"""
Test the ColumnTransformer.
"""
import re
import pickle
import warnings
import numpy as np
from scipy import sparse
import pytest
from numpy.testing import assert_allclose
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_allclose_dense_sparse
from sklearn.utils._testing import assert_almost_equal
from sklearn.base import BaseEstimator
from sklearn.compose import (
ColumnTransformer, make_column_transformer, make_column_selector
)
from sklearn.exceptions import NotFittedError
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import StandardScaler, Normalizer, OneHotEncoder
from sklearn.feature_extraction import DictVectorizer
class Trans(BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
# 1D Series -> 2D DataFrame
if hasattr(X, 'to_frame'):
return X.to_frame()
# 1D array -> 2D array
if X.ndim == 1:
return np.atleast_2d(X).T
return X
class DoubleTrans(BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X):
return 2*X
class SparseMatrixTrans(BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
n_samples = len(X)
return sparse.eye(n_samples, n_samples).tocsr()
class TransNo2D(BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
return X
class TransRaise(BaseEstimator):
def fit(self, X, y=None):
raise ValueError("specific message")
def transform(self, X, y=None):
raise ValueError("specific message")
def test_column_transformer():
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_first1D = np.array([0, 1, 2])
X_res_second1D = np.array([2, 4, 6])
X_res_first = X_res_first1D.reshape(-1, 1)
X_res_both = X_array
cases = [
# single column 1D / 2D
(0, X_res_first),
([0], X_res_first),
# list-like
([0, 1], X_res_both),
(np.array([0, 1]), X_res_both),
# slice
(slice(0, 1), X_res_first),
(slice(0, 2), X_res_both),
# boolean mask
(np.array([True, False]), X_res_first),
]
for selection, res in cases:
ct = ColumnTransformer([('trans', Trans(), selection)],
remainder='drop')
assert_array_equal(ct.fit_transform(X_array), res)
assert_array_equal(ct.fit(X_array).transform(X_array), res)
# callable that returns any of the allowed specifiers
ct = ColumnTransformer([('trans', Trans(), lambda x: selection)],
remainder='drop')
assert_array_equal(ct.fit_transform(X_array), res)
assert_array_equal(ct.fit(X_array).transform(X_array), res)
ct = ColumnTransformer([('trans1', Trans(), [0]),
('trans2', Trans(), [1])])
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
# test with transformer_weights
transformer_weights = {'trans1': .1, 'trans2': 10}
both = ColumnTransformer([('trans1', Trans(), [0]),
('trans2', Trans(), [1])],
transformer_weights=transformer_weights)
res = np.vstack([transformer_weights['trans1'] * X_res_first1D,
transformer_weights['trans2'] * X_res_second1D]).T
assert_array_equal(both.fit_transform(X_array), res)
assert_array_equal(both.fit(X_array).transform(X_array), res)
assert len(both.transformers_) == 2
both = ColumnTransformer([('trans', Trans(), [0, 1])],
transformer_weights={'trans': .1})
assert_array_equal(both.fit_transform(X_array), 0.1 * X_res_both)
assert_array_equal(both.fit(X_array).transform(X_array), 0.1 * X_res_both)
assert len(both.transformers_) == 1
def test_column_transformer_dataframe():
pd = pytest.importorskip('pandas')
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_df = pd.DataFrame(X_array, columns=['first', 'second'])
X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
X_res_both = X_array
cases = [
# String keys: label based
# scalar
('first', X_res_first),
# list
(['first'], X_res_first),
(['first', 'second'], X_res_both),
# slice
(slice('first', 'second'), X_res_both),
# int keys: positional
# scalar
(0, X_res_first),
# list
([0], X_res_first),
([0, 1], X_res_both),
(np.array([0, 1]), X_res_both),
# slice
(slice(0, 1), X_res_first),
(slice(0, 2), X_res_both),
# boolean mask
(np.array([True, False]), X_res_first),
(pd.Series([True, False], index=['first', 'second']), X_res_first),
]
for selection, res in cases:
ct = ColumnTransformer([('trans', Trans(), selection)],
remainder='drop')
assert_array_equal(ct.fit_transform(X_df), res)
assert_array_equal(ct.fit(X_df).transform(X_df), res)
# callable that returns any of the allowed specifiers
ct = ColumnTransformer([('trans', Trans(), lambda X: selection)],
remainder='drop')
assert_array_equal(ct.fit_transform(X_df), res)
assert_array_equal(ct.fit(X_df).transform(X_df), res)
ct = ColumnTransformer([('trans1', Trans(), ['first']),
('trans2', Trans(), ['second'])])
assert_array_equal(ct.fit_transform(X_df), X_res_both)
assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != 'remainder'
ct = ColumnTransformer([('trans1', Trans(), [0]),
('trans2', Trans(), [1])])
assert_array_equal(ct.fit_transform(X_df), X_res_both)
assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != 'remainder'
# test with transformer_weights
transformer_weights = {'trans1': .1, 'trans2': 10}
both = ColumnTransformer([('trans1', Trans(), ['first']),
('trans2', Trans(), ['second'])],
transformer_weights=transformer_weights)
res = np.vstack([transformer_weights['trans1'] * X_df['first'],
transformer_weights['trans2'] * X_df['second']]).T
assert_array_equal(both.fit_transform(X_df), res)
assert_array_equal(both.fit(X_df).transform(X_df), res)
assert len(both.transformers_) == 2
assert ct.transformers_[-1][0] != 'remainder'
# test multiple columns
both = ColumnTransformer([('trans', Trans(), ['first', 'second'])],
transformer_weights={'trans': .1})
assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
assert len(both.transformers_) == 1
assert ct.transformers_[-1][0] != 'remainder'
