankdata
from ..utils import assert_all_finite
from ..utils import check_consistent_length
from ..utils import column_or_1d, check_array
from ..utils.multiclass import type_of_target
from ..utils.extmath import stable_cumsum
from ..utils.sparsefuncs import count_nonzero
from ..exceptions import UndefinedMetricWarning
from ..preprocessing import label_binarize
from ..preprocessing._label import _encode
from ._base import _average_binary_score, _average_multiclass_ovo_score
def auc(x, y):
"""Compute Area Under the Curve (AUC) using the trapezoidal rule
This is a general function, given points on a curve. For computing the
area under the ROC-curve, see :func:`roc_auc_score`. For an alternative
way to summarize a precision-recall curve, see
:func:`average_precision_score`.
Parameters
----------
x : array, shape = [n]
x coordinates. These must be either monotonic increasing or monotonic
decreasing.
y : array, shape = [n]
y coordinates.
Returns
-------
auc : float
Examples
--------
>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75
See also
--------
roc_auc_score : Compute the area under the ROC curve
average_precision_score : Compute average precision from prediction scores
precision_recall_curve :
Compute precision-recall pairs for different probability thresholds
"""
check_consistent_length(x, y)
x = column_or_1d(x)
y = column_or_1d(y)
if x.shape[0] < 2:
raise ValueError('At least 2 points are needed to compute'
' area under curve, but x.shape = %s' % x.shape)
direction = 1
dx = np.diff(x)
if np.any(dx < 0):
if np.all(dx <= 0):
direction = -1
else:
raise ValueError("x is neither increasing nor decreasing "
": {}.".format(x))
area = direction * np.trapz(y, x)
if isinstance(area, np.memmap):
# Reductions such as .sum used internally in np.trapz do not return a
# scalar by default for numpy.memmap instances contrary to
# regular numpy.ndarray instances.
area = area.dtype.type(area)
return area
def average_precision_score(y_true, y_score, average="macro", pos_label=1,
sample_weight=None):
"""Compute average precision (AP) from prediction scores
AP summarizes a precision-recall curve as the weighted mean of precisions
achieved at each threshold, with the increase in recall from the previous
threshold used as the weight:
.. math::
\\text{AP} = \\sum_n (R_n - R_{n-1}) P_n
where :math:`P_n` and :math:`R_n` are the precision and recall at the nth
threshold [1]_. This implementation is not interpolated and is different
from computing the area under the precision-recall curve with the
trapezoidal rule, which uses linear interpolation and can be too
optimistic.
Note: this implementation is restricted to the binary classification task
or multilabel classification task.
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.
Parameters
----------
y_true : array, shape = [n_samples] or [n_samples, n_classes]
True binary labels or binary label indicators.
y_score : array, shape = [n_samples] or [n_samples, n_classes]
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by "decision_function" on some classifiers).
average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted']
If ``None``, the scores for each class are returned. Otherwise,
this determines the type of averaging performed on the data:
``'micro'``:
Calculate metrics globally by considering each element of the label
indicator matrix as a label.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average, weighted
by support (the number of true instances for each label).
``'samples'``:
Calculate metrics for each instance, and find their average.
Will be ignored when ``y_true`` is binary.
pos_label : int or str (default=1)
The label of the positive class. Only applied to binary ``y_true``.
For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
average_precision : float
References
----------
.. [1] `Wikipedia entry for the Average precision
<https://en.wikipedia.org/w/index.php?title=Information_retrieval&
oldid=793358396#Average_precision>`_
See also
--------
roc_auc_score : Compute the area under the ROC curve
precision_recall_curve :
Compute precision-recall pairs for different probability thresholds
Examples
--------
>>> import numpy as np
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> average_precision_score(y_true, y_scores)
0.83...
Notes
-----
.. versionchanged:: 0.19
Instead of linearly interpolating between operating points, precisions
are weighted by the change in recall since the last operating point.
"""
def _binary_uninterpolated_average_precision(
y_true, y_score, pos_label=1, sample_weight=None):
precision, recall, _ = precision_recall_curve(
y_true, y_score, pos_label=pos_label, sample_weight=sample_weight)
# Return the step function integral
# The following works because the last entry of precision is
# guaranteed to be 1, as returned by precision_recall_curve
return -np.sum(np.diff(recall) * np.array(precision)[:-1])
y_type = type_of_target(y_true)
if y_type == "multilabel-indicator" and pos_label != 1:
raise ValueError("Parameter pos_label is fixed to 1 for "
"multilabel-indicator y_true. Do not set "
"pos_label or set pos_label to 1.")
elif y_type == "binary":
present_labels = np.unique(y_true)
if len(present_labels) == 2 and pos_label not in present_labels:
raise ValueError("pos_label=%r is invalid. Set it to a label in "
"y_true." % pos_label)
average_precision = partial(_binary_uninterpolated_average_precision,
pos_label=pos_label)
return _average_binary_score(average_precision, y_true, y_score,
average, sample_weight=sample_weight)
def _binary_roc_auc_score(y_true, y_score, sample_weight=None, max_fpr=None):
"""Binary roc auc score"""
if len(np.unique(y_true)) != 2:
raise ValueError("Only one class present in y_true. ROC AUC score "
"is not defined in that case.")
