Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scikit-learn   python

Repository URL to install this package:

Version: 0.22 

/ metrics / tests / test_common.py


from functools import partial
from itertools import product
from itertools import chain
from itertools import permutations

import numpy as np
import scipy.sparse as sp

import pytest

from sklearn.datasets import make_multilabel_classification
from sklearn.preprocessing import LabelBinarizer
from sklearn.utils.multiclass import type_of_target
from sklearn.utils.validation import _num_samples
from sklearn.utils.validation import check_random_state
from sklearn.utils import shuffle

from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_less
from sklearn.utils._testing import ignore_warnings

from sklearn.metrics import accuracy_score
from sklearn.metrics import average_precision_score
from sklearn.metrics import balanced_accuracy_score
from sklearn.metrics import brier_score_loss
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import coverage_error
from sklearn.metrics import explained_variance_score
from sklearn.metrics import f1_score
from sklearn.metrics import fbeta_score
from sklearn.metrics import hamming_loss
from sklearn.metrics import hinge_loss
from sklearn.metrics import jaccard_score
from sklearn.metrics import label_ranking_average_precision_score
from sklearn.metrics import label_ranking_loss
from sklearn.metrics import log_loss
from sklearn.metrics import max_error
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_tweedie_deviance
from sklearn.metrics import mean_poisson_deviance
from sklearn.metrics import mean_gamma_deviance
from sklearn.metrics import median_absolute_error
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import precision_score
from sklearn.metrics import r2_score
from sklearn.metrics import recall_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.metrics import zero_one_loss
from sklearn.metrics import ndcg_score
from sklearn.metrics import dcg_score

from sklearn.metrics._base import _average_binary_score


# Note toward developers about metric testing
# -------------------------------------------
# It is often possible to write one general test for several metrics:
#
#   - invariance properties, e.g. invariance to sample order
#   - common behavior for an argument, e.g. the "normalize" with value True
#     will return the mean of the metrics and with value False will return
#     the sum of the metrics.
#
# In order to improve the overall metric testing, it is a good idea to write
# first a specific test for the given metric and then add a general test for
# all metrics that have the same behavior.
#
# Two types of datastructures are used in order to implement this system:
# dictionaries of metrics and lists of metrics wit common properties.
#
# Dictionaries of metrics
# ------------------------
# The goal of having those dictionaries is to have an easy way to call a
# particular metric and associate a name to each function:
#
#   - REGRESSION_METRICS: all regression metrics.
#   - CLASSIFICATION_METRICS: all classification metrics
#     which compare a ground truth and the estimated targets as returned by a
#     classifier.
#   - THRESHOLDED_METRICS: all classification metrics which
#     compare a ground truth and a score, e.g. estimated probabilities or
#     decision function (format might vary)
#
# Those dictionaries will be used to test systematically some invariance
# properties, e.g. invariance toward several input layout.
#

REGRESSION_METRICS = {
    "max_error": max_error,
    "mean_absolute_error": mean_absolute_error,
    "mean_squared_error": mean_squared_error,
    "median_absolute_error": median_absolute_error,
    "explained_variance_score": explained_variance_score,
    "r2_score": partial(r2_score, multioutput='variance_weighted'),
    "mean_normal_deviance": partial(mean_tweedie_deviance, power=0),
    "mean_poisson_deviance": mean_poisson_deviance,
    "mean_gamma_deviance": mean_gamma_deviance,
    "mean_compound_poisson_deviance":
    partial(mean_tweedie_deviance, power=1.4),
}

CLASSIFICATION_METRICS = {
    "accuracy_score": accuracy_score,
    "balanced_accuracy_score": balanced_accuracy_score,
    "adjusted_balanced_accuracy_score": partial(balanced_accuracy_score,
                                                adjusted=True),
    "unnormalized_accuracy_score": partial(accuracy_score, normalize=False),

    # `confusion_matrix` returns absolute values and hence behaves unnormalized
    # . Naming it with an unnormalized_ prefix is necessary for this module to
    # skip sample_weight scaling checks which will fail for unnormalized
    # metrics.
    "unnormalized_confusion_matrix": confusion_matrix,
    "normalized_confusion_matrix": lambda *args, **kwargs: (
        confusion_matrix(*args, **kwargs).astype('float') / confusion_matrix(
            *args, **kwargs).sum(axis=1)[:, np.newaxis]
    ),

    "unnormalized_multilabel_confusion_matrix": multilabel_confusion_matrix,
    "unnormalized_multilabel_confusion_matrix_sample":
        partial(multilabel_confusion_matrix, samplewise=True),
    "hamming_loss": hamming_loss,

    "zero_one_loss": zero_one_loss,
    "unnormalized_zero_one_loss": partial(zero_one_loss, normalize=False),

    # These are needed to test averaging
    "jaccard_score": jaccard_score,
    "precision_score": precision_score,
    "recall_score": recall_score,
    "f1_score": f1_score,
    "f2_score": partial(fbeta_score, beta=2),
    "f0.5_score": partial(fbeta_score, beta=0.5),
    "matthews_corrcoef_score": matthews_corrcoef,

    "weighted_f0.5_score": partial(fbeta_score, average="weighted", beta=0.5),
    "weighted_f1_score": partial(f1_score, average="weighted"),
    "weighted_f2_score": partial(fbeta_score, average="weighted", beta=2),
    "weighted_precision_score": partial(precision_score, average="weighted"),
    "weighted_recall_score": partial(recall_score, average="weighted"),
    "weighted_jaccard_score": partial(jaccard_score, average="weighted"),

    "micro_f0.5_score": partial(fbeta_score, average="micro", beta=0.5),
    "micro_f1_score": partial(f1_score, average="micro"),
    "micro_f2_score": partial(fbeta_score, average="micro", beta=2),
    "micro_precision_score": partial(precision_score, average="micro"),
    "micro_recall_score": partial(recall_score, average="micro"),
    "micro_jaccard_score": partial(jaccard_score, average="micro"),

    "macro_f0.5_score": partial(fbeta_score, average="macro", beta=0.5),
    "macro_f1_score": partial(f1_score, average="macro"),
    "macro_f2_score": partial(fbeta_score, average="macro", beta=2),
    "macro_precision_score": partial(precision_score, average="macro"),
    "macro_recall_score": partial(recall_score, average="macro"),
    "macro_jaccard_score": partial(jaccard_score, average="macro"),

    "samples_f0.5_score": partial(fbeta_score, average="samples", beta=0.5),
    "samples_f1_score": partial(f1_score, average="samples"),
    "samples_f2_score": partial(fbeta_score, average="samples", beta=2),
    "samples_precision_score": partial(precision_score, average="samples"),
    "samples_recall_score": partial(recall_score, average="samples"),
    "samples_jaccard_score": partial(jaccard_score, average="samples"),

    "cohen_kappa_score": cohen_kappa_score,
}


def precision_recall_curve_padded_thresholds(*args, **kwargs):
    """
    The dimensions of precision-recall pairs and the threshold array as
    returned by the precision_recall_curve do not match. See
    func:`sklearn.metrics.precision_recall_curve`

    This prevents implicit conversion of return value triple to an higher
    dimensional np.array of dtype('float64') (it will be of dtype('object)
    instead). This again is needed for assert_array_equal to work correctly.