both = ColumnTransformer([('trans', Trans(), [0, 1])],
transformer_weights={'trans': .1})
assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
assert len(both.transformers_) == 1
assert ct.transformers_[-1][0] != 'remainder'
# ensure pandas object is passes through
class TransAssert(BaseEstimator):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
assert isinstance(X, (pd.DataFrame, pd.Series))
if isinstance(X, pd.Series):
X = X.to_frame()
return X
ct = ColumnTransformer([('trans', TransAssert(), 'first')],
remainder='drop')
ct.fit_transform(X_df)
ct = ColumnTransformer([('trans', TransAssert(), ['first', 'second'])])
ct.fit_transform(X_df)
# integer column spec + integer column names -> still use positional
X_df2 = X_df.copy()
X_df2.columns = [1, 0]
ct = ColumnTransformer([('trans', Trans(), 0)], remainder='drop')
assert_array_equal(ct.fit_transform(X_df2), X_res_first)
assert_array_equal(ct.fit(X_df2).transform(X_df2), X_res_first)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert ct.transformers_[-1][1] == 'drop'
assert_array_equal(ct.transformers_[-1][2], [1])
@pytest.mark.parametrize("pandas", [True, False], ids=['pandas', 'numpy'])
@pytest.mark.parametrize("column", [[], np.array([False, False])],
ids=['list', 'bool'])
def test_column_transformer_empty_columns(pandas, column):
# test case that ensures that the column transformer does also work when
# a given transformer doesn't have any columns to work on
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_both = X_array
if pandas:
pd = pytest.importorskip('pandas')
X = pd.DataFrame(X_array, columns=['first', 'second'])
else:
X = X_array
ct = ColumnTransformer([('trans1', Trans(), [0, 1]),
('trans2', Trans(), column)])
assert_array_equal(ct.fit_transform(X), X_res_both)
assert_array_equal(ct.fit(X).transform(X), X_res_both)
assert len(ct.transformers_) == 2
assert isinstance(ct.transformers_[1][1], Trans)
ct = ColumnTransformer([('trans1', Trans(), column),
('trans2', Trans(), [0, 1])])
assert_array_equal(ct.fit_transform(X), X_res_both)
assert_array_equal(ct.fit(X).transform(X), X_res_both)
assert len(ct.transformers_) == 2
assert isinstance(ct.transformers_[0][1], Trans)
ct = ColumnTransformer([('trans', Trans(), column)],
remainder='passthrough')
assert_array_equal(ct.fit_transform(X), X_res_both)
assert_array_equal(ct.fit(X).transform(X), X_res_both)
assert len(ct.transformers_) == 2 # including remainder
assert isinstance(ct.transformers_[0][1], Trans)
fixture = np.array([[], [], []])
ct = ColumnTransformer([('trans', Trans(), column)],
remainder='drop')
assert_array_equal(ct.fit_transform(X), fixture)
assert_array_equal(ct.fit(X).transform(X), fixture)
assert len(ct.transformers_) == 2 # including remainder
assert isinstance(ct.transformers_[0][1], Trans)
def test_column_transformer_sparse_array():
X_sparse = sparse.eye(3, 2).tocsr()
# no distinction between 1D and 2D
X_res_first = X_sparse[:, 0]
X_res_both = X_sparse
for col in [0, [0], slice(0, 1)]:
for remainder, res in [('drop', X_res_first),
('passthrough', X_res_both)]:
ct = ColumnTransformer([('trans', Trans(), col)],
remainder=remainder,
sparse_threshold=0.8)
assert sparse.issparse(ct.fit_transform(X_sparse))
assert_allclose_dense_sparse(ct.fit_transform(X_sparse), res)
assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
res)
for col in [[0, 1], slice(0, 2)]:
ct = ColumnTransformer([('trans', Trans(), col)],
sparse_threshold=0.8)
assert sparse.issparse(ct.fit_transform(X_sparse))
assert_allclose_dense_sparse(ct.fit_transform(X_sparse), X_res_both)
assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
X_res_both)
def test_column_transformer_list():
X_list = [
[1, float('nan'), 'a'],
[0, 0, 'b']
]
expected_result = np.array([
[1, float('nan'), 1, 0],
[-1, 0, 0, 1],
])
ct = ColumnTransformer([
('numerical', StandardScaler(), [0, 1]),
('categorical', OneHotEncoder(), [2]),
])
assert_array_equal(ct.fit_transform(X_list), expected_result)
assert_array_equal(ct.fit(X_list).transform(X_list), expected_result)
def test_column_transformer_sparse_stacking():
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
col_trans = ColumnTransformer([('trans1', Trans(), [0]),
('trans2', SparseMatrixTrans(), 1)],
sparse_threshold=0.8)
col_trans.fit(X_array)
X_trans = col_trans.transform(X_array)
assert sparse.issparse(X_trans)
assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
assert_array_equal(X_trans.toarray()[:, 1:], np.eye(X_trans.shape[0]))
assert len(col_trans.transformers_) == 2
assert col_trans.transformers_[-1][0] != 'remainder'
col_trans = ColumnTransformer([('trans1', Trans(), [0]),
('trans2', SparseMatrixTrans(), 1)],
sparse_threshold=0.1)
col_trans.fit(X_array)
X_trans = col_trans.transform(X_array)
assert not sparse.issparse(X_trans)
assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
assert_array_equal(X_trans[:, 1:], np.eye(X_trans.shape[0]))
def test_column_transformer_mixed_cols_sparse():
df = np.array([['a', 1, True],
['b', 2, False]],
dtype='O')
ct = make_column_transformer(
(OneHotEncoder(), [0]),
('passthrough', [1, 2]),
sparse_threshold=1.0
)
# this shouldn't fail, since boolean can be coerced into a numeric
# See: https://github.com/scikit-learn/scikit-learn/issues/11912
X_trans = ct.fit_transform(df)
assert X_trans.getformat() == 'csr'
assert_array_equal(X_trans.toarray(), np.array([[1, 0, 1, 1],
[0, 1, 2, 0]]))
ct = make_column_transformer(
(OneHotEncoder(), [0]),
('passthrough', [0]),
sparse_threshold=1.0
)
with pytest.raises(ValueError,
match="For a sparse output, all columns should"):
