Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scikit-learn   python

Repository URL to install this package:

Version: 0.22 

/ datasets / tests / test_svmlight_format.py

from bz2 import BZ2File
import gzip
from io import BytesIO
import numpy as np
import scipy.sparse as sp
import os
import shutil
from tempfile import NamedTemporaryFile

import pytest

from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import fails_if_pypy

import sklearn
from sklearn.datasets import (load_svmlight_file, load_svmlight_files,
                              dump_svmlight_file)

currdir = os.path.dirname(os.path.abspath(__file__))
datafile = os.path.join(currdir, "data", "svmlight_classification.txt")
multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt")
invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt")
invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt")

pytestmark = fails_if_pypy


def test_load_svmlight_file():
    X, y = load_svmlight_file(datafile)

    # test X's shape
    assert X.indptr.shape[0] == 7
    assert X.shape[0] == 6
    assert X.shape[1] == 21
    assert y.shape[0] == 6

    # test X's non-zero values
    for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5),
                      (1, 5, 1.0), (1, 12, -3),
                      (2, 20, 27)):

        assert X[i, j] == val

    # tests X's zero values
    assert X[0, 3] == 0
    assert X[0, 5] == 0
    assert X[1, 8] == 0
    assert X[1, 16] == 0
    assert X[2, 18] == 0

    # test can change X's values
    X[0, 2] *= 2
    assert X[0, 2] == 5

    # test y
    assert_array_equal(y, [1, 2, 3, 4, 1, 2])


def test_load_svmlight_file_fd():
    # test loading from file descriptor
    X1, y1 = load_svmlight_file(datafile)

    fd = os.open(datafile, os.O_RDONLY)
    try:
        X2, y2 = load_svmlight_file(fd)
        assert_array_almost_equal(X1.data, X2.data)
        assert_array_almost_equal(y1, y2)
    finally:
        os.close(fd)


def test_load_svmlight_file_multilabel():
    X, y = load_svmlight_file(multifile, multilabel=True)
    assert y == [(0, 1), (2,), (), (1, 2)]


def test_load_svmlight_files():
    X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2,
                                                           dtype=np.float32)
    assert_array_equal(X_train.toarray(), X_test.toarray())
    assert_array_almost_equal(y_train, y_test)
    assert X_train.dtype == np.float32
    assert X_test.dtype == np.float32

    X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3,
                                                 dtype=np.float64)
    assert X1.dtype == X2.dtype
    assert X2.dtype == X3.dtype
    assert X3.dtype == np.float64


def test_load_svmlight_file_n_features():
    X, y = load_svmlight_file(datafile, n_features=22)

    # test X'shape
    assert X.indptr.shape[0] == 7
    assert X.shape[0] == 6
    assert X.shape[1] == 22

    # test X's non-zero values
    for i, j, val in ((0, 2, 2.5), (0, 10, -5.2),
                      (1, 5, 1.0), (1, 12, -3)):

        assert X[i, j] == val

    # 21 features in file
    with pytest.raises(ValueError):
        load_svmlight_file(datafile, n_features=20)


def test_load_compressed():
    X, y = load_svmlight_file(datafile)

    with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp:
        tmp.close()  # necessary under windows
        with open(datafile, "rb") as f:
            with gzip.open(tmp.name, "wb") as fh_out:
                shutil.copyfileobj(f, fh_out)
        Xgz, ygz = load_svmlight_file(tmp.name)
        # because we "close" it manually and write to it,
        # we need to remove it manually.
        os.remove(tmp.name)
    assert_array_almost_equal(X.toarray(), Xgz.toarray())
    assert_array_almost_equal(y, ygz)

    with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp:
        tmp.close()  # necessary under windows
        with open(datafile, "rb") as f:
            with BZ2File(tmp.name, "wb") as fh_out:
                shutil.copyfileobj(f, fh_out)
        Xbz, ybz = load_svmlight_file(tmp.name)
        # because we "close" it manually and write to it,
        # we need to remove it manually.
        os.remove(tmp.name)
    assert_array_almost_equal(X.toarray(), Xbz.toarray())
    assert_array_almost_equal(y, ybz)


def test_load_invalid_file():
    with pytest.raises(ValueError):
        load_svmlight_file(invalidfile)


def test_load_invalid_order_file():
    with pytest.raises(ValueError):
        load_svmlight_file(invalidfile2)