    As a workaround we pad the threshold array with NaN values to match
    the dimension of precision and recall arrays respectively.
    """
    precision, recall, thresholds = precision_recall_curve(*args, **kwargs)

    pad_threshholds = len(precision) - len(thresholds)

    return np.array([
        precision,
        recall,
        np.pad(thresholds,
               pad_width=(0, pad_threshholds),
               mode='constant',
               constant_values=[np.nan])
    ])


CURVE_METRICS = {
    "roc_curve": roc_curve,
    "precision_recall_curve": precision_recall_curve_padded_thresholds,
}

THRESHOLDED_METRICS = {
    "coverage_error": coverage_error,
    "label_ranking_loss": label_ranking_loss,
    "log_loss": log_loss,
    "unnormalized_log_loss": partial(log_loss, normalize=False),

    "hinge_loss": hinge_loss,

    "brier_score_loss": brier_score_loss,

    "roc_auc_score": roc_auc_score,  # default: average="macro"
    "weighted_roc_auc": partial(roc_auc_score, average="weighted"),
    "samples_roc_auc": partial(roc_auc_score, average="samples"),
    "micro_roc_auc": partial(roc_auc_score, average="micro"),
    "ovr_roc_auc": partial(roc_auc_score, average="macro", multi_class='ovr'),
    "weighted_ovr_roc_auc": partial(roc_auc_score, average="weighted",
                                    multi_class='ovr'),
    "ovo_roc_auc": partial(roc_auc_score, average="macro", multi_class='ovo'),
    "weighted_ovo_roc_auc": partial(roc_auc_score, average="weighted",
                                    multi_class='ovo'),
    "partial_roc_auc": partial(roc_auc_score, max_fpr=0.5),

    "average_precision_score":
    average_precision_score,  # default: average="macro"
    "weighted_average_precision_score":
    partial(average_precision_score, average="weighted"),
    "samples_average_precision_score":
    partial(average_precision_score, average="samples"),
    "micro_average_precision_score":
    partial(average_precision_score, average="micro"),
    "label_ranking_average_precision_score":
    label_ranking_average_precision_score,
    "ndcg_score": ndcg_score,
    "dcg_score": dcg_score
}

ALL_METRICS = dict()
ALL_METRICS.update(THRESHOLDED_METRICS)
ALL_METRICS.update(CLASSIFICATION_METRICS)
ALL_METRICS.update(REGRESSION_METRICS)
ALL_METRICS.update(CURVE_METRICS)

# Lists of metrics with common properties
# ---------------------------------------
# Lists of metrics with common properties are used to test systematically some
# functionalities and invariance, e.g. SYMMETRIC_METRICS lists all metrics that
# are symmetric with respect to their input argument y_true and y_pred.
#
# When you add a new metric or functionality, check if a general test
# is already written.

# Those metrics don't support binary inputs
METRIC_UNDEFINED_BINARY = {
    "samples_f0.5_score",
    "samples_f1_score",
    "samples_f2_score",
    "samples_precision_score",
    "samples_recall_score",
    "samples_jaccard_score",
    "coverage_error",
    "unnormalized_multilabel_confusion_matrix_sample",
    "label_ranking_loss",
    "label_ranking_average_precision_score",
    "dcg_score",
    "ndcg_score"
}

# Those metrics don't support multiclass inputs
METRIC_UNDEFINED_MULTICLASS = {
    "brier_score_loss",

    "micro_roc_auc",
    "samples_roc_auc",
    "partial_roc_auc",
    "roc_auc_score",
    "weighted_roc_auc",

    "average_precision_score",
    "weighted_average_precision_score",
    "micro_average_precision_score",
    "samples_average_precision_score",

    "jaccard_score",

    # with default average='binary', multiclass is prohibited
    "precision_score",
    "recall_score",
    "f1_score",
    "f2_score",
    "f0.5_score",

    # curves
    "roc_curve",
    "precision_recall_curve",
}

# Metric undefined with "binary" or "multiclass" input
METRIC_UNDEFINED_BINARY_MULTICLASS = METRIC_UNDEFINED_BINARY.union(
    METRIC_UNDEFINED_MULTICLASS)

# Metrics with an "average" argument
METRICS_WITH_AVERAGING = {
    "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score",
    "jaccard_score"
}

# Threshold-based metrics with an "average" argument
THRESHOLDED_METRICS_WITH_AVERAGING = {
    "roc_auc_score", "average_precision_score", "partial_roc_auc",
}

# Metrics with a "pos_label" argument
METRICS_WITH_POS_LABEL = {
    "roc_curve",
    "precision_recall_curve",

    "brier_score_loss",

    "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score",
    "jaccard_score",

    "average_precision_score",
    "weighted_average_precision_score",
    "micro_average_precision_score",
    "samples_average_precision_score",

    # pos_label support deprecated; to be removed in 0.18:
    "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score",
    "weighted_precision_score", "weighted_recall_score",

    "micro_f0.5_score", "micro_f1_score", "micro_f2_score",
    "micro_precision_score", "micro_recall_score",

    "macro_f0.5_score", "macro_f1_score", "macro_f2_score",
    "macro_precision_score", "macro_recall_score",
}

# Metrics with a "labels" argument
# TODO: Handle multi_class metrics that has a labels argument as well as a
# decision function argument. e.g hinge_loss
METRICS_WITH_LABELS = {
    "unnormalized_confusion_matrix",
    "normalized_confusion_matrix",
    "roc_curve",
    "precision_recall_curve",

    "hamming_loss",

    "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score",
    "jaccard_score",

    "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score",
    "weighted_precision_score", "weighted_recall_score",
    "weighted_jaccard_score",