fpr, tpr, _ = roc_curve(y_true, y_score,
sample_weight=sample_weight)
if max_fpr is None or max_fpr == 1:
return auc(fpr, tpr)
if max_fpr <= 0 or max_fpr > 1:
raise ValueError("Expected max_fpr in range (0, 1], got: %r" % max_fpr)
# Add a single point at max_fpr by linear interpolation
stop = np.searchsorted(fpr, max_fpr, 'right')
x_interp = [fpr[stop - 1], fpr[stop]]
y_interp = [tpr[stop - 1], tpr[stop]]
tpr = np.append(tpr[:stop], np.interp(max_fpr, x_interp, y_interp))
fpr = np.append(fpr[:stop], max_fpr)
partial_auc = auc(fpr, tpr)
# McClish correction: standardize result to be 0.5 if non-discriminant
# and 1 if maximal
min_area = 0.5 * max_fpr**2
max_area = max_fpr
return 0.5 * (1 + (partial_auc - min_area) / (max_area - min_area))
def roc_auc_score(y_true, y_score, average="macro", sample_weight=None,
max_fpr=None, multi_class="raise", labels=None):
"""Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)
from prediction scores.
Note: this implementation is restricted to the binary classification task
or multilabel classification task in label indicator format.
Read more in the :ref:`User Guide <roc_metrics>`.
Parameters
----------
y_true : array, shape = [n_samples] or [n_samples, n_classes]
True binary labels or binary label indicators.
The multiclass case expects shape = [n_samples] and labels
with values in ``range(n_classes)``.
y_score : array, shape = [n_samples] or [n_samples, n_classes]
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by "decision_function" on some classifiers). For binary
y_true, y_score is supposed to be the score of the class with greater
label. The multiclass case expects shape = [n_samples, n_classes]
where the scores correspond to probability estimates.
average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted']
If ``None``, the scores for each class are returned. Otherwise,
this determines the type of averaging performed on the data:
Note: multiclass ROC AUC currently only handles the 'macro' and
'weighted' averages.
``'micro'``:
Calculate metrics globally by considering each element of the label
indicator matrix as a label.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average, weighted
by support (the number of true instances for each label).
``'samples'``:
Calculate metrics for each instance, and find their average.
Will be ignored when ``y_true`` is binary.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
max_fpr : float > 0 and <= 1, optional
If not ``None``, the standardized partial AUC [3]_ over the range
[0, max_fpr] is returned. For the multiclass case, ``max_fpr``,
should be either equal to ``None`` or ``1.0`` as AUC ROC partial
computation currently is not supported for multiclass.
multi_class : string, 'ovr' or 'ovo', optional(default='raise')
Determines the type of multiclass configuration to use.
``multi_class`` must be provided when ``y_true`` is multiclass.
``'ovr'``:
Calculate metrics for the multiclass case using the one-vs-rest
approach.
``'ovo'``:
Calculate metrics for the multiclass case using the one-vs-one
approach.
labels : array, shape = [n_classes] or None, optional (default=None)
List of labels to index ``y_score`` used for multiclass. If ``None``,
the lexicon order of ``y_true`` is used to index ``y_score``.
Returns
-------
auc : float
References
----------
.. [1] `Wikipedia entry for the Receiver operating characteristic
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_
.. [2] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition
Letters, 2006, 27(8):861-874.
.. [3] `Analyzing a portion of the ROC curve. McClish, 1989
<https://www.ncbi.nlm.nih.gov/pubmed/2668680>`_
See also
--------
average_precision_score : Area under the precision-recall curve
roc_curve : Compute Receiver operating characteristic (ROC) curve
Examples
--------
>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75
"""
y_type = type_of_target(y_true)
y_true = check_array(y_true, ensure_2d=False, dtype=None)
y_score = check_array(y_score, ensure_2d=False)
if y_type == "multiclass" or (y_type == "binary" and
y_score.ndim == 2 and
y_score.shape[1] > 2):
# do not support partial ROC computation for multiclass
if max_fpr is not None and max_fpr != 1.:
raise ValueError("Partial AUC computation not available in "
"multiclass setting, 'max_fpr' must be"
" set to `None`, received `max_fpr={0}` "
"instead".format(max_fpr))
if multi_class == 'raise':
raise ValueError("multi_class must be in ('ovo', 'ovr')")
return _multiclass_roc_auc_score(y_true, y_score, labels,
multi_class, average, sample_weight)
elif y_type == "binary":
labels = np.unique(y_true)
y_true = label_binarize(y_true, labels)[:, 0]
return _average_binary_score(partial(_binary_roc_auc_score,
max_fpr=max_fpr),
y_true, y_score, average,
sample_weight=sample_weight)
else: # multilabel-indicator
return _average_binary_score(partial(_binary_roc_auc_score,
max_fpr=max_fpr),
y_true, y_score, average,
sample_weight=sample_weight)
def _multiclass_roc_auc_score(y_true, y_score, labels,
multi_class, average, sample_weight):
"""Multiclass roc auc score
Parameters
----------
y_true : array-like of shape (n_samples,)
True multiclass labels.
y_score : array-like of shape (n_samples, n_classes)
Target scores corresponding to probability estimates of a sample
belonging to a particular class
labels : array, shape = [n_classes] or None, optional (default=None)
List of labels to index ``y_score`` used for multiclass. If ``None``,
the lexical order of ``y_true`` is used to index ``y_score``.
multi_class : string, 'ovr' or 'ovo'
Determines the type of multiclass configuration to use.