def test_load_zero_based():
    f = BytesIO(b"-1 4:1.\n1 0:1\n")
    with pytest.raises(ValueError):
        load_svmlight_file(f, zero_based=False)


def test_load_zero_based_auto():
    data1 = b"-1 1:1 2:2 3:3\n"
    data2 = b"-1 0:0 1:1\n"

    f1 = BytesIO(data1)
    X, y = load_svmlight_file(f1, zero_based="auto")
    assert X.shape == (1, 3)

    f1 = BytesIO(data1)
    f2 = BytesIO(data2)
    X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto")
    assert X1.shape == (1, 4)
    assert X2.shape == (1, 4)


def test_load_with_qid():
    # load svmfile with qid attribute
    data = b"""
    3 qid:1 1:0.53 2:0.12
    2 qid:1 1:0.13 2:0.1
    7 qid:2 1:0.87 2:0.12"""
    X, y = load_svmlight_file(BytesIO(data), query_id=False)
    assert_array_equal(y, [3, 2, 7])
    assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]])
    res1 = load_svmlight_files([BytesIO(data)], query_id=True)
    res2 = load_svmlight_file(BytesIO(data), query_id=True)
    for X, y, qid in (res1, res2):
        assert_array_equal(y, [3, 2, 7])
        assert_array_equal(qid, [1, 1, 2])
        assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]])


@pytest.mark.skip("testing the overflow of 32 bit sparse indexing requires a"
                  " large amount of memory")
def test_load_large_qid():
    """
    load large libsvm / svmlight file with qid attribute. Tests 64-bit query ID
    """
    data = b"\n".join(("3 qid:{0} 1:0.53 2:0.12\n2 qid:{0} 1:0.13 2:0.1"
                      .format(i).encode() for i in range(1, 40*1000*1000)))
    X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)
    assert_array_equal(y[-4:], [3, 2, 3, 2])
    assert_array_equal(np.unique(qid), np.arange(1, 40*1000*1000))


def test_load_invalid_file2():
    with pytest.raises(ValueError):
        load_svmlight_files([datafile, invalidfile, datafile])


def test_not_a_filename():
    # in python 3 integers are valid file opening arguments (taken as unix
    # file descriptors)
    with pytest.raises(TypeError):
        load_svmlight_file(.42)


def test_invalid_filename():
    with pytest.raises(IOError):
        load_svmlight_file("trou pic nic douille")


def test_dump():
    X_sparse, y_dense = load_svmlight_file(datafile)
    X_dense = X_sparse.toarray()
    y_sparse = sp.csr_matrix(y_dense)

    # slicing a csr_matrix can unsort its .indices, so test that we sort
    # those correctly
    X_sliced = X_sparse[np.arange(X_sparse.shape[0])]
    y_sliced = y_sparse[np.arange(y_sparse.shape[0])]

    for X in (X_sparse, X_dense, X_sliced):
        for y in (y_sparse, y_dense, y_sliced):
            for zero_based in (True, False):
                for dtype in [np.float32, np.float64, np.int32, np.int64]:
                    f = BytesIO()
                    # we need to pass a comment to get the version info in;
                    # LibSVM doesn't grok comments so they're not put in by
                    # default anymore.

                    if (sp.issparse(y) and y.shape[0] == 1):
                        # make sure y's shape is: (n_samples, n_labels)
                        # when it is sparse
                        y = y.T

                    # Note: with dtype=np.int32 we are performing unsafe casts,
                    # where X.astype(dtype) overflows. The result is
                    # then platform dependent and X_dense.astype(dtype) may be
                    # different from X_sparse.astype(dtype).asarray().
                    X_input = X.astype(dtype)

                    dump_svmlight_file(X_input, y, f, comment="test",
                                       zero_based=zero_based)
                    f.seek(0)

                    comment = f.readline()
                    comment = str(comment, "utf-8")

                    assert "scikit-learn %s" % sklearn.__version__ in comment

                    comment = f.readline()
                    comment = str(comment, "utf-8")

                    assert ["one", "zero"][zero_based] + "-based" in comment

                    X2, y2 = load_svmlight_file(f, dtype=dtype,
                                                zero_based=zero_based)
                    assert X2.dtype == dtype
                    assert_array_equal(X2.sorted_indices().indices, X2.indices)