    "micro_f0.5_score", "micro_f1_score", "micro_f2_score",
    "micro_precision_score", "micro_recall_score",
    "micro_jaccard_score",

    "macro_f0.5_score", "macro_f1_score", "macro_f2_score",
    "macro_precision_score", "macro_recall_score",
    "macro_jaccard_score",

    "unnormalized_multilabel_confusion_matrix",
    "unnormalized_multilabel_confusion_matrix_sample",

    "cohen_kappa_score",
}

# Metrics with a "normalize" option
METRICS_WITH_NORMALIZE_OPTION = {
    "accuracy_score",
    "zero_one_loss",
}

# Threshold-based metrics with "multilabel-indicator" format support
THRESHOLDED_MULTILABEL_METRICS = {
    "log_loss",
    "unnormalized_log_loss",

    "roc_auc_score", "weighted_roc_auc", "samples_roc_auc",
    "micro_roc_auc", "partial_roc_auc",

    "average_precision_score", "weighted_average_precision_score",
    "samples_average_precision_score", "micro_average_precision_score",

    "coverage_error", "label_ranking_loss",

    "ndcg_score",
    "dcg_score",

    "label_ranking_average_precision_score",
}

# Classification metrics with  "multilabel-indicator" format
MULTILABELS_METRICS = {
    "accuracy_score", "unnormalized_accuracy_score",
    "hamming_loss",
    "zero_one_loss", "unnormalized_zero_one_loss",

    "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score",
    "weighted_precision_score", "weighted_recall_score",
    "weighted_jaccard_score",

    "macro_f0.5_score", "macro_f1_score", "macro_f2_score",
    "macro_precision_score", "macro_recall_score",
    "macro_jaccard_score",

    "micro_f0.5_score", "micro_f1_score", "micro_f2_score",
    "micro_precision_score", "micro_recall_score",
    "micro_jaccard_score",

    "unnormalized_multilabel_confusion_matrix",

    "samples_f0.5_score", "samples_f1_score", "samples_f2_score",
    "samples_precision_score", "samples_recall_score",
    "samples_jaccard_score",
}

# Regression metrics with "multioutput-continuous" format support
MULTIOUTPUT_METRICS = {
    "mean_absolute_error", "median_absolute_error", "mean_squared_error",
    "r2_score", "explained_variance_score"
}

# Symmetric with respect to their input arguments y_true and y_pred
# metric(y_true, y_pred) == metric(y_pred, y_true).
SYMMETRIC_METRICS = {
    "accuracy_score", "unnormalized_accuracy_score",
    "hamming_loss",
    "zero_one_loss", "unnormalized_zero_one_loss",

    "micro_jaccard_score", "macro_jaccard_score",
    "jaccard_score",
    "samples_jaccard_score",

    "f1_score", "micro_f1_score", "macro_f1_score",
    "weighted_recall_score",
    # P = R = F = accuracy in multiclass case
    "micro_f0.5_score", "micro_f1_score", "micro_f2_score",
    "micro_precision_score", "micro_recall_score",

    "matthews_corrcoef_score", "mean_absolute_error", "mean_squared_error",
    "median_absolute_error", "max_error",

    "cohen_kappa_score", "mean_normal_deviance"
}

# Asymmetric with respect to their input arguments y_true and y_pred
# metric(y_true, y_pred) != metric(y_pred, y_true).
NOT_SYMMETRIC_METRICS = {
    "balanced_accuracy_score",
    "adjusted_balanced_accuracy_score",
    "explained_variance_score",
    "r2_score",
    "unnormalized_confusion_matrix",
    "normalized_confusion_matrix",
    "roc_curve",
    "precision_recall_curve",

    "precision_score", "recall_score", "f2_score", "f0.5_score",

    "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score",
    "weighted_precision_score", "weighted_jaccard_score",
    "unnormalized_multilabel_confusion_matrix",

    "macro_f0.5_score", "macro_f2_score", "macro_precision_score",
    "macro_recall_score", "log_loss", "hinge_loss",
    "mean_gamma_deviance", "mean_poisson_deviance",
    "mean_compound_poisson_deviance"
}


# No Sample weight support
METRICS_WITHOUT_SAMPLE_WEIGHT = {
    "median_absolute_error",
    "max_error",
    "ovo_roc_auc",
    "weighted_ovo_roc_auc"
}

METRICS_REQUIRE_POSITIVE_Y = {
    "mean_poisson_deviance",
    "mean_gamma_deviance",
    "mean_compound_poisson_deviance",
}


def _require_positive_targets(y1, y2):
    """Make targets strictly positive"""
    offset = abs(min(y1.min(), y2.min())) + 1
    y1 += offset
    y2 += offset
    return y1, y2


def test_symmetry_consistency():

    # We shouldn't forget any metrics
    assert (SYMMETRIC_METRICS.union(
        NOT_SYMMETRIC_METRICS, set(THRESHOLDED_METRICS),
        METRIC_UNDEFINED_BINARY_MULTICLASS) ==
        set(ALL_METRICS))

    assert (
        SYMMETRIC_METRICS.intersection(NOT_SYMMETRIC_METRICS) ==
        set())


@pytest.mark.parametrize("name", sorted(SYMMETRIC_METRICS))
def test_symmetric_metric(name):
    # Test the symmetry of score and loss functions
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(20, ))
    y_pred = random_state.randint(0, 2, size=(20, ))

    if name in METRICS_REQUIRE_POSITIVE_Y:
        y_true, y_pred = _require_positive_targets(y_true, y_pred)

    y_true_bin = random_state.randint(0, 2, size=(20, 25))
    y_pred_bin = random_state.randint(0, 2, size=(20, 25))

    metric = ALL_METRICS[name]
    if name in METRIC_UNDEFINED_BINARY:
        if name in MULTILABELS_METRICS:
            assert_allclose(metric(y_true_bin, y_pred_bin),
                            metric(y_pred_bin, y_true_bin),
                            err_msg="%s is not symmetric" % name)
        else:
            assert False, "This case is currently unhandled"
    else:
        assert_allclose(metric(y_true, y_pred),
                        metric(y_pred, y_true),
                        err_msg="%s is not symmetric" % name)


@pytest.mark.parametrize("name", sorted(NOT_SYMMETRIC_METRICS))
def test_not_symmetric_metric(name):
    # Test the symmetry of score and loss functions
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(20, ))
    y_pred = random_state.randint(0, 2, size=(20, ))

    if name in METRICS_REQUIRE_POSITIVE_Y:
        y_true, y_pred = _require_positive_targets(y_true, y_pred)

    metric = ALL_METRICS[name]

