Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scikit-learn   python

Repository URL to install this package:

Version: 0.22 

/ datasets / _lfw.py

"""Labeled Faces in the Wild (LFW) dataset

This dataset is a collection of JPEG pictures of famous people collected
over the internet, all details are available on the official website:

    http://vis-www.cs.umass.edu/lfw/
"""
# Copyright (c) 2011 Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

from os import listdir, makedirs, remove
from os.path import dirname, join, exists, isdir

import logging
from distutils.version import LooseVersion

import numpy as np
import joblib
from joblib import Memory

from ._base import get_data_home, _fetch_remote, RemoteFileMetadata
from ..utils import Bunch

logger = logging.getLogger(__name__)

# The original data can be found in:
# http://vis-www.cs.umass.edu/lfw/lfw.tgz
ARCHIVE = RemoteFileMetadata(
    filename='lfw.tgz',
    url='https://ndownloader.figshare.com/files/5976018',
    checksum=('055f7d9c632d7370e6fb4afc7468d40f'
              '970c34a80d4c6f50ffec63f5a8d536c0'))

# The original funneled data can be found in:
# http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz
FUNNELED_ARCHIVE = RemoteFileMetadata(
    filename='lfw-funneled.tgz',
    url='https://ndownloader.figshare.com/files/5976015',
    checksum=('b47c8422c8cded889dc5a13418c4bc2a'
              'bbda121092b3533a83306f90d900100a'))

# The original target data can be found in:
# http://vis-www.cs.umass.edu/lfw/pairsDevTrain.txt',
# http://vis-www.cs.umass.edu/lfw/pairsDevTest.txt',
# http://vis-www.cs.umass.edu/lfw/pairs.txt',
TARGETS = (
    RemoteFileMetadata(
        filename='pairsDevTrain.txt',
        url='https://ndownloader.figshare.com/files/5976012',
        checksum=('1d454dada7dfeca0e7eab6f65dc4e97a'
                  '6312d44cf142207be28d688be92aabfa')),

    RemoteFileMetadata(
        filename='pairsDevTest.txt',
        url='https://ndownloader.figshare.com/files/5976009',
        checksum=('7cb06600ea8b2814ac26e946201cdb30'
                  '4296262aad67d046a16a7ec85d0ff87c')),

    RemoteFileMetadata(
        filename='pairs.txt',
        url='https://ndownloader.figshare.com/files/5976006',
        checksum=('ea42330c62c92989f9d7c03237ed5d59'
                  '1365e89b3e649747777b70e692dc1592')),
)


#
# Common private utilities for data fetching from the original LFW website
# local disk caching, and image decoding.
#


def _check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True):
    """Helper function to download any missing LFW data"""

    data_home = get_data_home(data_home=data_home)
    lfw_home = join(data_home, "lfw_home")

    if not exists(lfw_home):
        makedirs(lfw_home)

    for target in TARGETS:
        target_filepath = join(lfw_home, target.filename)
        if not exists(target_filepath):
            if download_if_missing:
                logger.info("Downloading LFW metadata: %s", target.url)
                _fetch_remote(target, dirname=lfw_home)
            else:
                raise IOError("%s is missing" % target_filepath)

    if funneled:
        data_folder_path = join(lfw_home, "lfw_funneled")
        archive = FUNNELED_ARCHIVE
    else:
        data_folder_path = join(lfw_home, "lfw")
        archive = ARCHIVE

    if not exists(data_folder_path):
        archive_path = join(lfw_home, archive.filename)
        if not exists(archive_path):
            if download_if_missing:
                logger.info("Downloading LFW data (~200MB): %s",
                            archive.url)
                _fetch_remote(archive, dirname=lfw_home)
            else:
                raise IOError("%s is missing" % archive_path)

        import tarfile
        logger.debug("Decompressing the data archive to %s", data_folder_path)
        tarfile.open(archive_path, "r:gz").extractall(path=lfw_home)
        remove(archive_path)

    return lfw_home, data_folder_path


def _load_imgs(file_paths, slice_, color, resize):
    """Internally used to load images"""
    # import PIL only when needed
    from ..externals._pilutil import imread, imresize