``'ovr'``:
Calculate metrics for the multiclass case using the one-vs-rest
approach.
``'ovo'``:
Calculate metrics for the multiclass case using the one-vs-one
approach.
average : 'macro' or 'weighted', optional (default='macro')
Determines the type of averaging performed on the pairwise binary
metric scores
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account. Classes
are assumed to be uniformly distributed.
``'weighted'``:
Calculate metrics for each label, taking into account the
prevalence of the classes.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
"""
# validation of the input y_score
if not np.allclose(1, y_score.sum(axis=1)):
raise ValueError(
"Target scores need to be probabilities for multiclass "
"roc_auc, i.e. they should sum up to 1.0 over classes")
# validation for multiclass parameter specifications
average_options = ("macro", "weighted")
if average not in average_options:
raise ValueError("average must be one of {0} for "
"multiclass problems".format(average_options))
multiclass_options = ("ovo", "ovr")
if multi_class not in multiclass_options:
raise ValueError("multi_class='{0}' is not supported "
"for multiclass ROC AUC, multi_class must be "
"in {1}".format(
multi_class, multiclass_options))
if labels is not None:
labels = column_or_1d(labels)
classes = _encode(labels)
if len(classes) != len(labels):
raise ValueError("Parameter 'labels' must be unique")
if not np.array_equal(classes, labels):
raise ValueError("Parameter 'labels' must be ordered")
if len(classes) != y_score.shape[1]:
raise ValueError(
"Number of given labels, {0}, not equal to the number "
"of columns in 'y_score', {1}".format(
len(classes), y_score.shape[1]))
if len(np.setdiff1d(y_true, classes)):
raise ValueError(
"'y_true' contains labels not in parameter 'labels'")
else:
classes = _encode(y_true)
if len(classes) != y_score.shape[1]:
raise ValueError(
"Number of classes in y_true not equal to the number of "
"columns in 'y_score'")
if multi_class == "ovo":
if sample_weight is not None:
raise ValueError("sample_weight is not supported "
"for multiclass one-vs-one ROC AUC, "
"'sample_weight' must be None in this case.")
_, y_true_encoded = _encode(y_true, uniques=classes, encode=True)
# Hand & Till (2001) implementation (ovo)
return _average_multiclass_ovo_score(_binary_roc_auc_score,
y_true_encoded,
y_score, average=average)
else:
# ovr is same as multi-label
y_true_multilabel = label_binarize(y_true, classes)
return _average_binary_score(_binary_roc_auc_score, y_true_multilabel,
y_score, average,
sample_weight=sample_weight)
def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None):
"""Calculate true and false positives per binary classification threshold.
Parameters
----------
y_true : array, shape = [n_samples]
True targets of binary classification
y_score : array, shape = [n_samples]
Estimated probabilities or decision function
pos_label : int or str, default=None
The label of the positive class
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
fps : array, shape = [n_thresholds]
A count of false positives, at index i being the number of negative
samples assigned a score >= thresholds[i]. The total number of
negative samples is equal to fps[-1] (thus true negatives are given by
fps[-1] - fps).
tps : array, shape = [n_thresholds <= len(np.unique(y_score))]
An increasing count of true positives, at index i being the number
of positive samples assigned a score >= thresholds[i]. The total
number of positive samples is equal to tps[-1] (thus false negatives
are given by tps[-1] - tps).
thresholds : array, shape = [n_thresholds]
Decreasing score values.
"""
# Check to make sure y_true is valid
y_type = type_of_target(y_true)
if not (y_type == "binary" or
(y_type == "multiclass" and pos_label is not None)):
raise ValueError("{0} format is not supported".format(y_type))
check_consistent_length(y_true, y_score, sample_weight)
y_true = column_or_1d(y_true)
y_score = column_or_1d(y_score)
assert_all_finite(y_true)
assert_all_finite(y_score)
if sample_weight is not None:
sample_weight = column_or_1d(sample_weight)
# ensure binary classification if pos_label is not specified
# classes.dtype.kind in ('O', 'U', 'S') is required to avoid
# triggering a FutureWarning by calling np.array_equal(a, b)
# when elements in the two arrays are not comparable.
classes = np.unique(y_true)
if (pos_label is None and (
classes.dtype.kind in ('O', 'U', 'S') or
not (np.array_equal(classes, [0, 1]) or
np.array_equal(classes, [-1, 1]) or
np.array_equal(classes, [0]) or
np.array_equal(classes, [-1]) or
np.array_equal(classes, [1])))):
classes_repr = ", ".join(repr(c) for c in classes)
raise ValueError("y_true takes value in {{{classes_repr}}} and "
"pos_label is not specified: either make y_true "
"take value in {{0, 1}} or {{-1, 1}} or "
"pass pos_label explicitly.".format(
classes_repr=classes_repr))
elif pos_label is None:
pos_label = 1.