    # use context manager to supply custom error message
    with pytest.raises(AssertionError):
        assert_array_equal(metric(y_true, y_pred), metric(y_pred, y_true))
        raise ValueError("%s seems to be symmetric" % name)


@pytest.mark.parametrize(
        'name',
        sorted(set(ALL_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_sample_order_invariance(name):
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(20, ))
    y_pred = random_state.randint(0, 2, size=(20, ))
    if name in METRICS_REQUIRE_POSITIVE_Y:
        y_true, y_pred = _require_positive_targets(y_true, y_pred)

    y_true_shuffle, y_pred_shuffle = shuffle(y_true, y_pred, random_state=0)

    with ignore_warnings():
        metric = ALL_METRICS[name]
        assert_allclose(metric(y_true, y_pred),
                        metric(y_true_shuffle, y_pred_shuffle),
                        err_msg="%s is not sample order invariant" % name)


@ignore_warnings
def test_sample_order_invariance_multilabel_and_multioutput():
    random_state = check_random_state(0)

    # Generate some data
    y_true = random_state.randint(0, 2, size=(20, 25))
    y_pred = random_state.randint(0, 2, size=(20, 25))
    y_score = random_state.normal(size=y_true.shape)

    y_true_shuffle, y_pred_shuffle, y_score_shuffle = shuffle(y_true,
                                                              y_pred,
                                                              y_score,
                                                              random_state=0)

    for name in MULTILABELS_METRICS:
        metric = ALL_METRICS[name]
        assert_allclose(metric(y_true, y_pred),
                        metric(y_true_shuffle, y_pred_shuffle),
                        err_msg="%s is not sample order invariant" % name)

    for name in THRESHOLDED_MULTILABEL_METRICS:
        metric = ALL_METRICS[name]
        assert_allclose(metric(y_true, y_score),
                        metric(y_true_shuffle, y_score_shuffle),
                        err_msg="%s is not sample order invariant" % name)

    for name in MULTIOUTPUT_METRICS:
        metric = ALL_METRICS[name]
        assert_allclose(metric(y_true, y_score),
                        metric(y_true_shuffle, y_score_shuffle),
                        err_msg="%s is not sample order invariant" % name)
        assert_allclose(metric(y_true, y_pred),
                        metric(y_true_shuffle, y_pred_shuffle),
                        err_msg="%s is not sample order invariant" % name)


@pytest.mark.parametrize(
        'name',
        sorted(set(ALL_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_format_invariance_with_1d_vectors(name):
    random_state = check_random_state(0)
    y1 = random_state.randint(0, 2, size=(20, ))
    y2 = random_state.randint(0, 2, size=(20, ))

    if name in METRICS_REQUIRE_POSITIVE_Y:
        y1, y2 = _require_positive_targets(y1, y2)

    y1_list = list(y1)
    y2_list = list(y2)

    y1_1d, y2_1d = np.array(y1), np.array(y2)
    assert_array_equal(y1_1d.ndim, 1)
    assert_array_equal(y2_1d.ndim, 1)
    y1_column = np.reshape(y1_1d, (-1, 1))
    y2_column = np.reshape(y2_1d, (-1, 1))
    y1_row = np.reshape(y1_1d, (1, -1))
    y2_row = np.reshape(y2_1d, (1, -1))

    with ignore_warnings():
        metric = ALL_METRICS[name]

        measure = metric(y1, y2)

        assert_allclose(metric(y1_list, y2_list), measure,
                        err_msg="%s is not representation invariant with list"
                                "" % name)

        assert_allclose(metric(y1_1d, y2_1d), measure,
                        err_msg="%s is not representation invariant with "
                                "np-array-1d" % name)

        assert_allclose(metric(y1_column, y2_column), measure,
                        err_msg="%s is not representation invariant with "
                                "np-array-column" % name)

        # Mix format support
        assert_allclose(metric(y1_1d, y2_list), measure,
                        err_msg="%s is not representation invariant with mix "
                                "np-array-1d and list" % name)

        assert_allclose(metric(y1_list, y2_1d), measure,
                        err_msg="%s is not representation invariant with mix "
                                "np-array-1d and list" % name)

        assert_allclose(metric(y1_1d, y2_column), measure,
                        err_msg="%s is not representation invariant with mix "
                                "np-array-1d and np-array-column" % name)

        assert_allclose(metric(y1_column, y2_1d), measure,
                        err_msg="%s is not representation invariant with mix "
                                "np-array-1d and np-array-column" % name)

        assert_allclose(metric(y1_list, y2_column), measure,
                        err_msg="%s is not representation invariant with mix "
                                "list and np-array-column" % name)

        assert_allclose(metric(y1_column, y2_list), measure,
                        err_msg="%s is not representation invariant with mix "
                                "list and np-array-column" % name)

        # These mix representations aren't allowed
        with pytest.raises(ValueError):
            metric(y1_1d, y2_row)
        with pytest.raises(ValueError):
            metric(y1_row, y2_1d)
        with pytest.raises(ValueError):
            metric(y1_list, y2_row)
        with pytest.raises(ValueError):
            metric(y1_row, y2_list)
        with pytest.raises(ValueError):
            metric(y1_column, y2_row)
        with pytest.raises(ValueError):
            metric(y1_row, y2_column)

        # NB: We do not test for y1_row, y2_row as these may be
        # interpreted as multilabel or multioutput data.
        if (name not in (MULTIOUTPUT_METRICS | THRESHOLDED_MULTILABEL_METRICS |
                         MULTILABELS_METRICS)):
            with pytest.raises(ValueError):
                metric(y1_row, y2_row)


@pytest.mark.parametrize(
    'name',
    sorted(set(CLASSIFICATION_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_classification_invariance_string_vs_numbers_labels(name):
    # Ensure that classification metrics with string labels are invariant
    random_state = check_random_state(0)
    y1 = random_state.randint(0, 2, size=(20, ))
    y2 = random_state.randint(0, 2, size=(20, ))

    y1_str = np.array(["eggs", "spam"])[y1]
    y2_str = np.array(["eggs", "spam"])[y2]

    pos_label_str = "spam"
    labels_str = ["eggs", "spam"]

    with ignore_warnings():
        metric = CLASSIFICATION_METRICS[name]
        measure_with_number = metric(y1, y2)