# this fails since strings `a` and `b` cannot be
# coerced into a numeric.
ct.fit_transform(df)
def test_column_transformer_sparse_threshold():
X_array = np.array([['a', 'b'], ['A', 'B']], dtype=object).T
# above data has sparsity of 4 / 8 = 0.5
# apply threshold even if all sparse
col_trans = ColumnTransformer([('trans1', OneHotEncoder(), [0]),
('trans2', OneHotEncoder(), [1])],
sparse_threshold=0.2)
res = col_trans.fit_transform(X_array)
assert not sparse.issparse(res)
assert not col_trans.sparse_output_
# mixed -> sparsity of (4 + 2) / 8 = 0.75
for thres in [0.75001, 1]:
col_trans = ColumnTransformer(
[('trans1', OneHotEncoder(sparse=True), [0]),
('trans2', OneHotEncoder(sparse=False), [1])],
sparse_threshold=thres)
res = col_trans.fit_transform(X_array)
assert sparse.issparse(res)
assert col_trans.sparse_output_
for thres in [0.75, 0]:
col_trans = ColumnTransformer(
[('trans1', OneHotEncoder(sparse=True), [0]),
('trans2', OneHotEncoder(sparse=False), [1])],
sparse_threshold=thres)
res = col_trans.fit_transform(X_array)
assert not sparse.issparse(res)
assert not col_trans.sparse_output_
# if nothing is sparse -> no sparse
for thres in [0.33, 0, 1]:
col_trans = ColumnTransformer(
[('trans1', OneHotEncoder(sparse=False), [0]),
('trans2', OneHotEncoder(sparse=False), [1])],
sparse_threshold=thres)
res = col_trans.fit_transform(X_array)
assert not sparse.issparse(res)
assert not col_trans.sparse_output_
def test_column_transformer_error_msg_1D():
X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
col_trans = ColumnTransformer([('trans', StandardScaler(), 0)])
assert_raise_message(ValueError, "1D data passed to a transformer",
col_trans.fit, X_array)
assert_raise_message(ValueError, "1D data passed to a transformer",
col_trans.fit_transform, X_array)
col_trans = ColumnTransformer([('trans', TransRaise(), 0)])
for func in [col_trans.fit, col_trans.fit_transform]:
assert_raise_message(ValueError, "specific message", func, X_array)
def test_2D_transformer_output():
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
# if one transformer is dropped, test that name is still correct
ct = ColumnTransformer([('trans1', 'drop', 0),
('trans2', TransNo2D(), 1)])
assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
ct.fit_transform, X_array)
# because fit is also doing transform, this raises already on fit
assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
ct.fit, X_array)
def test_2D_transformer_output_pandas():
pd = pytest.importorskip('pandas')
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_df = pd.DataFrame(X_array, columns=['col1', 'col2'])
# if one transformer is dropped, test that name is still correct
ct = ColumnTransformer([('trans1', TransNo2D(), 'col1')])
assert_raise_message(ValueError, "the 'trans1' transformer should be 2D",
ct.fit_transform, X_df)
# because fit is also doing transform, this raises already on fit
assert_raise_message(ValueError, "the 'trans1' transformer should be 2D",
ct.fit, X_df)
@pytest.mark.parametrize("remainder", ['drop', 'passthrough'])
def test_column_transformer_invalid_columns(remainder):
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
# general invalid
for col in [1.5, ['string', 1], slice(1, 's'), np.array([1.])]:
ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
assert_raise_message(ValueError, "No valid specification",
ct.fit, X_array)
# invalid for arrays
for col in ['string', ['string', 'other'], slice('a', 'b')]:
ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
assert_raise_message(ValueError, "Specifying the columns",
ct.fit, X_array)
# transformed n_features does not match fitted n_features
col = [0, 1]
ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
ct.fit(X_array)
X_array_more = np.array([[0, 1, 2], [2, 4, 6], [3, 6, 9]]).T
msg = ("Given feature/column names or counts do not match the ones for "
"the data given during fit.")
