import functools
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.metrics import euclidean_distances
from sklearn.random_projection import johnson_lindenstrauss_min_dim
from sklearn.random_projection import _gaussian_random_matrix
from sklearn.random_projection import gaussian_random_matrix
from sklearn.random_projection import _sparse_random_matrix
from sklearn.random_projection import sparse_random_matrix
from sklearn.random_projection import SparseRandomProjection
from sklearn.random_projection import GaussianRandomProjection
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_warns
from sklearn.exceptions import DataDimensionalityWarning
all_sparse_random_matrix = [_sparse_random_matrix]
all_dense_random_matrix = [_gaussian_random_matrix]
all_random_matrix = all_sparse_random_matrix + all_dense_random_matrix
all_SparseRandomProjection = [SparseRandomProjection]
all_DenseRandomProjection = [GaussianRandomProjection]
all_RandomProjection = set(all_SparseRandomProjection +
all_DenseRandomProjection)
# Make some random data with uniformly located non zero entries with
# Gaussian distributed values
def make_sparse_random_data(n_samples, n_features, n_nonzeros):
rng = np.random.RandomState(0)
data_coo = sp.coo_matrix(
(rng.randn(n_nonzeros),
(rng.randint(n_samples, size=n_nonzeros),
rng.randint(n_features, size=n_nonzeros))),
shape=(n_samples, n_features))
return data_coo.toarray(), data_coo.tocsr()
def densify(matrix):
if not sp.issparse(matrix):
return matrix
else:
return matrix.toarray()
n_samples, n_features = (10, 1000)
n_nonzeros = int(n_samples * n_features / 100.)
data, data_csr = make_sparse_random_data(n_samples, n_features, n_nonzeros)
###############################################################################
# test on JL lemma
###############################################################################
def test_invalid_jl_domain():
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 1.1)
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 0.0)
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, -0.1)
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 0, 0.5)
def test_input_size_jl_min_dim():
assert_raises(ValueError, johnson_lindenstrauss_min_dim,
3 * [100], 2 * [0.9])
assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100],
2 * [0.9])
johnson_lindenstrauss_min_dim(np.random.randint(1, 10, size=(10, 10)),
np.full((10, 10), 0.5))
###############################################################################
# tests random matrix generation
###############################################################################
def check_input_size_random_matrix(random_matrix):
assert_raises(ValueError, random_matrix, 0, 0)
assert_raises(ValueError, random_matrix, -1, 1)
assert_raises(ValueError, random_matrix, 1, -1)
assert_raises(ValueError, random_matrix, 1, 0)
assert_raises(ValueError, random_matrix, -1, 0)
def check_size_generated(random_matrix):
assert random_matrix(1, 5).shape == (1, 5)
assert random_matrix(5, 1).shape == (5, 1)
assert random_matrix(5, 5).shape == (5, 5)
assert random_matrix(1, 1).shape == (1, 1)
def check_zero_mean_and_unit_norm(random_matrix):
# All random matrix should produce a transformation matrix
# with zero mean and unit norm for each columns
A = densify(random_matrix(10000, 1, random_state=0))
assert_array_almost_equal(0, np.mean(A), 3)
assert_array_almost_equal(1.0, np.linalg.norm(A), 1)
def check_input_with_sparse_random_matrix(random_matrix):
n_components, n_features = 5, 10
for density in [-1., 0.0, 1.1]:
assert_raises(ValueError,
random_matrix, n_components, n_features, density=density)
@pytest.mark.parametrize("random_matrix", all_random_matrix)
def test_basic_property_of_random_matrix(random_matrix):
# Check basic properties of random matrix generation
check_input_size_random_matrix(random_matrix)
check_size_generated(random_matrix)
check_zero_mean_and_unit_norm(random_matrix)
@pytest.mark.parametrize("random_matrix", all_sparse_random_matrix)
def test_basic_property_of_sparse_random_matrix(random_matrix):
check_input_with_sparse_random_matrix(random_matrix)
random_matrix_dense = functools.partial(random_matrix, density=1.0)
check_zero_mean_and_unit_norm(random_matrix_dense)
def test_gaussian_random_matrix():