        # Ugly, but handle case with a pos_label and label
        metric_str = metric
        if name in METRICS_WITH_POS_LABEL:
            metric_str = partial(metric_str, pos_label=pos_label_str)

        measure_with_str = metric_str(y1_str, y2_str)

        assert_array_equal(measure_with_number, measure_with_str,
                           err_msg="{0} failed string vs number invariance "
                                   "test".format(name))

        measure_with_strobj = metric_str(y1_str.astype('O'),
                                         y2_str.astype('O'))
        assert_array_equal(measure_with_number, measure_with_strobj,
                           err_msg="{0} failed string object vs number "
                                   "invariance test".format(name))

        if name in METRICS_WITH_LABELS:
            metric_str = partial(metric_str, labels=labels_str)
            measure_with_str = metric_str(y1_str, y2_str)
            assert_array_equal(measure_with_number, measure_with_str,
                               err_msg="{0} failed string vs number  "
                                       "invariance test".format(name))

            measure_with_strobj = metric_str(y1_str.astype('O'),
                                             y2_str.astype('O'))
            assert_array_equal(measure_with_number, measure_with_strobj,
                               err_msg="{0} failed string vs number  "
                                       "invariance test".format(name))


@pytest.mark.parametrize('name', THRESHOLDED_METRICS)
def test_thresholded_invariance_string_vs_numbers_labels(name):
    # Ensure that thresholded metrics with string labels are invariant
    random_state = check_random_state(0)
    y1 = random_state.randint(0, 2, size=(20, ))
    y2 = random_state.randint(0, 2, size=(20, ))

    y1_str = np.array(["eggs", "spam"])[y1]

    pos_label_str = "spam"

    with ignore_warnings():
        metric = THRESHOLDED_METRICS[name]
        if name not in METRIC_UNDEFINED_BINARY:
            # Ugly, but handle case with a pos_label and label
            metric_str = metric
            if name in METRICS_WITH_POS_LABEL:
                metric_str = partial(metric_str, pos_label=pos_label_str)

            measure_with_number = metric(y1, y2)
            measure_with_str = metric_str(y1_str, y2)
            assert_array_equal(measure_with_number, measure_with_str,
                               err_msg="{0} failed string vs number "
                                       "invariance test".format(name))

            measure_with_strobj = metric_str(y1_str.astype('O'), y2)
            assert_array_equal(measure_with_number, measure_with_strobj,
                               err_msg="{0} failed string object vs number "
                                       "invariance test".format(name))
        else:
            # TODO those metrics doesn't support string label yet
            with pytest.raises(ValueError):
                metric(y1_str, y2)
            with pytest.raises(ValueError):
                metric(y1_str.astype('O'), y2)


invalids = [([0, 1], [np.inf, np.inf]),
            ([0, 1], [np.nan, np.nan]),
            ([0, 1], [np.nan, np.inf])]


@pytest.mark.parametrize(
        'metric',
        chain(THRESHOLDED_METRICS.values(), REGRESSION_METRICS.values()))
def test_regression_thresholded_inf_nan_input(metric):

    for y_true, y_score in invalids:
        with pytest.raises(ValueError, match="contains NaN, infinity"):
            metric(y_true, y_score)


@pytest.mark.parametrize('metric', CLASSIFICATION_METRICS.values())
def test_classification_inf_nan_input(metric):
    # Classification metrics all raise a mixed input exception
    for y_true, y_score in invalids:
        err_msg = "Input contains NaN, infinity or a value too large"
        with pytest.raises(ValueError, match=err_msg):
            metric(y_true, y_score)


@ignore_warnings
def check_single_sample(name):
    # Non-regression test: scores should work with a single sample.
    # This is important for leave-one-out cross validation.
    # Score functions tested are those that formerly called np.squeeze,
    # which turns an array of size 1 into a 0-d array (!).
    metric = ALL_METRICS[name]

    # assert that no exception is thrown
    if name in METRICS_REQUIRE_POSITIVE_Y:
        values = [1, 2]
    else:
        values = [0, 1]
    for i, j in product(values, repeat=2):
        metric([i], [j])


@ignore_warnings
def check_single_sample_multioutput(name):
    metric = ALL_METRICS[name]
    for i, j, k, l in product([0, 1], repeat=4):
        metric(np.array([[i, j]]), np.array([[k, l]]))


@pytest.mark.parametrize(
    'name',
    sorted(
        set(ALL_METRICS)
        # Those metrics are not always defined with one sample
        # or in multiclass classification
        - METRIC_UNDEFINED_BINARY_MULTICLASS - set(THRESHOLDED_METRICS)))
def test_single_sample(name):
    check_single_sample(name)


@pytest.mark.parametrize('name',
                         sorted(MULTIOUTPUT_METRICS | MULTILABELS_METRICS))
def test_single_sample_multioutput(name):
    check_single_sample_multioutput(name)


@pytest.mark.parametrize('name', sorted(MULTIOUTPUT_METRICS))
def test_multioutput_number_of_output_differ(name):
    y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]])
    y_pred = np.array([[0, 0], [1, 0], [0, 0]])

    metric = ALL_METRICS[name]
    with pytest.raises(ValueError):
        metric(y_true, y_pred)


@pytest.mark.parametrize('name', sorted(MULTIOUTPUT_METRICS))
def test_multioutput_regression_invariance_to_dimension_shuffling(name):
    # test invariance to dimension shuffling
    random_state = check_random_state(0)
    y_true = random_state.uniform(0, 2, size=(20, 5))
    y_pred = random_state.uniform(0, 2, size=(20, 5))

    metric = ALL_METRICS[name]
    error = metric(y_true, y_pred)

    for _ in range(3):
        perm = random_state.permutation(y_true.shape[1])
        assert_allclose(metric(y_true[:, perm], y_pred[:, perm]),
                        error,
                        err_msg="%s is not dimension shuffling invariant" % (
                            name))


@ignore_warnings
def test_multilabel_representation_invariance():
    # Generate some data
    n_classes = 4
    n_samples = 50

    _, y1 = make_multilabel_classification(n_features=1, n_classes=n_classes,
                                           random_state=0, n_samples=n_samples,
                                           allow_unlabeled=True)
    _, y2 = make_multilabel_classification(n_features=1, n_classes=n_classes,
                                           random_state=1, n_samples=n_samples,
                                           allow_unlabeled=True)