    # compute the portion of the images to load to respect the slice_ parameter
    # given by the caller
    default_slice = (slice(0, 250), slice(0, 250))
    if slice_ is None:
        slice_ = default_slice
    else:
        slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice))

    h_slice, w_slice = slice_
    h = (h_slice.stop - h_slice.start) // (h_slice.step or 1)
    w = (w_slice.stop - w_slice.start) // (w_slice.step or 1)

    if resize is not None:
        resize = float(resize)
        h = int(resize * h)
        w = int(resize * w)

    # allocate some contiguous memory to host the decoded image slices
    n_faces = len(file_paths)
    if not color:
        faces = np.zeros((n_faces, h, w), dtype=np.float32)
    else:
        faces = np.zeros((n_faces, h, w, 3), dtype=np.float32)

    # iterate over the collected file path to load the jpeg files as numpy
    # arrays
    for i, file_path in enumerate(file_paths):
        if i % 1000 == 0:
            logger.debug("Loading face #%05d / %05d", i + 1, n_faces)

        # Checks if jpeg reading worked. Refer to issue #3594 for more
        # details.
        img = imread(file_path)
        if img.ndim == 0:
            raise RuntimeError("Failed to read the image file %s, "
                               "Please make sure that libjpeg is installed"
                               % file_path)

        face = np.asarray(img[slice_], dtype=np.float32)
        face /= 255.0  # scale uint8 coded colors to the [0.0, 1.0] floats
        if resize is not None:
            face = imresize(face, resize)
        if not color:
            # average the color channels to compute a gray levels
            # representation
            face = face.mean(axis=2)

        faces[i, ...] = face

    return faces


#
# Task #1:  Face Identification on picture with names
#

def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None,
                      min_faces_per_person=0):
    """Perform the actual data loading for the lfw people dataset

    This operation is meant to be cached by a joblib wrapper.
    """
    # scan the data folder content to retain people with more that
    # `min_faces_per_person` face pictures
    person_names, file_paths = [], []
    for person_name in sorted(listdir(data_folder_path)):
        folder_path = join(data_folder_path, person_name)
        if not isdir(folder_path):
            continue
        paths = [join(folder_path, f) for f in sorted(listdir(folder_path))]
        n_pictures = len(paths)
        if n_pictures >= min_faces_per_person:
            person_name = person_name.replace('_', ' ')
            person_names.extend([person_name] * n_pictures)
            file_paths.extend(paths)

    n_faces = len(file_paths)
    if n_faces == 0:
        raise ValueError("min_faces_per_person=%d is too restrictive" %
                         min_faces_per_person)

    target_names = np.unique(person_names)
    target = np.searchsorted(target_names, person_names)

    faces = _load_imgs(file_paths, slice_, color, resize)

    # shuffle the faces with a deterministic RNG scheme to avoid having
    # all faces of the same person in a row, as it would break some
    # cross validation and learning algorithms such as SGD and online
    # k-means that make an IID assumption

    indices = np.arange(n_faces)
    np.random.RandomState(42).shuffle(indices)
    faces, target = faces[indices], target[indices]
    return faces, target, target_names


def fetch_lfw_people(data_home=None, funneled=True, resize=0.5,
                     min_faces_per_person=0, color=False,
                     slice_=(slice(70, 195), slice(78, 172)),
                     download_if_missing=True, return_X_y=False):
    """Load the Labeled Faces in the Wild (LFW) people dataset \
(classification).

    Download it if necessary.

    =================   =======================
    Classes                                5749
    Samples total                         13233
    Dimensionality                         5828
    Features            real, between 0 and 255
    =================   =======================

    Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.

    Parameters
    ----------
    data_home : optional, default: None
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    funneled : boolean, optional, default: True
        Download and use the funneled variant of the dataset.

    resize : float, optional, default 0.5
        Ratio used to resize the each face picture.

    min_faces_per_person : int, optional, default None
        The extracted dataset will only retain pictures of people that have at
        least `min_faces_per_person` different pictures.

    color : boolean, optional, default False
        Keep the 3 RGB channels instead of averaging them to a single
        gray level channel. If color is True the shape of the data has
        one more dimension than the shape with color = False.

    slice_ : optional
        Provide a custom 2D slice (height, width) to extract the
        'interesting' part of the jpeg files and avoid use statistical
        correlation from the background

    download_if_missing : optional, True by default
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : boolean, default=False.
        If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch
        object. See below for more information about the `dataset.data` and
        `dataset.target` object.