with pytest.warns(FutureWarning, match=msg):
ct.transform(X_array_more) # Should accept added columns, for now
X_array_fewer = np.array([[0, 1, 2], ]).T
err_msg = 'Number of features'
with pytest.raises(ValueError, match=err_msg):
ct.transform(X_array_fewer)
def test_column_transformer_invalid_transformer():
class NoTrans(BaseEstimator):
def fit(self, X, y=None):
return self
def predict(self, X):
return X
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
ct = ColumnTransformer([('trans', NoTrans(), [0])])
assert_raise_message(TypeError, "All estimators should implement fit",
ct.fit, X_array)
def test_make_column_transformer():
scaler = StandardScaler()
norm = Normalizer()
ct = make_column_transformer((scaler, 'first'), (norm, ['second']))
names, transformers, columns = zip(*ct.transformers)
assert names == ("standardscaler", "normalizer")
assert transformers == (scaler, norm)
assert columns == ('first', ['second'])
def test_make_column_transformer_pandas():
pd = pytest.importorskip('pandas')
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_df = pd.DataFrame(X_array, columns=['first', 'second'])
norm = Normalizer()
ct1 = ColumnTransformer([('norm', Normalizer(), X_df.columns)])
ct2 = make_column_transformer((norm, X_df.columns))
assert_almost_equal(ct1.fit_transform(X_df),
ct2.fit_transform(X_df))
def test_make_column_transformer_kwargs():
scaler = StandardScaler()
norm = Normalizer()
ct = make_column_transformer((scaler, 'first'), (norm, ['second']),
n_jobs=3, remainder='drop',
sparse_threshold=0.5)
assert ct.transformers == make_column_transformer(
(scaler, 'first'), (norm, ['second'])).transformers
assert ct.n_jobs == 3
assert ct.remainder == 'drop'
assert ct.sparse_threshold == 0.5
# invalid keyword parameters should raise an error message
assert_raise_message(
TypeError,
'Unknown keyword arguments: "transformer_weights"',
make_column_transformer, (scaler, 'first'), (norm, ['second']),
transformer_weights={'pca': 10, 'Transf': 1}
)
def test_make_column_transformer_remainder_transformer():
scaler = StandardScaler()
norm = Normalizer()
remainder = StandardScaler()
ct = make_column_transformer((scaler, 'first'), (norm, ['second']),
remainder=remainder)
assert ct.remainder == remainder
def test_column_transformer_get_set_params():
ct = ColumnTransformer([('trans1', StandardScaler(), [0]),
('trans2', StandardScaler(), [1])])
exp = {'n_jobs': None,
'remainder': 'drop',
'sparse_threshold': 0.3,
'trans1': ct.transformers[0][1],
'trans1__copy': True,
'trans1__with_mean': True,
'trans1__with_std': True,
'trans2': ct.transformers[1][1],
'trans2__copy': True,
'trans2__with_mean': True,
'trans2__with_std': True,
'transformers': ct.transformers,
'transformer_weights': None,
'verbose': False}
assert ct.get_params() == exp
ct.set_params(trans1__with_mean=False)
assert not ct.get_params()['trans1__with_mean']
ct.set_params(trans1='passthrough')
exp = {'n_jobs': None,
'remainder': 'drop',
'sparse_threshold': 0.3,
'trans1': 'passthrough',
'trans2': ct.transformers[1][1],
'trans2__copy': True,
'trans2__with_mean': True,
'trans2__with_std': True,
'transformers': ct.transformers,
'transformer_weights': None,
'verbose': False}
assert ct.get_params() == exp
def test_column_transformer_named_estimators():
X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
ct = ColumnTransformer([('trans1', StandardScaler(), [0]),
('trans2', StandardScaler(with_std=False), [1])])
assert not hasattr(ct, 'transformers_')
ct.fit(X_array)
assert hasattr(ct, 'transformers_')
assert isinstance(ct.named_transformers_['trans1'], StandardScaler)
assert isinstance(ct.named_transformers_.trans1, StandardScaler)
assert isinstance(ct.named_transformers_['trans2'], StandardScaler)
assert isinstance(ct.named_transformers_.trans2, StandardScaler)
assert not ct.named_transformers_.trans2.with_std
# check it are fitted transformers
assert ct.named_transformers_.trans1.mean_ == 1.
def test_column_transformer_cloning():
X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
ct = ColumnTransformer([('trans', StandardScaler(), [0])])
ct.fit(X_array)
assert not hasattr(ct.transformers[0][1], 'mean_')
assert hasattr(ct.transformers_[0][1], 'mean_')
ct = ColumnTransformer([('trans', StandardScaler(), [0])])
ct.fit_transform(X_array)
assert not hasattr(ct.transformers[0][1], 'mean_')
assert hasattr(ct.transformers_[0][1], 'mean_')
def test_column_transformer_get_feature_names():
X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
ct = ColumnTransformer([('trans', Trans(), [0, 1])])
# raise correct error when not fitted
with pytest.raises(NotFittedError):
ct.get_feature_names()
# raise correct error when no feature names are available
ct.fit(X_array)
assert_raise_message(AttributeError,
"Transformer trans (type Trans) does not provide "
"get_feature_names", ct.get_feature_names)
# working example
X = np.array([[{'a': 1, 'b': 2}, {'a': 3, 'b': 4}],
[{'c': 5}, {'c': 6}]], dtype=object).T
ct = ColumnTransformer(
[('col' + str(i), DictVectorizer(), i) for i in range(2)])
ct.fit(X)
assert ct.get_feature_names() == ['col0__a', 'col0__b', 'col1__c']
# passthrough transformers not supported
ct = ColumnTransformer([('trans', 'passthrough', [0, 1])])
ct.fit(X)
assert_raise_message(
NotImplementedError, 'get_feature_names is not yet supported',
ct.get_feature_names)
ct = ColumnTransformer([('trans', DictVectorizer(), 0)],
remainder='passthrough')
ct.fit(X)
assert_raise_message(
NotImplementedError, 'get_feature_names is not yet supported',
ct.get_feature_names)
# drop transformer
ct = ColumnTransformer(
[('col0', DictVectorizer(), 0), ('col1', 'drop', 1)])
ct.fit(X)
assert ct.get_feature_names() == ['col0__a', 'col0__b']
def test_column_transformer_special_strings():
# one 'drop' -> ignore
X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
ct = ColumnTransformer(
[('trans1', Trans(), [0]), ('trans2', 'drop', [1])])
exp = np.array([[0.], [1.], [2.]])