# Check some statical properties of Gaussian random matrix
# Check that the random matrix follow the proper distribution.
# Let's say that each element of a_{ij} of A is taken from
# a_ij ~ N(0.0, 1 / n_components).
#
n_components = 100
n_features = 1000
A = _gaussian_random_matrix(n_components, n_features, random_state=0)
assert_array_almost_equal(0.0, np.mean(A), 2)
assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1)
def test_sparse_random_matrix():
# Check some statical properties of sparse random matrix
n_components = 100
n_features = 500
for density in [0.3, 1.]:
s = 1 / density
A = _sparse_random_matrix(n_components,
n_features,
density=density,
random_state=0)
A = densify(A)
# Check possible values
values = np.unique(A)
assert np.sqrt(s) / np.sqrt(n_components) in values
assert - np.sqrt(s) / np.sqrt(n_components) in values
if density == 1.0:
assert np.size(values) == 2
else:
assert 0. in values
assert np.size(values) == 3
# Check that the random matrix follow the proper distribution.
# Let's say that each element of a_{ij} of A is taken from
#
# - -sqrt(s) / sqrt(n_components) with probability 1 / 2s
# - 0 with probability 1 - 1 / s
# - +sqrt(s) / sqrt(n_components) with probability 1 / 2s
#
assert_almost_equal(np.mean(A == 0.0),
1 - 1 / s, decimal=2)
assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)),
1 / (2 * s), decimal=2)
assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)),
1 / (2 * s), decimal=2)
assert_almost_equal(np.var(A == 0.0, ddof=1),
(1 - 1 / s) * 1 / s, decimal=2)
assert_almost_equal(np.var(A == np.sqrt(s) / np.sqrt(n_components),
ddof=1),
(1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2)
assert_almost_equal(np.var(A == - np.sqrt(s) / np.sqrt(n_components),
ddof=1),
(1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2)
###############################################################################
# tests on random projection transformer
###############################################################################
def test_sparse_random_projection_transformer_invalid_density():
for RandomProjection in all_SparseRandomProjection:
assert_raises(ValueError,
RandomProjection(density=1.1).fit, data)
assert_raises(ValueError,
RandomProjection(density=0).fit, data)
assert_raises(ValueError,
RandomProjection(density=-0.1).fit, data)
def test_random_projection_transformer_invalid_input():
for RandomProjection in all_RandomProjection:
assert_raises(ValueError,
RandomProjection(n_components='auto').fit, [[0, 1, 2]])
assert_raises(ValueError,
RandomProjection(n_components=-10).fit, data)
def test_try_to_transform_before_fit():
for RandomProjection in all_RandomProjection:
assert_raises(ValueError,
RandomProjection(n_components='auto').transform, data)
def test_too_many_samples_to_find_a_safe_embedding():
data, _ = make_sparse_random_data(1000, 100, 1000)
for RandomProjection in all_RandomProjection:
rp = RandomProjection(n_components='auto', eps=0.1)
expected_msg = (
'eps=0.100000 and n_samples=1000 lead to a target dimension'
' of 5920 which is larger than the original space with'
' n_features=100')
assert_raise_message(ValueError, expected_msg, rp.fit, data)
def test_random_projection_embedding_quality():
data, _ = make_sparse_random_data(8, 5000, 15000)
eps = 0.2
original_distances = euclidean_distances(data, squared=True)
original_distances = original_distances.ravel()
non_identical = original_distances != 0.0
# remove 0 distances to avoid division by 0
original_distances = original_distances[non_identical]
for RandomProjection in all_RandomProjection:
rp = RandomProjection(n_components='auto', eps=eps, random_state=0)
projected = rp.fit_transform(data)