        .. versionadded:: 0.20

    Returns
    -------
    dataset : dict-like object with the following attributes:

    dataset.data : numpy array of shape (13233, 2914)
        Each row corresponds to a ravelled face image of original size 62 x 47
        pixels. Changing the ``slice_`` or resize parameters will change the
        shape of the output.

    dataset.images : numpy array of shape (13233, 62, 47)
        Each row is a face image corresponding to one of the 5749 people in
        the dataset. Changing the ``slice_`` or resize parameters will change
        the shape of the output.

    dataset.target : numpy array of shape (13233,)
        Labels associated to each face image. Those labels range from 0-5748
        and correspond to the person IDs.

    dataset.DESCR : string
        Description of the Labeled Faces in the Wild (LFW) dataset.

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.20

    """
    lfw_home, data_folder_path = _check_fetch_lfw(
        data_home=data_home, funneled=funneled,
        download_if_missing=download_if_missing)
    logger.debug('Loading LFW people faces from %s', lfw_home)

    # wrap the loader in a memoizing function that will return memmaped data
    # arrays for optimal memory usage
    if LooseVersion(joblib.__version__) < LooseVersion('0.12'):
        # Deal with change of API in joblib
        m = Memory(cachedir=lfw_home, compress=6, verbose=0)
    else:
        m = Memory(location=lfw_home, compress=6, verbose=0)
    load_func = m.cache(_fetch_lfw_people)

    # load and memoize the pairs as np arrays
    faces, target, target_names = load_func(
        data_folder_path, resize=resize,
        min_faces_per_person=min_faces_per_person, color=color, slice_=slice_)

    X = faces.reshape(len(faces), -1)

    module_path = dirname(__file__)
    with open(join(module_path, 'descr', 'lfw.rst')) as rst_file:
        fdescr = rst_file.read()

    if return_X_y:
        return X, target

    # pack the results as a Bunch instance
    return Bunch(data=X, images=faces,
                 target=target, target_names=target_names,
                 DESCR=fdescr)


#
# Task #2:  Face Verification on pairs of face pictures
#


def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None,
                     color=False, resize=None):
    """Perform the actual data loading for the LFW pairs dataset

    This operation is meant to be cached by a joblib wrapper.
    """
    # parse the index file to find the number of pairs to be able to allocate
    # the right amount of memory before starting to decode the jpeg files
    with open(index_file_path, 'rb') as index_file:
        split_lines = [ln.decode().strip().split('\t') for ln in index_file]
    pair_specs = [sl for sl in split_lines if len(sl) > 2]
    n_pairs = len(pair_specs)

    # iterating over the metadata lines for each pair to find the filename to
    # decode and load in memory
    target = np.zeros(n_pairs, dtype=np.int)
    file_paths = list()
    for i, components in enumerate(pair_specs):
        if len(components) == 3:
            target[i] = 1
            pair = (
                (components[0], int(components[1]) - 1),
                (components[0], int(components[2]) - 1),
            )
        elif len(components) == 4:
            target[i] = 0
            pair = (
                (components[0], int(components[1]) - 1),
                (components[2], int(components[3]) - 1),
            )
        else:
            raise ValueError("invalid line %d: %r" % (i + 1, components))
        for j, (name, idx) in enumerate(pair):
            try:
                person_folder = join(data_folder_path, name)
            except TypeError:
                person_folder = join(data_folder_path, str(name, 'UTF-8'))
            filenames = list(sorted(listdir(person_folder)))
            file_path = join(person_folder, filenames[idx])
            file_paths.append(file_path)

    pairs = _load_imgs(file_paths, slice_, color, resize)
    shape = list(pairs.shape)
    n_faces = shape.pop(0)
    shape.insert(0, 2)
    shape.insert(0, n_faces // 2)
    pairs.shape = shape

    return pairs, target, np.array(['Different persons', 'Same person'])


def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5,
                    color=False, slice_=(slice(70, 195), slice(78, 172)),
                    download_if_missing=True):
    """Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).