assert_array_equal(ct.fit_transform(X_array), exp)
assert_array_equal(ct.fit(X_array).transform(X_array), exp)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != 'remainder'
# all 'drop' -> return shape 0 array
ct = ColumnTransformer(
[('trans1', 'drop', [0]), ('trans2', 'drop', [1])])
assert_array_equal(ct.fit(X_array).transform(X_array).shape, (3, 0))
assert_array_equal(ct.fit_transform(X_array).shape, (3, 0))
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != 'remainder'
# 'passthrough'
X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
ct = ColumnTransformer(
[('trans1', Trans(), [0]), ('trans2', 'passthrough', [1])])
exp = X_array
assert_array_equal(ct.fit_transform(X_array), exp)
assert_array_equal(ct.fit(X_array).transform(X_array), exp)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] != 'remainder'
# None itself / other string is not valid
for val in [None, 'other']:
ct = ColumnTransformer(
[('trans1', Trans(), [0]), ('trans2', None, [1])])
assert_raise_message(TypeError, "All estimators should implement",
ct.fit_transform, X_array)
assert_raise_message(TypeError, "All estimators should implement",
ct.fit, X_array)
def test_column_transformer_remainder():
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
X_res_second = np.array([2, 4, 6]).reshape(-1, 1)
X_res_both = X_array
# default drop
ct = ColumnTransformer([('trans1', Trans(), [0])])
assert_array_equal(ct.fit_transform(X_array), X_res_first)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert ct.transformers_[-1][1] == 'drop'
assert_array_equal(ct.transformers_[-1][2], [1])
# specify passthrough
ct = ColumnTransformer([('trans', Trans(), [0])], remainder='passthrough')
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert ct.transformers_[-1][1] == 'passthrough'
assert_array_equal(ct.transformers_[-1][2], [1])
# column order is not preserved (passed through added to end)
ct = ColumnTransformer([('trans1', Trans(), [1])],
remainder='passthrough')
assert_array_equal(ct.fit_transform(X_array), X_res_both[:, ::-1])
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both[:, ::-1])
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert ct.transformers_[-1][1] == 'passthrough'
assert_array_equal(ct.transformers_[-1][2], [0])
# passthrough when all actual transformers are skipped
ct = ColumnTransformer([('trans1', 'drop', [0])],
remainder='passthrough')
assert_array_equal(ct.fit_transform(X_array), X_res_second)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_second)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert ct.transformers_[-1][1] == 'passthrough'
assert_array_equal(ct.transformers_[-1][2], [1])
# error on invalid arg
ct = ColumnTransformer([('trans1', Trans(), [0])], remainder=1)
assert_raise_message(
ValueError,
"remainder keyword needs to be one of \'drop\', \'passthrough\', "
"or estimator.", ct.fit, X_array)
assert_raise_message(
ValueError,
"remainder keyword needs to be one of \'drop\', \'passthrough\', "
"or estimator.", ct.fit_transform, X_array)
# check default for make_column_transformer
ct = make_column_transformer((Trans(), [0]))
assert ct.remainder == 'drop'
@pytest.mark.parametrize("key", [[0], np.array([0]), slice(0, 1),
np.array([True, False])])
def test_column_transformer_remainder_numpy(key):
# test different ways that columns are specified with passthrough
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_both = X_array
ct = ColumnTransformer([('trans1', Trans(), key)],
remainder='passthrough')
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert ct.transformers_[-1][1] == 'passthrough'
assert_array_equal(ct.transformers_[-1][2], [1])
@pytest.mark.parametrize(
"key", [[0], slice(0, 1), np.array([True, False]), ['first'], 'pd-index',
np.array(['first']), np.array(['first'], dtype=object),
slice(None, 'first'), slice('first', 'first')])
def test_column_transformer_remainder_pandas(key):
# test different ways that columns are specified with passthrough
pd = pytest.importorskip('pandas')
if isinstance(key, str) and key == 'pd-index':
key = pd.Index(['first'])
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_df = pd.DataFrame(X_array, columns=['first', 'second'])
X_res_both = X_array
ct = ColumnTransformer([('trans1', Trans(), key)],
remainder='passthrough')
assert_array_equal(ct.fit_transform(X_df), X_res_both)
assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert ct.transformers_[-1][1] == 'passthrough'
assert_array_equal(ct.transformers_[-1][2], [1])
@pytest.mark.parametrize("key", [[0], np.array([0]), slice(0, 1),
np.array([True, False, False])])
def test_column_transformer_remainder_transformer(key):