# make y_true a boolean vector
y_true = (y_true == pos_label)
# sort scores and corresponding truth values
desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]
y_score = y_score[desc_score_indices]
y_true = y_true[desc_score_indices]
if sample_weight is not None:
weight = sample_weight[desc_score_indices]
else:
weight = 1.
# y_score typically has many tied values. Here we extract
# the indices associated with the distinct values. We also
# concatenate a value for the end of the curve.
distinct_value_indices = np.where(np.diff(y_score))[0]
threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1]
# accumulate the true positives with decreasing threshold
tps = stable_cumsum(y_true * weight)[threshold_idxs]
if sample_weight is not None:
# express fps as a cumsum to ensure fps is increasing even in
# the presence of floating point errors
fps = stable_cumsum((1 - y_true) * weight)[threshold_idxs]
else:
fps = 1 + threshold_idxs - tps
return fps, tps, y_score[threshold_idxs]
def precision_recall_curve(y_true, probas_pred, pos_label=None,
sample_weight=None):
"""Compute precision-recall pairs for different probability thresholds
Note: this implementation is restricted to the binary classification task.
The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
true positives and ``fp`` the number of false positives. The precision is
intuitively the ability of the classifier not to label as positive a sample
that is negative.
The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
true positives and ``fn`` the number of false negatives. The recall is
intuitively the ability of the classifier to find all the positive samples.
The last precision and recall values are 1. and 0. respectively and do not
have a corresponding threshold. This ensures that the graph starts on the
y axis.
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.
Parameters
----------
y_true : array, shape = [n_samples]
True binary labels. If labels are not either {-1, 1} or {0, 1}, then
pos_label should be explicitly given.
probas_pred : array, shape = [n_samples]
Estimated probabilities or decision function.
pos_label : int or str, default=None
The label of the positive class.
When ``pos_label=None``, if y_true is in {-1, 1} or {0, 1},
``pos_label`` is set to 1, otherwise an error will be raised.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
precision : array, shape = [n_thresholds + 1]
Precision values such that element i is the precision of
predictions with score >= thresholds[i] and the last element is 1.
recall : array, shape = [n_thresholds + 1]
Decreasing recall values such that element i is the recall of
predictions with score >= thresholds[i] and the last element is 0.
thresholds : array, shape = [n_thresholds <= len(np.unique(probas_pred))]
Increasing thresholds on the decision function used to compute
precision and recall.
See also
--------
average_precision_score : Compute average precision from prediction scores
roc_curve : Compute Receiver operating characteristic (ROC) curve
Examples
--------
>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, thresholds = precision_recall_curve(
... y_true, y_scores)
>>> precision
array([0.66666667, 0.5 , 1. , 1. ])
>>> recall
array([1. , 0.5, 0.5, 0. ])
>>> thresholds
array([0.35, 0.4 , 0.8 ])
"""
fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred,
pos_label=pos_label,
sample_weight=sample_weight)
precision = tps / (tps + fps)
precision[np.isnan(precision)] = 0
recall = tps / tps[-1]
# stop when full recall attained
# and reverse the outputs so recall is decreasing
last_ind = tps.searchsorted(tps[-1])
sl = slice(last_ind, None, -1)
return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl]
def roc_curve(y_true, y_score, pos_label=None, sample_weight=None,
drop_intermediate=True):
"""Compute Receiver operating characteristic (ROC)
Note: this implementation is restricted to the binary classification task.
Read more in the :ref:`User Guide <roc_metrics>`.
Parameters
----------
y_true : array, shape = [n_samples]
True binary labels. If labels are not either {-1, 1} or {0, 1}, then
pos_label should be explicitly given.
y_score : array, shape = [n_samples]
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by "decision_function" on some classifiers).
pos_label : int or str, default=None
The label of the positive class.
When ``pos_label=None``, if y_true is in {-1, 1} or {0, 1},
``pos_label`` is set to 1, otherwise an error will be raised.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
drop_intermediate : boolean, optional (default=True)
Whether to drop some suboptimal thresholds which would not appear
on a plotted ROC curve. This is useful in order to create lighter
ROC curves.
.. versionadded:: 0.17
parameter *drop_intermediate*.
Returns
-------
fpr : array, shape = [>2]
Increasing false positive rates such that element i is the false
positive rate of predictions with score >= thresholds[i].
tpr : array, shape = [>2]
Increasing true positive rates such that element i is the true
positive rate of predictions with score >= thresholds[i].
thresholds : array, shape = [n_thresholds]
Decreasing thresholds on the decision function used to compute
fpr and tpr. `thresholds[0]` represents no instances being predicted
and is arbitrarily set to `max(y_score) + 1`.
See also
--------
roc_auc_score : Compute the area under the ROC curve
Notes
-----
Since the thresholds are sorted from low to high values, they
are reversed upon returning them to ensure they correspond to both ``fpr``
and ``tpr``, which are sorted in reversed order during their calculation.
References
----------
.. [1] `Wikipedia entry for the Receiver operating characteristic
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_
.. [2] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition
Letters, 2006, 27(8):861-874.
