import os
import shutil
import tempfile
import warnings
import numpy
from pickle import loads
from pickle import dumps
from functools import partial
import pytest
import joblib
import numpy as np
from sklearn.datasets import get_data_home
from sklearn.datasets import clear_data_home
from sklearn.datasets import load_files
from sklearn.datasets import load_sample_images
from sklearn.datasets import load_sample_image
from sklearn.datasets import load_digits
from sklearn.datasets import load_diabetes
from sklearn.datasets import load_linnerud
from sklearn.datasets import load_iris
from sklearn.datasets import load_breast_cancer
from sklearn.datasets import load_boston
from sklearn.datasets import load_wine
from sklearn.utils import Bunch
from sklearn.datasets._base import _refresh_cache
from sklearn.datasets.tests.test_common import check_return_X_y
from sklearn.externals._pilutil import pillow_installed
from sklearn.utils import IS_PYPY
def _remove_dir(path):
if os.path.isdir(path):
shutil.rmtree(path)
@pytest.fixture(scope="module")
def data_home(tmpdir_factory):
tmp_file = str(tmpdir_factory.mktemp("scikit_learn_data_home_test"))
yield tmp_file
_remove_dir(tmp_file)
@pytest.fixture(scope="module")
def load_files_root(tmpdir_factory):
tmp_file = str(tmpdir_factory.mktemp("scikit_learn_load_files_test"))
yield tmp_file
_remove_dir(tmp_file)
@pytest.fixture
def test_category_dir_1(load_files_root):
test_category_dir1 = tempfile.mkdtemp(dir=load_files_root)
sample_file = tempfile.NamedTemporaryFile(dir=test_category_dir1,
delete=False)
sample_file.write(b"Hello World!\n")
sample_file.close()
yield str(test_category_dir1)
_remove_dir(test_category_dir1)
@pytest.fixture
def test_category_dir_2(load_files_root):
test_category_dir2 = tempfile.mkdtemp(dir=load_files_root)
yield str(test_category_dir2)
_remove_dir(test_category_dir2)
def test_data_home(data_home):
# get_data_home will point to a pre-existing folder
data_home = get_data_home(data_home=data_home)
assert data_home == data_home
assert os.path.exists(data_home)
# clear_data_home will delete both the content and the folder it-self
clear_data_home(data_home=data_home)
assert not os.path.exists(data_home)
# if the folder is missing it will be created again
data_home = get_data_home(data_home=data_home)
assert os.path.exists(data_home)
def test_default_empty_load_files(load_files_root):
res = load_files(load_files_root)
assert len(res.filenames) == 0
assert len(res.target_names) == 0
assert res.DESCR is None
def test_default_load_files(test_category_dir_1, test_category_dir_2,
load_files_root):
if IS_PYPY:
pytest.xfail('[PyPy] fails due to string containing NUL characters')
res = load_files(load_files_root)
assert len(res.filenames) == 1
assert len(res.target_names) == 2
assert res.DESCR is None
assert res.data == [b"Hello World!\n"]
def test_load_files_w_categories_desc_and_encoding(
test_category_dir_1, test_category_dir_2, load_files_root):
if IS_PYPY:
pytest.xfail('[PyPy] fails due to string containing NUL characters')
category = os.path.abspath(test_category_dir_1).split('/').pop()
res = load_files(load_files_root, description="test",
categories=category, encoding="utf-8")
assert len(res.filenames) == 1
assert len(res.target_names) == 1
assert res.DESCR == "test"
assert res.data == ["Hello World!\n"]
def test_load_files_wo_load_content(
test_category_dir_1, test_category_dir_2, load_files_root):
res = load_files(load_files_root, load_content=False)
assert len(res.filenames) == 1
assert len(res.target_names) == 2
assert res.DESCR is None
assert res.get('data') is None
def test_load_sample_images():
try:
res = load_sample_images()
assert len(res.images) == 2
assert len(res.filenames) == 2
images = res.images
# assert is china image
assert np.all(images[0][0, 0, :] ==
np.array([174, 201, 231], dtype=np.uint8))
# assert is flower image
assert np.all(images[1][0, 0, :] ==
np.array([2, 19, 13], dtype=np.uint8))
assert res.DESCR
except ImportError:
warnings.warn("Could not load sample images, PIL is not available.")
def test_load_digits():
digits = load_digits()
assert digits.data.shape == (1797, 64)
assert numpy.unique(digits.target).size == 10
# test return_X_y option
check_return_X_y(digits, partial(load_digits))
def test_load_digits_n_class_lt_10():
digits = load_digits(9)
assert digits.data.shape == (1617, 64)
assert numpy.unique(digits.target).size == 9
def test_load_sample_image():
try:
china = load_sample_image('china.jpg')
assert china.dtype == 'uint8'
assert china.shape == (427, 640, 3)
except ImportError:
warnings.warn("Could not load sample images, PIL is not available.")
def test_load_missing_sample_image_error():
if pillow_installed:
with pytest.raises(AttributeError):
load_sample_image('blop.jpg')
else:
warnings.warn("Could not load sample images, PIL is not available.")