X_array = np.array([[0, 1, 2],
[2, 4, 6],
[8, 6, 4]]).T
X_res_both = X_array.copy()
# second and third columns are doubled when remainder = DoubleTrans
X_res_both[:, 1:3] *= 2
ct = ColumnTransformer([('trans1', Trans(), key)],
remainder=DoubleTrans())
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert isinstance(ct.transformers_[-1][1], DoubleTrans)
assert_array_equal(ct.transformers_[-1][2], [1, 2])
def test_column_transformer_no_remaining_remainder_transformer():
X_array = np.array([[0, 1, 2],
[2, 4, 6],
[8, 6, 4]]).T
ct = ColumnTransformer([('trans1', Trans(), [0, 1, 2])],
remainder=DoubleTrans())
assert_array_equal(ct.fit_transform(X_array), X_array)
assert_array_equal(ct.fit(X_array).transform(X_array), X_array)
assert len(ct.transformers_) == 1
assert ct.transformers_[-1][0] != 'remainder'
def test_column_transformer_drops_all_remainder_transformer():
X_array = np.array([[0, 1, 2],
[2, 4, 6],
[8, 6, 4]]).T
# columns are doubled when remainder = DoubleTrans
X_res_both = 2 * X_array.copy()[:, 1:3]
ct = ColumnTransformer([('trans1', 'drop', [0])],
remainder=DoubleTrans())
assert_array_equal(ct.fit_transform(X_array), X_res_both)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert isinstance(ct.transformers_[-1][1], DoubleTrans)
assert_array_equal(ct.transformers_[-1][2], [1, 2])
def test_column_transformer_sparse_remainder_transformer():
X_array = np.array([[0, 1, 2],
[2, 4, 6],
[8, 6, 4]]).T
ct = ColumnTransformer([('trans1', Trans(), [0])],
remainder=SparseMatrixTrans(),
sparse_threshold=0.8)
X_trans = ct.fit_transform(X_array)
assert sparse.issparse(X_trans)
# SparseMatrixTrans creates 3 features for each column. There is
# one column in ``transformers``, thus:
assert X_trans.shape == (3, 3 + 1)
exp_array = np.hstack(
(X_array[:, 0].reshape(-1, 1), np.eye(3)))
assert_array_equal(X_trans.toarray(), exp_array)
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
assert_array_equal(ct.transformers_[-1][2], [1, 2])
def test_column_transformer_drop_all_sparse_remainder_transformer():
X_array = np.array([[0, 1, 2],
[2, 4, 6],
[8, 6, 4]]).T
ct = ColumnTransformer([('trans1', 'drop', [0])],
remainder=SparseMatrixTrans(),
sparse_threshold=0.8)
X_trans = ct.fit_transform(X_array)
assert sparse.issparse(X_trans)
# SparseMatrixTrans creates 3 features for each column, thus:
assert X_trans.shape == (3, 3)
assert_array_equal(X_trans.toarray(), np.eye(3))
assert len(ct.transformers_) == 2
assert ct.transformers_[-1][0] == 'remainder'
assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
assert_array_equal(ct.transformers_[-1][2], [1, 2])
def test_column_transformer_get_set_params_with_remainder():
ct = ColumnTransformer([('trans1', StandardScaler(), [0])],
remainder=StandardScaler())
exp = {'n_jobs': None,
'remainder': ct.remainder,
'remainder__copy': True,
'remainder__with_mean': True,
'remainder__with_std': True,
'sparse_threshold': 0.3,
'trans1': ct.transformers[0][1],
'trans1__copy': True,
'trans1__with_mean': True,
'trans1__with_std': True,
'transformers': ct.transformers,
'transformer_weights': None,
'verbose': False}
assert ct.get_params() == exp
ct.set_params(remainder__with_std=False)
assert not ct.get_params()['remainder__with_std']
ct.set_params(trans1='passthrough')
exp = {'n_jobs': None,
'remainder': ct.remainder,
'remainder__copy': True,
'remainder__with_mean': True,
'remainder__with_std': False,
'sparse_threshold': 0.3,
'trans1': 'passthrough',
'transformers': ct.transformers,
'transformer_weights': None,
'verbose': False}
assert ct.get_params() == exp
def test_column_transformer_no_estimators():
X_array = np.array([[0, 1, 2],
[2, 4, 6],
[8, 6, 4]]).astype('float').T
ct = ColumnTransformer([], remainder=StandardScaler())
params = ct.get_params()
assert params['remainder__with_mean']
X_trans = ct.fit_transform(X_array)
assert X_trans.shape == X_array.shape
assert len(ct.transformers_) == 1
assert ct.transformers_[-1][0] == 'remainder'
assert ct.transformers_[-1][2] == [0, 1, 2]
@pytest.mark.parametrize(
['est', 'pattern'],
[(ColumnTransformer([('trans1', Trans(), [0]), ('trans2', Trans(), [1])],
remainder=DoubleTrans()),
(r'\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n'
r'\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n'
r'\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$'
)),
(ColumnTransformer([('trans1', Trans(), [0]), ('trans2', Trans(), [1])],
remainder='passthrough'),
(r'\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n'
r'\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n'
r'\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$'
)),
(ColumnTransformer([('trans1', Trans(), [0]), ('trans2', 'drop', [1])],