Examples
--------
>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
>>> fpr
array([0. , 0. , 0.5, 0.5, 1. ])
>>> tpr
array([0. , 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([1.8 , 0.8 , 0.4 , 0.35, 0.1 ])
"""
fps, tps, thresholds = _binary_clf_curve(
y_true, y_score, pos_label=pos_label, sample_weight=sample_weight)
# Attempt to drop thresholds corresponding to points in between and
# collinear with other points. These are always suboptimal and do not
# appear on a plotted ROC curve (and thus do not affect the AUC).
# Here np.diff(_, 2) is used as a "second derivative" to tell if there
# is a corner at the point. Both fps and tps must be tested to handle
# thresholds with multiple data points (which are combined in
# _binary_clf_curve). This keeps all cases where the point should be kept,
# but does not drop more complicated cases like fps = [1, 3, 7],
# tps = [1, 2, 4]; there is no harm in keeping too many thresholds.
if drop_intermediate and len(fps) > 2:
optimal_idxs = np.where(np.r_[True,
np.logical_or(np.diff(fps, 2),
np.diff(tps, 2)),
True])[0]
fps = fps[optimal_idxs]
tps = tps[optimal_idxs]
thresholds = thresholds[optimal_idxs]
# Add an extra threshold position
# to make sure that the curve starts at (0, 0)
tps = np.r_[0, tps]
fps = np.r_[0, fps]
thresholds = np.r_[thresholds[0] + 1, thresholds]
if fps[-1] <= 0:
warnings.warn("No negative samples in y_true, "
"false positive value should be meaningless",
UndefinedMetricWarning)
fpr = np.repeat(np.nan, fps.shape)
else:
fpr = fps / fps[-1]
if tps[-1] <= 0:
warnings.warn("No positive samples in y_true, "
"true positive value should be meaningless",
UndefinedMetricWarning)
tpr = np.repeat(np.nan, tps.shape)
else:
tpr = tps / tps[-1]
return fpr, tpr, thresholds
def label_ranking_average_precision_score(y_true, y_score, sample_weight=None):
"""Compute ranking-based average precision
Label ranking average precision (LRAP) is the average over each ground
truth label assigned to each sample, of the ratio of true vs. total
labels with lower score.
This metric is used in multilabel ranking problem, where the goal
is to give better rank to the labels associated to each sample.
The obtained score is always strictly greater than 0 and
the best value is 1.
Read more in the :ref:`User Guide <label_ranking_average_precision>`.
Parameters
----------
y_true : array or sparse matrix, shape = [n_samples, n_labels]
True binary labels in binary indicator format.
y_score : array, shape = [n_samples, n_labels]
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by "decision_function" on some classifiers).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
Examples
--------
>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...
"""
check_consistent_length(y_true, y_score, sample_weight)
y_true = check_array(y_true, ensure_2d=False)
y_score = check_array(y_score, ensure_2d=False)
if y_true.shape != y_score.shape:
raise ValueError("y_true and y_score have different shape")
# Handle badly formatted array and the degenerate case with one label
y_type = type_of_target(y_true)
if (y_type != "multilabel-indicator" and
not (y_type == "binary" and y_true.ndim == 2)):
raise ValueError("{0} format is not supported".format(y_type))
y_true = csr_matrix(y_true)
y_score = -y_score
n_samples, n_labels = y_true.shape
out = 0.
for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])):
relevant = y_true.indices[start:stop]
if (relevant.size == 0 or relevant.size == n_labels):
# If all labels are relevant or unrelevant, the score is also
# equal to 1. The label ranking has no meaning.
aux = 1.
else:
scores_i = y_score[i]
rank = rankdata(scores_i, 'max')[relevant]
L = rankdata(scores_i[relevant], 'max')
aux = (L / rank).mean()
if sample_weight is not None:
aux = aux * sample_weight[i]
out += aux
if sample_weight is None:
out /= n_samples
else:
out /= np.sum(sample_weight)
return out
def coverage_error(y_true, y_score, sample_weight=None):
"""Coverage error measure
Compute how far we need to go through the ranked scores to cover all
true labels. The best value is equal to the average number
of labels in ``y_true`` per sample.
Ties in ``y_scores`` are broken by giving maximal rank that would have
been assigned to all tied values.
Note: Our implementation's score is 1 greater than the one given in
Tsoumakas et al., 2010. This extends it to handle the degenerate case
in which an instance has 0 true labels.
Read more in the :ref:`User Guide <coverage_error>`.
Parameters
----------
y_true : array, shape = [n_samples, n_labels]
True binary labels in binary indicator format.
y_score : array, shape = [n_samples, n_labels]
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by "decision_function" on some classifiers).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
coverage_error : float
References
----------
.. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010).
Mining multi-label data. In Data mining and knowledge discovery
handbook (pp. 667-685). Springer US.
"""
y_true = check_array(y_true, ensure_2d=False)
y_score = check_array(y_score, ensure_2d=False)
check_consistent_length(y_true, y_score, sample_weight)
y_type = type_of_target(y_true)
if y_type != "multilabel-indicator":
raise ValueError("{0} format is not supported".format(y_type))
if y_true.shape != y_score.shape:
raise ValueError("y_true and y_score have different shape")
y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true))
y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1))
coverage = (y_score >= y_min_relevant).sum(axis=1)
coverage = coverage.filled(0)
return np.average(coverage, weights=sample_weight)
def label_ranking_loss(y_true, y_score, sample_weight=None):
"""Compute Ranking loss measure
Compute the average number of label pairs that are incorrectly ordered
given y_score weighted by the size of the label set and the number of
labels not in the label set.