    # To make sure at least one empty label is present
    y1 = np.vstack([y1, [[0] * n_classes]])
    y2 = np.vstack([y2, [[0] * n_classes]])

    y1_sparse_indicator = sp.coo_matrix(y1)
    y2_sparse_indicator = sp.coo_matrix(y2)

    y1_list_array_indicator = list(y1)
    y2_list_array_indicator = list(y2)

    y1_list_list_indicator = [list(a) for a in y1_list_array_indicator]
    y2_list_list_indicator = [list(a) for a in y2_list_array_indicator]

    for name in MULTILABELS_METRICS:
        metric = ALL_METRICS[name]

        # XXX cruel hack to work with partial functions
        if isinstance(metric, partial):
            metric.__module__ = 'tmp'
            metric.__name__ = name

        measure = metric(y1, y2)

        # Check representation invariance
        assert_allclose(metric(y1_sparse_indicator, y2_sparse_indicator),
                        measure,
                        err_msg="%s failed representation invariance between "
                                "dense and sparse indicator formats." % name)
        assert_almost_equal(metric(y1_list_list_indicator,
                                   y2_list_list_indicator),
                            measure,
                            err_msg="%s failed representation invariance  "
                                    "between dense array and list of list "
                                    "indicator formats." % name)
        assert_almost_equal(metric(y1_list_array_indicator,
                                   y2_list_array_indicator),
                            measure,
                            err_msg="%s failed representation invariance  "
                                    "between dense and list of array "
                                    "indicator formats." % name)


@pytest.mark.parametrize('name', sorted(MULTILABELS_METRICS))
def test_raise_value_error_multilabel_sequences(name):
    # make sure the multilabel-sequence format raises ValueError
    multilabel_sequences = [
        [[1], [2], [0, 1]],
        [(), (2), (0, 1)],
        [[]],
        [()],
        np.array([[], [1, 2]], dtype='object')]

    metric = ALL_METRICS[name]
    for seq in multilabel_sequences:
        with pytest.raises(ValueError):
            metric(seq, seq)


@pytest.mark.parametrize('name', sorted(METRICS_WITH_NORMALIZE_OPTION))
def test_normalize_option_binary_classification(name):
    # Test in the binary case
    n_samples = 20
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(n_samples, ))
    y_pred = random_state.randint(0, 2, size=(n_samples, ))

    metrics = ALL_METRICS[name]
    measure = metrics(y_true, y_pred, normalize=True)
    assert_array_less(-1.0 * measure, 0,
                      err_msg="We failed to test correctly the normalize "
                              "option")
    assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
                    measure)


@pytest.mark.parametrize('name', sorted(METRICS_WITH_NORMALIZE_OPTION))
def test_normalize_option_multiclass_classification(name):
    # Test in the multiclass case
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 4, size=(20, ))
    y_pred = random_state.randint(0, 4, size=(20, ))
    n_samples = y_true.shape[0]

    metrics = ALL_METRICS[name]
    measure = metrics(y_true, y_pred, normalize=True)
    assert_array_less(-1.0 * measure, 0,
                      err_msg="We failed to test correctly the normalize "
                              "option")
    assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
                    measure)


def test_normalize_option_multilabel_classification():
    # Test in the multilabel case
    n_classes = 4
    n_samples = 100

    # for both random_state 0 and 1, y_true and y_pred has at least one
    # unlabelled entry
    _, y_true = make_multilabel_classification(n_features=1,
                                               n_classes=n_classes,
                                               random_state=0,
                                               allow_unlabeled=True,
                                               n_samples=n_samples)
    _, y_pred = make_multilabel_classification(n_features=1,
                                               n_classes=n_classes,
                                               random_state=1,
                                               allow_unlabeled=True,
                                               n_samples=n_samples)

    # To make sure at least one empty label is present
    y_true += [0]*n_classes
    y_pred += [0]*n_classes

    for name in METRICS_WITH_NORMALIZE_OPTION:
        metrics = ALL_METRICS[name]
        measure = metrics(y_true, y_pred, normalize=True)
        assert_array_less(-1.0 * measure, 0,
                          err_msg="We failed to test correctly the normalize "
                                  "option")
        assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
                        measure, err_msg="Failed with %s" % name)


@ignore_warnings
def _check_averaging(metric, y_true, y_pred, y_true_binarize, y_pred_binarize,
                     is_multilabel):
    n_samples, n_classes = y_true_binarize.shape

    # No averaging
    label_measure = metric(y_true, y_pred, average=None)
    assert_allclose(label_measure,
                    [metric(y_true_binarize[:, i], y_pred_binarize[:, i])
                     for i in range(n_classes)])

    # Micro measure
    micro_measure = metric(y_true, y_pred, average="micro")
    assert_allclose(micro_measure,
                    metric(y_true_binarize.ravel(), y_pred_binarize.ravel()))

    # Macro measure
    macro_measure = metric(y_true, y_pred, average="macro")
    assert_allclose(macro_measure, np.mean(label_measure))

    # Weighted measure
    weights = np.sum(y_true_binarize, axis=0, dtype=int)

    if np.sum(weights) != 0:
        weighted_measure = metric(y_true, y_pred, average="weighted")
        assert_allclose(weighted_measure,
                        np.average(label_measure, weights=weights))
    else:
        weighted_measure = metric(y_true, y_pred, average="weighted")
        assert_allclose(weighted_measure, 0)

    # Sample measure
    if is_multilabel:
        sample_measure = metric(y_true, y_pred, average="samples")
        assert_allclose(sample_measure,
                        np.mean([metric(y_true_binarize[i], y_pred_binarize[i])
                                 for i in range(n_samples)]))

    with pytest.raises(ValueError):
        metric(y_true, y_pred, average="unknown")
    with pytest.raises(ValueError):
        metric(y_true, y_pred, average="garbage")


def check_averaging(name, y_true, y_true_binarize, y_pred, y_pred_binarize,
                    y_score):
    is_multilabel = type_of_target(y_true).startswith("multilabel")

    metric = ALL_METRICS[name]

    if name in METRICS_WITH_AVERAGING:
        _check_averaging(metric, y_true, y_pred, y_true_binarize,
                         y_pred_binarize, is_multilabel)
    elif name in THRESHOLDED_METRICS_WITH_AVERAGING:
        _check_averaging(metric, y_true, y_score, y_true_binarize,
                         y_score, is_multilabel)
    else:
        raise ValueError("Metric is not recorded as having an average option")