remainder='passthrough'),
(r'\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n'
r'\[ColumnTransformer\].*\(2 of 2\) Processing remainder.* total=.*\n$'
)),
(ColumnTransformer([('trans1', Trans(), [0]),
('trans2', 'passthrough', [1])],
remainder='passthrough'),
(r'\[ColumnTransformer\].*\(1 of 3\) Processing trans1.* total=.*\n'
r'\[ColumnTransformer\].*\(2 of 3\) Processing trans2.* total=.*\n'
r'\[ColumnTransformer\].*\(3 of 3\) Processing remainder.* total=.*\n$'
)),
(ColumnTransformer([('trans1', Trans(), [0])], remainder='passthrough'),
(r'\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n'
r'\[ColumnTransformer\].*\(2 of 2\) Processing remainder.* total=.*\n$'
)),
(ColumnTransformer([('trans1', Trans(), [0]), ('trans2', Trans(), [1])],
remainder='drop'),
(r'\[ColumnTransformer\].*\(1 of 2\) Processing trans1.* total=.*\n'
r'\[ColumnTransformer\].*\(2 of 2\) Processing trans2.* total=.*\n$')),
(ColumnTransformer([('trans1', Trans(), [0])], remainder='drop'),
(r'\[ColumnTransformer\].*\(1 of 1\) Processing trans1.* total=.*\n$'))])
@pytest.mark.parametrize('method', ['fit', 'fit_transform'])
def test_column_transformer_verbose(est, pattern, method, capsys):
X_array = np.array([[0, 1, 2], [2, 4, 6], [8, 6, 4]]).T
func = getattr(est, method)
est.set_params(verbose=False)
func(X_array)
assert not capsys.readouterr().out, 'Got output for verbose=False'
est.set_params(verbose=True)
func(X_array)
assert re.match(pattern, capsys.readouterr()[0])
def test_column_transformer_no_estimators_set_params():
ct = ColumnTransformer([]).set_params(n_jobs=2)
assert ct.n_jobs == 2
def test_column_transformer_callable_specifier():
# assert that function gets the full array / dataframe
X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_res_first = np.array([[0, 1, 2]]).T
def func(X):
assert_array_equal(X, X_array)
return [0]
ct = ColumnTransformer([('trans', Trans(), func)],
remainder='drop')
assert_array_equal(ct.fit_transform(X_array), X_res_first)
assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
assert callable(ct.transformers[0][2])
assert ct.transformers_[0][2] == [0]
pd = pytest.importorskip('pandas')
X_df = pd.DataFrame(X_array, columns=['first', 'second'])
def func(X):
assert_array_equal(X.columns, X_df.columns)
assert_array_equal(X.values, X_df.values)
return ['first']
ct = ColumnTransformer([('trans', Trans(), func)],
remainder='drop')
assert_array_equal(ct.fit_transform(X_df), X_res_first)
assert_array_equal(ct.fit(X_df).transform(X_df), X_res_first)
assert callable(ct.transformers[0][2])
assert ct.transformers_[0][2] == ['first']
def test_column_transformer_negative_column_indexes():
X = np.random.randn(2, 2)
X_categories = np.array([[1], [2]])
X = np.concatenate([X, X_categories], axis=1)
ohe = OneHotEncoder()
tf_1 = ColumnTransformer([('ohe', ohe, [-1])], remainder='passthrough')
tf_2 = ColumnTransformer([('ohe', ohe, [2])], remainder='passthrough')
assert_array_equal(tf_1.fit_transform(X), tf_2.fit_transform(X))
@pytest.mark.parametrize("explicit_colname", ['first', 'second'])
def test_column_transformer_reordered_column_names_remainder(explicit_colname):
"""Regression test for issue #14223: 'Named col indexing fails with
ColumnTransformer remainder on changing DataFrame column ordering'
Should raise error on changed order combined with remainder.
Should allow for added columns in `transform` input DataFrame
as long as all preceding columns match.
"""
pd = pytest.importorskip('pandas')
X_fit_array = np.array([[0, 1, 2], [2, 4, 6]]).T
X_fit_df = pd.DataFrame(X_fit_array, columns=['first', 'second'])
X_trans_array = np.array([[2, 4, 6], [0, 1, 2]]).T
X_trans_df = pd.DataFrame(X_trans_array, columns=['second', 'first'])
tf = ColumnTransformer([('bycol', Trans(), explicit_colname)],
remainder=Trans())
tf.fit(X_fit_df)
err_msg = 'Column ordering must be equal'
warn_msg = ("Given feature/column names or counts do not match the ones "
"for the data given during fit.")
with pytest.raises(ValueError, match=err_msg):
tf.transform(X_trans_df)
# No error for added columns if ordering is identical
X_extended_df = X_fit_df.copy()
X_extended_df['third'] = [3, 6, 9]
with pytest.warns(FutureWarning, match=warn_msg):
tf.transform(X_extended_df) # No error should be raised, for now
# No 'columns' AttributeError when transform input is a numpy array
X_array = X_fit_array.copy()
err_msg = 'Specifying the columns'
with pytest.raises(ValueError, match=err_msg):
tf.transform(X_array)
def test_feature_name_validation():
"""Tests if the proper warning/error is raised if the columns do not match
during fit and transform."""