This is similar to the error set size, but weighted by the number of
relevant and irrelevant labels. The best performance is achieved with
a ranking loss of zero.
Read more in the :ref:`User Guide <label_ranking_loss>`.
.. versionadded:: 0.17
A function *label_ranking_loss*
Parameters
----------
y_true : array or sparse matrix, shape = [n_samples, n_labels]
True binary labels in binary indicator format.
y_score : array, shape = [n_samples, n_labels]
Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by "decision_function" on some classifiers).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
loss : float
References
----------
.. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010).
Mining multi-label data. In Data mining and knowledge discovery
handbook (pp. 667-685). Springer US.
"""
y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr')
y_score = check_array(y_score, ensure_2d=False)
check_consistent_length(y_true, y_score, sample_weight)
y_type = type_of_target(y_true)
if y_type not in ("multilabel-indicator",):
raise ValueError("{0} format is not supported".format(y_type))
if y_true.shape != y_score.shape:
raise ValueError("y_true and y_score have different shape")
n_samples, n_labels = y_true.shape
y_true = csr_matrix(y_true)
loss = np.zeros(n_samples)
for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])):
# Sort and bin the label scores
unique_scores, unique_inverse = np.unique(y_score[i],
return_inverse=True)
true_at_reversed_rank = np.bincount(
unique_inverse[y_true.indices[start:stop]],
minlength=len(unique_scores))
all_at_reversed_rank = np.bincount(unique_inverse,
minlength=len(unique_scores))
false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank
# if the scores are ordered, it's possible to count the number of
# incorrectly ordered paires in linear time by cumulatively counting
# how many false labels of a given score have a score higher than the
# accumulated true labels with lower score.
loss[i] = np.dot(true_at_reversed_rank.cumsum(),
false_at_reversed_rank)
n_positives = count_nonzero(y_true, axis=1)
with np.errstate(divide="ignore", invalid="ignore"):
loss /= ((n_labels - n_positives) * n_positives)
# When there is no positive or no negative labels, those values should
# be consider as correct, i.e. the ranking doesn't matter.
loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0.
return np.average(loss, weights=sample_weight)
def _dcg_sample_scores(y_true, y_score, k=None,
log_base=2, ignore_ties=False):
"""Compute Discounted Cumulative Gain.
Sum the true scores ranked in the order induced by the predicted scores,
after applying a logarithmic discount.
This ranking metric yields a high value if true labels are ranked high by
``y_score``.
Parameters
----------
y_true : ndarray, shape (n_samples, n_labels)
True targets of multilabel classification, or true scores of entities
to be ranked.
y_score : ndarray, shape (n_samples, n_labels)
Target scores, can either be probability estimates, confidence values,
or non-thresholded measure of decisions (as returned by
"decision_function" on some classifiers).
k : int, optional (default=None)
Only consider the highest k scores in the ranking. If None, use all
outputs.
log_base : float, optional (default=2)
Base of the logarithm used for the discount. A low value means a
sharper discount (top results are more important).
ignore_ties : bool, optional (default=False)
Assume that there are no ties in y_score (which is likely to be the
case if y_score is continuous) for efficiency gains.
Returns
-------
discounted_cumulative_gain : ndarray, shape (n_samples,)
The DCG score for each sample.
See also
--------
ndcg_score :
The Discounted Cumulative Gain divided by the Ideal Discounted
Cumulative Gain (the DCG obtained for a perfect ranking), in order to
have a score between 0 and 1.
"""
discount = 1 / (np.log(np.arange(y_true.shape[1]) + 2) / np.log(log_base))
if k is not None:
discount[k:] = 0
if ignore_ties:
ranking = np.argsort(y_score)[:, ::-1]
ranked = y_true[np.arange(ranking.shape[0])[:, np.newaxis], ranking]
cumulative_gains = discount.dot(ranked.T)
else:
discount_cumsum = np.cumsum(discount)
cumulative_gains = [_tie_averaged_dcg(y_t, y_s, discount_cumsum)
for y_t, y_s in zip(y_true, y_score)]
cumulative_gains = np.asarray(cumulative_gains)
return cumulative_gains
def _tie_averaged_dcg(y_true, y_score, discount_cumsum):
"""
Compute DCG by averaging over possible permutations of ties.
The gain (`y_true`) of an index falling inside a tied group (in the order
induced by `y_score`) is replaced by the average gain within this group.
The discounted gain for a tied group is then the average `y_true` within
this group times the sum of discounts of the corresponding ranks.
This amounts to averaging scores for all possible orderings of the tied
groups.
(note in the case of dcg@k the discount is 0 after index k)
Parameters
----------
y_true : ndarray
The true relevance scores
y_score : ndarray
Predicted scores
discount_cumsum : ndarray
Precomputed cumulative sum of the discounts.
Returns
-------
The discounted cumulative gain.
References
----------
McSherry, F., & Najork, M. (2008, March). Computing information retrieval
performance measures efficiently in the presence of tied scores. In
European conference on information retrieval (pp. 414-421). Springer,
Berlin, Heidelberg.