                    X2_dense = X2.toarray()
                    if sp.issparse(X_input):
                        X_input_dense = X_input.toarray()
                    else:
                        X_input_dense = X_input

                    if dtype == np.float32:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(
                            X_input_dense, X2_dense, 4)
                        assert_array_almost_equal(
                            y_dense.astype(dtype, copy=False), y2, 4)
                    else:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(
                            X_input_dense, X2_dense, 15)
                        assert_array_almost_equal(
                            y_dense.astype(dtype, copy=False), y2, 15)


def test_dump_multilabel():
    X = [[1, 0, 3, 0, 5],
         [0, 0, 0, 0, 0],
         [0, 5, 0, 1, 0]]
    y_dense = [[0, 1, 0], [1, 0, 1], [1, 1, 0]]
    y_sparse = sp.csr_matrix(y_dense)
    for y in [y_dense, y_sparse]:
        f = BytesIO()
        dump_svmlight_file(X, y, f, multilabel=True)
        f.seek(0)
        # make sure it dumps multilabel correctly
        assert f.readline() == b"1 0:1 2:3 4:5\n"
        assert f.readline() == b"0,2 \n"
        assert f.readline() == b"0,1 1:5 3:1\n"


def test_dump_concise():
    one = 1
    two = 2.1
    three = 3.01
    exact = 1.000000000000001
    # loses the last decimal place
    almost = 1.0000000000000001
    X = [[one, two, three, exact, almost],
         [1e9, 2e18, 3e27, 0, 0],
         [0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0]]
    y = [one, two, three, exact, almost]
    f = BytesIO()
    dump_svmlight_file(X, y, f)
    f.seek(0)
    # make sure it's using the most concise format possible
    assert (f.readline() ==
                 b"1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")
    assert f.readline() == b"2.1 0:1000000000 1:2e+18 2:3e+27\n"
    assert f.readline() == b"3.01 \n"
    assert f.readline() == b"1.000000000000001 \n"
    assert f.readline() == b"1 \n"
    f.seek(0)
    # make sure it's correct too :)
    X2, y2 = load_svmlight_file(f)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_almost_equal(y, y2)


def test_dump_comment():
    X, y = load_svmlight_file(datafile)
    X = X.toarray()

    f = BytesIO()
    ascii_comment = "This is a comment\nspanning multiple lines."
    dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False)
    f.seek(0)

    X2, y2 = load_svmlight_file(f, zero_based=False)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_almost_equal(y, y2)

    # XXX we have to update this to support Python 3.x
    utf8_comment = b"It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc"
    f = BytesIO()
    with pytest.raises(UnicodeDecodeError):
        dump_svmlight_file(X, y, f, comment=utf8_comment)

    unicode_comment = utf8_comment.decode("utf-8")
    f = BytesIO()
    dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False)
    f.seek(0)

    X2, y2 = load_svmlight_file(f, zero_based=False)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_almost_equal(y, y2)

    f = BytesIO()
    with pytest.raises(ValueError):
        dump_svmlight_file(X, y, f, comment="I've got a \0.")


def test_dump_invalid():
    X, y = load_svmlight_file(datafile)

    f = BytesIO()
    y2d = [y]
    with pytest.raises(ValueError):
        dump_svmlight_file(X, y2d, f)

    f = BytesIO()
    with pytest.raises(ValueError):
        dump_svmlight_file(X, y[:-1], f)


def test_dump_query_id():
    # test dumping a file with query_id
    X, y = load_svmlight_file(datafile)
    X = X.toarray()
    query_id = np.arange(X.shape[0]) // 2
    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True)

    f.seek(0)
    X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True)
    assert_array_almost_equal(X, X1.toarray())
    assert_array_almost_equal(y, y1)
    assert_array_almost_equal(query_id, query_id1)


def test_load_with_long_qid():
    # load svmfile with longint qid attribute
    data = b"""
    1 qid:0 0:1 1:2 2:3
    0 qid:72048431380967004 0:1440446648 1:72048431380967004 2:236784985
    0 qid:-9223372036854775807 0:1440446648 1:72048431380967004 2:236784985
    3 qid:9223372036854775807  0:1440446648 1:72048431380967004 2:236784985"""
    X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)

    true_X = [[1,          2,                 3],
              [1440446648, 72048431380967004, 236784985],
              [1440446648, 72048431380967004, 236784985],
              [1440446648, 72048431380967004, 236784985]]

    true_y = [1, 0, 0, 3]
    trueQID = [0, 72048431380967004, -9223372036854775807, 9223372036854775807]
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)
    assert_array_equal(qid, trueQID)