def test_load_diabetes():
res = load_diabetes()
assert res.data.shape == (442, 10)
assert res.target.size, 442
assert len(res.feature_names) == 10
assert res.DESCR
# test return_X_y option
check_return_X_y(res, partial(load_diabetes))
def test_load_linnerud():
res = load_linnerud()
assert res.data.shape == (20, 3)
assert res.target.shape == (20, 3)
assert len(res.target_names) == 3
assert res.DESCR
assert os.path.exists(res.data_filename)
assert os.path.exists(res.target_filename)
# test return_X_y option
check_return_X_y(res, partial(load_linnerud))
def test_load_iris():
res = load_iris()
assert res.data.shape == (150, 4)
assert res.target.size == 150
assert res.target_names.size == 3
assert res.DESCR
assert os.path.exists(res.filename)
# test return_X_y option
check_return_X_y(res, partial(load_iris))
def test_load_wine():
res = load_wine()
assert res.data.shape == (178, 13)
assert res.target.size == 178
assert res.target_names.size == 3
assert res.DESCR
# test return_X_y option
check_return_X_y(res, partial(load_wine))
def test_load_breast_cancer():
res = load_breast_cancer()
assert res.data.shape == (569, 30)
assert res.target.size == 569
assert res.target_names.size == 2
assert res.DESCR
assert os.path.exists(res.filename)
# test return_X_y option
check_return_X_y(res, partial(load_breast_cancer))
def test_load_boston():
res = load_boston()
assert res.data.shape == (506, 13)
assert res.target.size == 506
assert res.feature_names.size == 13
assert res.DESCR
assert os.path.exists(res.filename)
# test return_X_y option
check_return_X_y(res, partial(load_boston))
def test_loads_dumps_bunch():
bunch = Bunch(x="x")
bunch_from_pkl = loads(dumps(bunch))
bunch_from_pkl.x = "y"
assert bunch_from_pkl['x'] == bunch_from_pkl.x
def test_bunch_pickle_generated_with_0_16_and_read_with_0_17():
bunch = Bunch(key='original')
# This reproduces a problem when Bunch pickles have been created
# with scikit-learn 0.16 and are read with 0.17. Basically there
# is a surprising behaviour because reading bunch.key uses
# bunch.__dict__ (which is non empty for 0.16 Bunch objects)
# whereas assigning into bunch.key uses bunch.__setattr__. See
# https://github.com/scikit-learn/scikit-learn/issues/6196 for
# more details
bunch.__dict__['key'] = 'set from __dict__'
bunch_from_pkl = loads(dumps(bunch))
# After loading from pickle the __dict__ should have been ignored
assert bunch_from_pkl.key == 'original'
assert bunch_from_pkl['key'] == 'original'
# Making sure that changing the attr does change the value
# associated with __getitem__ as well
bunch_from_pkl.key = 'changed'
assert bunch_from_pkl.key == 'changed'
assert bunch_from_pkl['key'] == 'changed'
def test_bunch_dir():
# check that dir (important for autocomplete) shows attributes
data = load_iris()
assert "data" in dir(data)
def test_refresh_cache(monkeypatch):
# uses pytests monkeypatch fixture
# https://docs.pytest.org/en/latest/monkeypatch.html
def _load_warn(*args, **kwargs):
# raise the warning from "externals.joblib.__init__.py"
# this is raised when a file persisted by the old joblib is loaded now
msg = ("sklearn.externals.joblib is deprecated in 0.21 and will be "
"removed in 0.23. Please import this functionality directly "
"from joblib, which can be installed with: pip install joblib. "
"If this warning is raised when loading pickled models, you "
"may need to re-serialize those models with scikit-learn "
"0.21+.")
warnings.warn(msg, FutureWarning)
return 0
def _load_warn_unrelated(*args, **kwargs):
warnings.warn("unrelated warning", FutureWarning)
return 0
def _dump_safe(*args, **kwargs):
pass
def _dump_raise(*args, **kwargs):
# this happens if the file is read-only and joblib.dump fails to write
# on it.
raise IOError()
# test if the dataset spesific warning is raised if load raises the joblib
# warning, and dump fails to dump with new joblib
monkeypatch.setattr(joblib, "load", _load_warn)
monkeypatch.setattr(joblib, "dump", _dump_raise)
msg = "This dataset will stop being loadable in scikit-learn"
with pytest.warns(FutureWarning, match=msg):
_refresh_cache('test', 0)
# make sure no warning is raised if load raises the warning, but dump
# manages to dump the new data
monkeypatch.setattr(joblib, "load", _load_warn)
monkeypatch.setattr(joblib, "dump", _dump_safe)
with pytest.warns(None) as warns:
_refresh_cache('test', 0)
assert len(warns) == 0
# test if an unrelated warning is still passed through and not suppressed
# by _refresh_cache
monkeypatch.setattr(joblib, "load", _load_warn_unrelated)
monkeypatch.setattr(joblib, "dump", _dump_safe)
with pytest.warns(FutureWarning, match="unrelated warning"):
_refresh_cache('test', 0)