    Download it if necessary.

    =================   =======================
    Classes                                5749
    Samples total                         13233
    Dimensionality                         5828
    Features            real, between 0 and 255
    =================   =======================

    In the official `README.txt`_ this task is described as the
    "Restricted" task.  As I am not sure as to implement the
    "Unrestricted" variant correctly, I left it as unsupported for now.

      .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt

    The original images are 250 x 250 pixels, but the default slice and resize
    arguments reduce them to 62 x 47.

    Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.

    Parameters
    ----------
    subset : optional, default: 'train'
        Select the dataset to load: 'train' for the development training
        set, 'test' for the development test set, and '10_folds' for the
        official evaluation set that is meant to be used with a 10-folds
        cross validation.

    data_home : optional, default: None
        Specify another download and cache folder for the datasets. By
        default all scikit-learn data is stored in '~/scikit_learn_data'
        subfolders.

    funneled : boolean, optional, default: True
        Download and use the funneled variant of the dataset.

    resize : float, optional, default 0.5
        Ratio used to resize the each face picture.

    color : boolean, optional, default False
        Keep the 3 RGB channels instead of averaging them to a single
        gray level channel. If color is True the shape of the data has
        one more dimension than the shape with color = False.

    slice_ : optional
        Provide a custom 2D slice (height, width) to extract the
        'interesting' part of the jpeg files and avoid use statistical
        correlation from the background

    download_if_missing : optional, True by default
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    Returns
    -------
    The data is returned as a Bunch object with the following attributes:

    data : numpy array of shape (2200, 5828). Shape depends on ``subset``.
        Each row corresponds to 2 ravel'd face images of original size 62 x 47
        pixels. Changing the ``slice_``, ``resize`` or ``subset`` parameters
        will change the shape of the output.

    pairs : numpy array of shape (2200, 2, 62, 47). Shape depends on ``subset``
        Each row has 2 face images corresponding to same or different person
        from the dataset containing 5749 people. Changing the ``slice_``,
        ``resize`` or ``subset`` parameters will change the shape of the
        output.

    target : numpy array of shape (2200,). Shape depends on ``subset``.
        Labels associated to each pair of images. The two label values being
        different persons or the same person.

    DESCR : string
        Description of the Labeled Faces in the Wild (LFW) dataset.

    """
    lfw_home, data_folder_path = _check_fetch_lfw(
        data_home=data_home, funneled=funneled,
        download_if_missing=download_if_missing)
    logger.debug('Loading %s LFW pairs from %s', subset, lfw_home)

    # wrap the loader in a memoizing function that will return memmaped data
    # arrays for optimal memory usage
    if LooseVersion(joblib.__version__) < LooseVersion('0.12'):
        # Deal with change of API in joblib
        m = Memory(cachedir=lfw_home, compress=6, verbose=0)
    else:
        m = Memory(location=lfw_home, compress=6, verbose=0)
    load_func = m.cache(_fetch_lfw_pairs)

    # select the right metadata file according to the requested subset
    label_filenames = {
        'train': 'pairsDevTrain.txt',
        'test': 'pairsDevTest.txt',
        '10_folds': 'pairs.txt',
    }
    if subset not in label_filenames:
        raise ValueError("subset='%s' is invalid: should be one of %r" % (
            subset, list(sorted(label_filenames.keys()))))
    index_file_path = join(lfw_home, label_filenames[subset])

    # load and memoize the pairs as np arrays
    pairs, target, target_names = load_func(
        index_file_path, data_folder_path, resize=resize, color=color,
        slice_=slice_)

    module_path = dirname(__file__)
    with open(join(module_path, 'descr', 'lfw.rst')) as rst_file:
        fdescr = rst_file.read()

    # pack the results as a Bunch instance
    return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs,
                 target=target, target_names=target_names,
                 DESCR=fdescr)