projected_distances = euclidean_distances(projected, squared=True)
projected_distances = projected_distances.ravel()
# remove 0 distances to avoid division by 0
projected_distances = projected_distances[non_identical]
distances_ratio = projected_distances / original_distances
# check that the automatically tuned values for the density respect the
# contract for eps: pairwise distances are preserved according to the
# Johnson-Lindenstrauss lemma
assert distances_ratio.max() < 1 + eps
assert 1 - eps < distances_ratio.min()
def test_SparseRandomProjection_output_representation():
for SparseRandomProjection in all_SparseRandomProjection:
# when using sparse input, the projected data can be forced to be a
# dense numpy array
rp = SparseRandomProjection(n_components=10, dense_output=True,
random_state=0)
rp.fit(data)
assert isinstance(rp.transform(data), np.ndarray)
sparse_data = sp.csr_matrix(data)
assert isinstance(rp.transform(sparse_data), np.ndarray)
# the output can be left to a sparse matrix instead
rp = SparseRandomProjection(n_components=10, dense_output=False,
random_state=0)
rp = rp.fit(data)
# output for dense input will stay dense:
assert isinstance(rp.transform(data), np.ndarray)
# output for sparse output will be sparse:
assert sp.issparse(rp.transform(sparse_data))
def test_correct_RandomProjection_dimensions_embedding():
for RandomProjection in all_RandomProjection:
rp = RandomProjection(n_components='auto',
random_state=0,
eps=0.5).fit(data)
# the number of components is adjusted from the shape of the training
# set
assert rp.n_components == 'auto'
assert rp.n_components_ == 110
if RandomProjection in all_SparseRandomProjection:
assert rp.density == 'auto'
assert_almost_equal(rp.density_, 0.03, 2)
assert rp.components_.shape == (110, n_features)
projected_1 = rp.transform(data)
assert projected_1.shape == (n_samples, 110)
# once the RP is 'fitted' the projection is always the same
projected_2 = rp.transform(data)
assert_array_equal(projected_1, projected_2)
# fit transform with same random seed will lead to the same results
rp2 = RandomProjection(random_state=0, eps=0.5)
projected_3 = rp2.fit_transform(data)
assert_array_equal(projected_1, projected_3)
# Try to transform with an input X of size different from fitted.
assert_raises(ValueError, rp.transform, data[:, 1:5])
# it is also possible to fix the number of components and the density
# level
if RandomProjection in all_SparseRandomProjection:
rp = RandomProjection(n_components=100, density=0.001,
random_state=0)
projected = rp.fit_transform(data)
assert projected.shape == (n_samples, 100)
assert rp.components_.shape == (100, n_features)
assert rp.components_.nnz < 115 # close to 1% density
assert 85 < rp.components_.nnz # close to 1% density
def test_warning_n_components_greater_than_n_features():
n_features = 20
data, _ = make_sparse_random_data(5, n_features, int(n_features / 4))
for RandomProjection in all_RandomProjection:
assert_warns(DataDimensionalityWarning,
RandomProjection(n_components=n_features + 1).fit, data)
def test_works_with_sparse_data():
n_features = 20
data, _ = make_sparse_random_data(5, n_features, int(n_features / 4))
for RandomProjection in all_RandomProjection:
rp_dense = RandomProjection(n_components=3,
random_state=1).fit(data)
rp_sparse = RandomProjection(n_components=3,
random_state=1).fit(sp.csr_matrix(data))
assert_array_almost_equal(densify(rp_dense.components_),
densify(rp_sparse.components_))
# TODO remove in 0.24
def test_deprecations():
with pytest.warns(FutureWarning, match="deprecated in 0.22"):
gaussian_random_matrix(10, 100)
with pytest.warns(FutureWarning, match="deprecated in 0.22"):
sparse_random_matrix(10, 100)