    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=qid, zero_based=True)
    f.seek(0)
    X, y, qid = load_svmlight_file(f, query_id=True, zero_based=True)
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)
    assert_array_equal(qid, trueQID)

    f.seek(0)
    X, y = load_svmlight_file(f, query_id=False, zero_based=True)
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)


def test_load_zeros():
    f = BytesIO()
    true_X = sp.csr_matrix(np.zeros(shape=(3, 4)))
    true_y = np.array([0, 1, 0])
    dump_svmlight_file(true_X, true_y, f)

    for zero_based in ['auto', True, False]:
        f.seek(0)
        X, y = load_svmlight_file(f, n_features=4, zero_based=zero_based)
        assert_array_almost_equal(y, true_y)
        assert_array_almost_equal(X.toarray(), true_X.toarray())


@pytest.mark.parametrize('sparsity', [0, 0.1, .5, 0.99, 1])
@pytest.mark.parametrize('n_samples', [13, 101])
@pytest.mark.parametrize('n_features', [2, 7, 41])
def test_load_with_offsets(sparsity, n_samples, n_features):
    rng = np.random.RandomState(0)
    X = rng.uniform(low=0.0, high=1.0, size=(n_samples, n_features))
    if sparsity:
        X[X < sparsity] = 0.0
    X = sp.csr_matrix(X)
    y = rng.randint(low=0, high=2, size=n_samples)

    f = BytesIO()
    dump_svmlight_file(X, y, f)
    f.seek(0)

    size = len(f.getvalue())

    # put some marks that are likely to happen anywhere in a row
    mark_0 = 0
    mark_1 = size // 3
    length_0 = mark_1 - mark_0
    mark_2 = 4 * size // 5
    length_1 = mark_2 - mark_1

    # load the original sparse matrix into 3 independent CSR matrices
    X_0, y_0 = load_svmlight_file(f, n_features=n_features,
                                  offset=mark_0, length=length_0)
    X_1, y_1 = load_svmlight_file(f, n_features=n_features,
                                  offset=mark_1, length=length_1)
    X_2, y_2 = load_svmlight_file(f, n_features=n_features,
                                  offset=mark_2)

    y_concat = np.concatenate([y_0, y_1, y_2])
    X_concat = sp.vstack([X_0, X_1, X_2])
    assert_array_almost_equal(y, y_concat)
    assert_array_almost_equal(X.toarray(), X_concat.toarray())


def test_load_offset_exhaustive_splits():
    rng = np.random.RandomState(0)
    X = np.array([
        [0, 0, 0, 0, 0, 0],
        [1, 2, 3, 4, 0, 6],
        [1, 2, 3, 4, 0, 6],
        [0, 0, 0, 0, 0, 0],
        [1, 0, 3, 0, 0, 0],
        [0, 0, 0, 0, 0, 1],
        [1, 0, 0, 0, 0, 0],
    ])
    X = sp.csr_matrix(X)
    n_samples, n_features = X.shape
    y = rng.randint(low=0, high=2, size=n_samples)
    query_id = np.arange(n_samples) // 2

    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=query_id)
    f.seek(0)

    size = len(f.getvalue())

    # load the same data in 2 parts with all the possible byte offsets to
    # locate the split so has to test for particular boundary cases
    for mark in range(size):
        f.seek(0)
        X_0, y_0, q_0 = load_svmlight_file(f, n_features=n_features,
                                           query_id=True, offset=0,
                                           length=mark)
        X_1, y_1, q_1 = load_svmlight_file(f, n_features=n_features,
                                           query_id=True, offset=mark,
                                           length=-1)
        q_concat = np.concatenate([q_0, q_1])
        y_concat = np.concatenate([y_0, y_1])
        X_concat = sp.vstack([X_0, X_1])
        assert_array_almost_equal(y, y_concat)
        assert_array_equal(query_id, q_concat)
        assert_array_almost_equal(X.toarray(), X_concat.toarray())


def test_load_with_offsets_error():
    with pytest.raises(ValueError, match="n_features is required"):
        load_svmlight_file(datafile, offset=3, length=3)