"""
_, inv, counts = np.unique(
- y_score, return_inverse=True, return_counts=True)
ranked = np.zeros(len(counts))
np.add.at(ranked, inv, y_true)
ranked /= counts
groups = np.cumsum(counts) - 1
discount_sums = np.empty(len(counts))
discount_sums[0] = discount_cumsum[groups[0]]
discount_sums[1:] = np.diff(discount_cumsum[groups])
return (ranked * discount_sums).sum()
def _check_dcg_target_type(y_true):
y_type = type_of_target(y_true)
supported_fmt = ("multilabel-indicator", "continuous-multioutput",
"multiclass-multioutput")
if y_type not in supported_fmt:
raise ValueError(
"Only {} formats are supported. Got {} instead".format(
supported_fmt, y_type))
def dcg_score(y_true, y_score, k=None,
log_base=2, sample_weight=None, ignore_ties=False):
"""Compute Discounted Cumulative Gain.
Sum the true scores ranked in the order induced by the predicted scores,
after applying a logarithmic discount.
This ranking metric yields a high value if true labels are ranked high by
``y_score``.
Usually the Normalized Discounted Cumulative Gain (NDCG, computed by
ndcg_score) is preferred.
Parameters
----------
y_true : ndarray, shape (n_samples, n_labels)
True targets of multilabel classification, or true scores of entities
to be ranked.
y_score : ndarray, shape (n_samples, n_labels)
Target scores, can either be probability estimates, confidence values,
or non-thresholded measure of decisions (as returned by
"decision_function" on some classifiers).
k : int, optional (default=None)
Only consider the highest k scores in the ranking. If None, use all
outputs.
log_base : float, optional (default=2)
Base of the logarithm used for the discount. A low value means a
sharper discount (top results are more important).
sample_weight : ndarray, shape (n_samples,), optional (default=None)
Sample weights. If None, all samples are given the same weight.
ignore_ties : bool, optional (default=False)
Assume that there are no ties in y_score (which is likely to be the
case if y_score is continuous) for efficiency gains.
Returns
-------
discounted_cumulative_gain : float
The averaged sample DCG scores.
See also
--------
ndcg_score :
The Discounted Cumulative Gain divided by the Ideal Discounted
Cumulative Gain (the DCG obtained for a perfect ranking), in order to
have a score between 0 and 1.
References
----------
`Wikipedia entry for Discounted Cumulative Gain
<https://en.wikipedia.org/wiki/Discounted_cumulative_gain>`_
Jarvelin, K., & Kekalainen, J. (2002).
Cumulated gain-based evaluation of IR techniques. ACM Transactions on
Information Systems (TOIS), 20(4), 422-446.
Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May).
A theoretical analysis of NDCG ranking measures. In Proceedings of the 26th
Annual Conference on Learning Theory (COLT 2013)
McSherry, F., & Najork, M. (2008, March). Computing information retrieval
performance measures efficiently in the presence of tied scores. In
European conference on information retrieval (pp. 414-421). Springer,
Berlin, Heidelberg.
Examples
--------
>>> from sklearn.metrics import dcg_score
>>> # we have groud-truth relevance of some answers to a query:
>>> true_relevance = np.asarray([[10, 0, 0, 1, 5]])
>>> # we predict scores for the answers
>>> scores = np.asarray([[.1, .2, .3, 4, 70]])
>>> dcg_score(true_relevance, scores) # doctest: +ELLIPSIS
9.49...
>>> # we can set k to truncate the sum; only top k answers contribute
>>> dcg_score(true_relevance, scores, k=2) # doctest: +ELLIPSIS
5.63...
>>> # now we have some ties in our prediction
>>> scores = np.asarray([[1, 0, 0, 0, 1]])
>>> # by default ties are averaged, so here we get the average true
>>> # relevance of our top predictions: (10 + 5) / 2 = 7.5
>>> dcg_score(true_relevance, scores, k=1) # doctest: +ELLIPSIS
7.5
>>> # we can choose to ignore ties for faster results, but only
>>> # if we know there aren't ties in our scores, otherwise we get
>>> # wrong results:
>>> dcg_score(true_relevance,
... scores, k=1, ignore_ties=True) # doctest: +ELLIPSIS
5.0
"""
y_true = check_array(y_true, ensure_2d=False)
y_score = check_array(y_score, ensure_2d=False)
check_consistent_length(y_true, y_score, sample_weight)
_check_dcg_target_type(y_true)
return np.average(
_dcg_sample_scores(
y_true, y_score, k=k, log_base=log_base,
ignore_ties=ignore_ties),
weights=sample_weight)
def _ndcg_sample_scores(y_true, y_score, k=None, ignore_ties=False):
"""Compute Normalized Discounted Cumulative Gain.
Sum the true scores ranked in the order induced by the predicted scores,
after applying a logarithmic discount. Then divide by the best possible
score (Ideal DCG, obtained for a perfect ranking) to obtain a score between
0 and 1.
This ranking metric yields a high value if true labels are ranked high by
``y_score``.