@pytest.mark.parametrize('name', sorted(METRICS_WITH_AVERAGING))
def test_averaging_multiclass(name):
    n_samples, n_classes = 50, 3
    random_state = check_random_state(0)
    y_true = random_state.randint(0, n_classes, size=(n_samples, ))
    y_pred = random_state.randint(0, n_classes, size=(n_samples, ))
    y_score = random_state.uniform(size=(n_samples, n_classes))

    lb = LabelBinarizer().fit(y_true)
    y_true_binarize = lb.transform(y_true)
    y_pred_binarize = lb.transform(y_pred)

    check_averaging(name, y_true, y_true_binarize,
                    y_pred, y_pred_binarize, y_score)


@pytest.mark.parametrize(
    'name',
    sorted(METRICS_WITH_AVERAGING | THRESHOLDED_METRICS_WITH_AVERAGING))
def test_averaging_multilabel(name):
    n_samples, n_classes = 40, 5
    _, y = make_multilabel_classification(n_features=1, n_classes=n_classes,
                                          random_state=5, n_samples=n_samples,
                                          allow_unlabeled=False)
    y_true = y[:20]
    y_pred = y[20:]
    y_score = check_random_state(0).normal(size=(20, n_classes))
    y_true_binarize = y_true
    y_pred_binarize = y_pred

    check_averaging(name, y_true, y_true_binarize,
                    y_pred, y_pred_binarize, y_score)


@pytest.mark.parametrize('name', sorted(METRICS_WITH_AVERAGING))
def test_averaging_multilabel_all_zeroes(name):
    y_true = np.zeros((20, 3))
    y_pred = np.zeros((20, 3))
    y_score = np.zeros((20, 3))
    y_true_binarize = y_true
    y_pred_binarize = y_pred

    check_averaging(name, y_true, y_true_binarize,
                    y_pred, y_pred_binarize, y_score)


def test_averaging_binary_multilabel_all_zeroes():
    y_true = np.zeros((20, 3))
    y_pred = np.zeros((20, 3))
    y_true_binarize = y_true
    y_pred_binarize = y_pred
    # Test _average_binary_score for weight.sum() == 0
    binary_metric = (lambda y_true, y_score, average="macro":
                     _average_binary_score(
                         precision_score, y_true, y_score, average))
    _check_averaging(binary_metric, y_true, y_pred, y_true_binarize,
                     y_pred_binarize, is_multilabel=True)


@pytest.mark.parametrize('name', sorted(METRICS_WITH_AVERAGING))
def test_averaging_multilabel_all_ones(name):
    y_true = np.ones((20, 3))
    y_pred = np.ones((20, 3))
    y_score = np.ones((20, 3))
    y_true_binarize = y_true
    y_pred_binarize = y_pred

    check_averaging(name, y_true, y_true_binarize,
                    y_pred, y_pred_binarize, y_score)


@ignore_warnings
def check_sample_weight_invariance(name, metric, y1, y2):
    rng = np.random.RandomState(0)
    sample_weight = rng.randint(1, 10, size=len(y1))

    # check that unit weights gives the same score as no weight
    unweighted_score = metric(y1, y2, sample_weight=None)

    assert_allclose(
        unweighted_score,
        metric(y1, y2, sample_weight=np.ones(shape=len(y1))),
        err_msg="For %s sample_weight=None is not equivalent to "
                "sample_weight=ones" % name)

    # check that the weighted and unweighted scores are unequal
    weighted_score = metric(y1, y2, sample_weight=sample_weight)

    # use context manager to supply custom error message
    with pytest.raises(AssertionError):
        assert_allclose(unweighted_score, weighted_score)
        raise ValueError("Unweighted and weighted scores are unexpectedly "
                         "almost equal (%s) and (%s) "
                         "for %s" % (unweighted_score,
                                     weighted_score, name))

    # check that sample_weight can be a list
    weighted_score_list = metric(y1, y2,
                                 sample_weight=sample_weight.tolist())
    assert_allclose(
        weighted_score, weighted_score_list,
        err_msg=("Weighted scores for array and list "
                 "sample_weight input are not equal (%s != %s) for %s") % (
                     weighted_score, weighted_score_list, name))

    # check that integer weights is the same as repeated samples
    repeat_weighted_score = metric(
        np.repeat(y1, sample_weight, axis=0),
        np.repeat(y2, sample_weight, axis=0), sample_weight=None)
    assert_allclose(
        weighted_score, repeat_weighted_score,
        err_msg="Weighting %s is not equal to repeating samples" % name)

    # check that ignoring a fraction of the samples is equivalent to setting
    # the corresponding weights to zero
    sample_weight_subset = sample_weight[1::2]
    sample_weight_zeroed = np.copy(sample_weight)
    sample_weight_zeroed[::2] = 0
    y1_subset = y1[1::2]
    y2_subset = y2[1::2]
    weighted_score_subset = metric(y1_subset, y2_subset,
                                   sample_weight=sample_weight_subset)
    weighted_score_zeroed = metric(y1, y2,
                                   sample_weight=sample_weight_zeroed)
    assert_allclose(
        weighted_score_subset, weighted_score_zeroed,
        err_msg=("Zeroing weights does not give the same result as "
                 "removing the corresponding samples (%s != %s) for %s" %
                 (weighted_score_zeroed, weighted_score_subset, name)))

    if not name.startswith('unnormalized'):
        # check that the score is invariant under scaling of the weights by a
        # common factor
        for scaling in [2, 0.3]:
            assert_allclose(
                weighted_score,
                metric(y1, y2, sample_weight=sample_weight * scaling),
                err_msg="%s sample_weight is not invariant "
                        "under scaling" % name)

    # Check that if number of samples in y_true and sample_weight are not
    # equal, meaningful error is raised.
    error_message = (r"Found input variables with inconsistent numbers of "
                     r"samples: \[{}, {}, {}\]".format(
                         _num_samples(y1), _num_samples(y2),
                         _num_samples(sample_weight) * 2))
    with pytest.raises(ValueError, match=error_message):
        metric(y1, y2, sample_weight=np.hstack([sample_weight,
                                                sample_weight]))


@pytest.mark.parametrize(
    'name',
    sorted(
        set(ALL_METRICS).intersection(set(REGRESSION_METRICS)) -
        METRICS_WITHOUT_SAMPLE_WEIGHT))
def test_regression_sample_weight_invariance(name):
    n_samples = 50
    random_state = check_random_state(0)
    # regression
    y_true = random_state.random_sample(size=(n_samples,))
    y_pred = random_state.random_sample(size=(n_samples,))
    metric = ALL_METRICS[name]
    check_sample_weight_invariance(name, metric, y_true, y_pred)