pd = pytest.importorskip("pandas")
X = np.ones(shape=(3, 2))
X_extra = np.ones(shape=(3, 3))
df = pd.DataFrame(X, columns=['a', 'b'])
df_extra = pd.DataFrame(X_extra, columns=['a', 'b', 'c'])
tf = ColumnTransformer([('bycol', Trans(), ['a', 'b'])])
tf.fit(df)
msg = ("Given feature/column names or counts do not match the ones for "
"the data given during fit.")
with pytest.warns(FutureWarning, match=msg):
tf.transform(df_extra)
tf = ColumnTransformer([('bycol', Trans(), [0])])
tf.fit(df)
with pytest.warns(FutureWarning, match=msg):
tf.transform(X_extra)
with warnings.catch_warnings(record=True) as warns:
tf.transform(X)
assert not warns
tf = ColumnTransformer([('bycol', Trans(), ['a'])],
remainder=Trans())
tf.fit(df)
with pytest.warns(FutureWarning, match=msg):
tf.transform(df_extra)
tf = ColumnTransformer([('bycol', Trans(), [0, -1])])
tf.fit(df)
msg = "At least one negative column was used to"
with pytest.raises(RuntimeError, match=msg):
tf.transform(df_extra)
tf = ColumnTransformer([('bycol', Trans(), slice(-1, -3, -1))])
tf.fit(df)
with pytest.raises(RuntimeError, match=msg):
tf.transform(df_extra)
with warnings.catch_warnings(record=True) as warns:
tf.transform(df)
assert not warns
@pytest.mark.parametrize("array_type", [np.asarray, sparse.csr_matrix])
def test_column_transformer_mask_indexing(array_type):
# Regression test for #14510
# Boolean array-like does not behave as boolean array with NumPy < 1.12
# and sparse matrices as well
X = np.transpose([[1, 2, 3], [4, 5, 6], [5, 6, 7], [8, 9, 10]])
X = array_type(X)
column_transformer = ColumnTransformer(
[('identity', FunctionTransformer(), [False, True, False, True])]
)
X_trans = column_transformer.fit_transform(X)
assert X_trans.shape == (3, 2)
@pytest.mark.parametrize('cols, pattern, include, exclude', [
(['col_int', 'col_float'], None, np.number, None),
(['col_int', 'col_float'], None, None, object),
(['col_int', 'col_float'], None, [np.int, np.float], None),
(['col_str'], None, [np.object], None),
(['col_str'], None, np.object, None),
(['col_float'], None, float, None),
(['col_float'], 'at$', [np.number], None),
(['col_int'], None, [np.int], None),
(['col_int'], '^col_int', [np.number], None),
(['col_float', 'col_str'], 'float|str', None, None),
(['col_str'], '^col_s', None, [np.int]),
([], 'str$', np.float, None),
(['col_int', 'col_float', 'col_str'], None, [np.number, np.object], None),
])
def test_make_column_selector_with_select_dtypes(cols, pattern, include,
exclude):
pd = pytest.importorskip('pandas')
X_df = pd.DataFrame({
'col_int': np.array([0, 1, 2], dtype=np.int),
'col_float': np.array([0.0, 1.0, 2.0], dtype=np.float),
'col_str': ["one", "two", "three"],
}, columns=['col_int', 'col_float', 'col_str'])
selector = make_column_selector(
dtype_include=include, dtype_exclude=exclude, pattern=pattern)
assert_array_equal(selector(X_df), cols)
def test_column_transformer_with_make_column_selector():
# Functional test for column transformer + column selector
pd = pytest.importorskip('pandas')
X_df = pd.DataFrame({
'col_int': np.array([0, 1, 2], dtype=np.int),
'col_float': np.array([0.0, 1.0, 2.0], dtype=np.float),
'col_cat': ["one", "two", "one"],
'col_str': ["low", "middle", "high"]
}, columns=['col_int', 'col_float', 'col_cat', 'col_str'])
X_df['col_str'] = X_df['col_str'].astype('category')
cat_selector = make_column_selector(dtype_include=['category', object])
num_selector = make_column_selector(dtype_include=np.number)
ohe = OneHotEncoder()
scaler = StandardScaler()
ct_selector = make_column_transformer((ohe, cat_selector),
(scaler, num_selector))
ct_direct = make_column_transformer((ohe, ['col_cat', 'col_str']),
(scaler, ['col_float', 'col_int']))
X_selector = ct_selector.fit_transform(X_df)
X_direct = ct_direct.fit_transform(X_df)
assert_allclose(X_selector, X_direct)
def test_make_column_selector_error():
selector = make_column_selector(dtype_include=np.number)
X = np.array([[0.1, 0.2]])
msg = ("make_column_selector can only be applied to pandas dataframes")
with pytest.raises(ValueError, match=msg):
selector(X)
def test_make_column_selector_pickle():
pd = pytest.importorskip('pandas')
X_df = pd.DataFrame({
'col_int': np.array([0, 1, 2], dtype=np.int),
'col_float': np.array([0.0, 1.0, 2.0], dtype=np.float),
'col_str': ["one", "two", "three"],
}, columns=['col_int', 'col_float', 'col_str'])
selector = make_column_selector(dtype_include=[object])
selector_picked = pickle.loads(pickle.dumps(selector))
assert_array_equal(selector(X_df), selector_picked(X_df))