Parameters
----------
y_true : ndarray, shape (n_samples, n_labels)
True targets of multilabel classification, or true scores of entities
to be ranked.
y_score : ndarray, shape (n_samples, n_labels)
Target scores, can either be probability estimates, confidence values,
or non-thresholded measure of decisions (as returned by
"decision_function" on some classifiers).
k : int, optional (default=None)
Only consider the highest k scores in the ranking. If None, use all
outputs.
ignore_ties : bool, optional (default=False)
Assume that there are no ties in y_score (which is likely to be the
case if y_score is continuous) for efficiency gains.
Returns
-------
normalized_discounted_cumulative_gain : ndarray, shape (n_samples,)
The NDCG score for each sample (float in [0., 1.]).
See also
--------
dcg_score : Discounted Cumulative Gain (not normalized).
"""
gain = _dcg_sample_scores(y_true, y_score, k, ignore_ties=ignore_ties)
# Here we use the order induced by y_true so we can ignore ties since
# the gain associated to tied indices is the same (permuting ties doesn't
# change the value of the re-ordered y_true)
normalizing_gain = _dcg_sample_scores(y_true, y_true, k, ignore_ties=True)
all_irrelevant = normalizing_gain == 0
gain[all_irrelevant] = 0
gain[~all_irrelevant] /= normalizing_gain[~all_irrelevant]
return gain
def ndcg_score(y_true, y_score, k=None, sample_weight=None, ignore_ties=False):
"""Compute Normalized Discounted Cumulative Gain.
Sum the true scores ranked in the order induced by the predicted scores,
after applying a logarithmic discount. Then divide by the best possible
score (Ideal DCG, obtained for a perfect ranking) to obtain a score between
0 and 1.
This ranking metric yields a high value if true labels are ranked high by
``y_score``.
Parameters
----------
y_true : ndarray, shape (n_samples, n_labels)
True targets of multilabel classification, or true scores of entities
to be ranked.
y_score : ndarray, shape (n_samples, n_labels)
Target scores, can either be probability estimates, confidence values,
or non-thresholded measure of decisions (as returned by
"decision_function" on some classifiers).
k : int, optional (default=None)
Only consider the highest k scores in the ranking. If None, use all
outputs.
sample_weight : ndarray, shape (n_samples,), optional (default=None)
Sample weights. If None, all samples are given the same weight.
ignore_ties : bool, optional (default=False)
Assume that there are no ties in y_score (which is likely to be the
case if y_score is continuous) for efficiency gains.
Returns
-------
normalized_discounted_cumulative_gain : float in [0., 1.]
The averaged NDCG scores for all samples.
See also
--------
dcg_score : Discounted Cumulative Gain (not normalized).
References
----------
`Wikipedia entry for Discounted Cumulative Gain
<https://en.wikipedia.org/wiki/Discounted_cumulative_gain>`_
Jarvelin, K., & Kekalainen, J. (2002).
Cumulated gain-based evaluation of IR techniques. ACM Transactions on
Information Systems (TOIS), 20(4), 422-446.
Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May).
A theoretical analysis of NDCG ranking measures. In Proceedings of the 26th
Annual Conference on Learning Theory (COLT 2013)
McSherry, F., & Najork, M. (2008, March). Computing information retrieval
performance measures efficiently in the presence of tied scores. In
European conference on information retrieval (pp. 414-421). Springer,
Berlin, Heidelberg.
Examples
--------
>>> from sklearn.metrics import ndcg_score
>>> # we have groud-truth relevance of some answers to a query:
>>> true_relevance = np.asarray([[10, 0, 0, 1, 5]])
>>> # we predict some scores (relevance) for the answers
>>> scores = np.asarray([[.1, .2, .3, 4, 70]])
>>> ndcg_score(true_relevance, scores) # doctest: +ELLIPSIS
0.69...
>>> scores = np.asarray([[.05, 1.1, 1., .5, .0]])
>>> ndcg_score(true_relevance, scores) # doctest: +ELLIPSIS
0.49...
>>> # we can set k to truncate the sum; only top k answers contribute.
>>> ndcg_score(true_relevance, scores, k=4) # doctest: +ELLIPSIS
0.35...
>>> # the normalization takes k into account so a perfect answer
>>> # would still get 1.0
>>> ndcg_score(true_relevance, true_relevance, k=4) # doctest: +ELLIPSIS
1.0
>>> # now we have some ties in our prediction
>>> scores = np.asarray([[1, 0, 0, 0, 1]])
>>> # by default ties are averaged, so here we get the average (normalized)
>>> # true relevance of our top predictions: (10 / 10 + 5 / 10) / 2 = .75
>>> ndcg_score(true_relevance, scores, k=1) # doctest: +ELLIPSIS
0.75
>>> # we can choose to ignore ties for faster results, but only
>>> # if we know there aren't ties in our scores, otherwise we get
>>> # wrong results:
>>> ndcg_score(true_relevance,
... scores, k=1, ignore_ties=True) # doctest: +ELLIPSIS
0.5
"""
y_true = check_array(y_true, ensure_2d=False)
y_score = check_array(y_score, ensure_2d=False)
check_consistent_length(y_true, y_score, sample_weight)
_check_dcg_target_type(y_true)
gain = _ndcg_sample_scores(y_true, y_score, k=k, ignore_ties=ignore_ties)
return np.average(gain, weights=sample_weight)