@pytest.mark.parametrize(
    'name',
    sorted(
        set(ALL_METRICS) - set(REGRESSION_METRICS) -
        METRICS_WITHOUT_SAMPLE_WEIGHT - METRIC_UNDEFINED_BINARY))
def test_binary_sample_weight_invariance(name):
    # binary
    n_samples = 50
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(n_samples, ))
    y_pred = random_state.randint(0, 2, size=(n_samples, ))
    y_score = random_state.random_sample(size=(n_samples,))
    metric = ALL_METRICS[name]
    if name in THRESHOLDED_METRICS:
        check_sample_weight_invariance(name, metric, y_true, y_score)
    else:
        check_sample_weight_invariance(name, metric, y_true, y_pred)


@pytest.mark.parametrize(
    'name',
    sorted(
        set(ALL_METRICS) - set(REGRESSION_METRICS) -
        METRICS_WITHOUT_SAMPLE_WEIGHT - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_multiclass_sample_weight_invariance(name):
    # multiclass
    n_samples = 50
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 5, size=(n_samples, ))
    y_pred = random_state.randint(0, 5, size=(n_samples, ))
    y_score = random_state.random_sample(size=(n_samples, 5))
    metric = ALL_METRICS[name]
    if name in THRESHOLDED_METRICS:
        # softmax
        temp = np.exp(-y_score)
        y_score_norm = temp / temp.sum(axis=-1).reshape(-1, 1)
        check_sample_weight_invariance(name, metric, y_true, y_score_norm)
    else:
        check_sample_weight_invariance(name, metric, y_true, y_pred)


@pytest.mark.parametrize(
    'name',
    sorted((MULTILABELS_METRICS | THRESHOLDED_MULTILABEL_METRICS
            | MULTIOUTPUT_METRICS) - METRICS_WITHOUT_SAMPLE_WEIGHT))
def test_multilabel_sample_weight_invariance(name):
    # multilabel indicator
    random_state = check_random_state(0)
    _, ya = make_multilabel_classification(n_features=1, n_classes=10,
                                           random_state=0, n_samples=50,
                                           allow_unlabeled=False)
    _, yb = make_multilabel_classification(n_features=1, n_classes=10,
                                           random_state=1, n_samples=50,
                                           allow_unlabeled=False)
    y_true = np.vstack([ya, yb])
    y_pred = np.vstack([ya, ya])
    y_score = random_state.randint(1, 4, size=y_true.shape)

    metric = ALL_METRICS[name]
    if name in THRESHOLDED_METRICS:
        check_sample_weight_invariance(name, metric, y_true, y_score)
    else:
        check_sample_weight_invariance(name, metric, y_true, y_pred)


@ignore_warnings
def test_no_averaging_labels():
    # test labels argument when not using averaging
    # in multi-class and multi-label cases
    y_true_multilabel = np.array([[1, 1, 0, 0], [1, 1, 0, 0]])
    y_pred_multilabel = np.array([[0, 0, 1, 1], [0, 1, 1, 0]])
    y_true_multiclass = np.array([0, 1, 2])
    y_pred_multiclass = np.array([0, 2, 3])
    labels = np.array([3, 0, 1, 2])
    _, inverse_labels = np.unique(labels, return_inverse=True)

    for name in METRICS_WITH_AVERAGING:
        for y_true, y_pred in [[y_true_multiclass, y_pred_multiclass],
                               [y_true_multilabel, y_pred_multilabel]]:
            if name not in MULTILABELS_METRICS and y_pred.ndim > 1:
                continue

            metric = ALL_METRICS[name]

            score_labels = metric(y_true, y_pred, labels=labels, average=None)
            score = metric(y_true, y_pred, average=None)
            assert_array_equal(score_labels, score[inverse_labels])


@pytest.mark.parametrize(
    'name',
    sorted(MULTILABELS_METRICS - {"unnormalized_multilabel_confusion_matrix"}))
def test_multilabel_label_permutations_invariance(name):
    random_state = check_random_state(0)
    n_samples, n_classes = 20, 4

    y_true = random_state.randint(0, 2, size=(n_samples, n_classes))
    y_score = random_state.randint(0, 2, size=(n_samples, n_classes))

    metric = ALL_METRICS[name]
    score = metric(y_true, y_score)

    for perm in permutations(range(n_classes), n_classes):
        y_score_perm = y_score[:, perm]
        y_true_perm = y_true[:, perm]

        current_score = metric(y_true_perm, y_score_perm)
        assert_almost_equal(score, current_score)


@pytest.mark.parametrize(
    'name', sorted(THRESHOLDED_MULTILABEL_METRICS | MULTIOUTPUT_METRICS))
def test_thresholded_multilabel_multioutput_permutations_invariance(name):
    random_state = check_random_state(0)
    n_samples, n_classes = 20, 4
    y_true = random_state.randint(0, 2, size=(n_samples, n_classes))
    y_score = random_state.normal(size=y_true.shape)

    # Makes sure all samples have at least one label. This works around errors
    # when running metrics where average="sample"
    y_true[y_true.sum(1) == 4, 0] = 0
    y_true[y_true.sum(1) == 0, 0] = 1

    metric = ALL_METRICS[name]
    score = metric(y_true, y_score)

    for perm in permutations(range(n_classes), n_classes):
        y_score_perm = y_score[:, perm]
        y_true_perm = y_true[:, perm]

        current_score = metric(y_true_perm, y_score_perm)
        assert_almost_equal(score, current_score)


@pytest.mark.parametrize(
    'name',
    sorted(set(THRESHOLDED_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS))
def test_thresholded_metric_permutation_invariance(name):
    n_samples, n_classes = 100, 3
    random_state = check_random_state(0)

    y_score = random_state.rand(n_samples, n_classes)
    temp = np.exp(-y_score)
    y_score = temp / temp.sum(axis=-1).reshape(-1, 1)
    y_true = random_state.randint(0, n_classes, size=n_samples)

    metric = ALL_METRICS[name]
    score = metric(y_true, y_score)
    for perm in permutations(range(n_classes), n_classes):
        inverse_perm = np.zeros(n_classes, dtype=int)
        inverse_perm[list(perm)] = np.arange(n_classes)
        y_score_perm = y_score[:, inverse_perm]
        y_true_perm = np.take(perm, y_true)

        current_score = metric(y_true_perm, y_score_perm)
        assert_almost_equal(score, current_score)