"""Incremental Principal Components Analysis."""
# Author: Kyle Kastner <kastnerkyle@gmail.com>
# Giorgio Patrini
# License: BSD 3 clause
import numpy as np
from scipy import linalg, sparse
from ._base import _BasePCA
from ..utils import check_array, gen_batches
from ..utils.extmath import svd_flip, _incremental_mean_and_var
class IncrementalPCA(_BasePCA):
"""Incremental principal components analysis (IPCA).
Linear dimensionality reduction using Singular Value Decomposition of
the data, keeping only the most significant singular vectors to
project the data to a lower dimensional space. The input data is centered
but not scaled for each feature before applying the SVD.
Depending on the size of the input data, this algorithm can be much more
memory efficient than a PCA, and allows sparse input.
This algorithm has constant memory complexity, on the order
of ``batch_size * n_features``, enabling use of np.memmap files without
loading the entire file into memory. For sparse matrices, the input
is converted to dense in batches (in order to be able to subtract the
mean) which avoids storing the entire dense matrix at any one time.
The computational overhead of each SVD is
``O(batch_size * n_features ** 2)``, but only 2 * batch_size samples
remain in memory at a time. There will be ``n_samples / batch_size`` SVD
computations to get the principal components, versus 1 large SVD of
complexity ``O(n_samples * n_features ** 2)`` for PCA.
Read more in the :ref:`User Guide <IncrementalPCA>`.
.. versionadded:: 0.16
Parameters
----------
n_components : int or None, (default=None)
Number of components to keep. If ``n_components `` is ``None``,
then ``n_components`` is set to ``min(n_samples, n_features)``.
whiten : bool, optional
When True (False by default) the ``components_`` vectors are divided
by ``n_samples`` times ``components_`` to ensure uncorrelated outputs
with unit component-wise variances.
Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometimes
improve the predictive accuracy of the downstream estimators by
making data respect some hard-wired assumptions.
copy : bool, (default=True)
If False, X will be overwritten. ``copy=False`` can be used to
save memory but is unsafe for general use.
batch_size : int or None, (default=None)
The number of samples to use for each batch. Only used when calling
``fit``. If ``batch_size`` is ``None``, then ``batch_size``
is inferred from the data and set to ``5 * n_features``, to provide a
balance between approximation accuracy and memory consumption.
Attributes
----------
components_ : array, shape (n_components, n_features)
Components with maximum variance.
explained_variance_ : array, shape (n_components,)
Variance explained by each of the selected components.
explained_variance_ratio_ : array, shape (n_components,)
Percentage of variance explained by each of the selected components.
If all components are stored, the sum of explained variances is equal
to 1.0.
singular_values_ : array, shape (n_components,)
The singular values corresponding to each of the selected components.
The singular values are equal to the 2-norms of the ``n_components``
variables in the lower-dimensional space.
mean_ : array, shape (n_features,)
Per-feature empirical mean, aggregate over calls to ``partial_fit``.
var_ : array, shape (n_features,)
Per-feature empirical variance, aggregate over calls to
``partial_fit``.
noise_variance_ : float
The estimated noise covariance following the Probabilistic PCA model
from Tipping and Bishop 1999. See "Pattern Recognition and
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
http://www.miketipping.com/papers/met-mppca.pdf.
n_components_ : int
The estimated number of components. Relevant when
``n_components=None``.
n_samples_seen_ : int
The number of samples processed by the estimator. Will be reset on
new calls to fit, but increments across ``partial_fit`` calls.
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import IncrementalPCA
>>> from scipy import sparse
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = IncrementalPCA(n_components=7, batch_size=200)
>>> # either partially fit on smaller batches of data
>>> transformer.partial_fit(X[:100, :])
IncrementalPCA(batch_size=200, n_components=7)
>>> # or let the fit function itself divide the data into batches
>>> X_sparse = sparse.csr_matrix(X)
>>> X_transformed = transformer.fit_transform(X_sparse)
>>> X_transformed.shape
(1797, 7)
Notes
-----
Implements the incremental PCA model from:
*D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for Robust Visual
Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3,
pp. 125-141, May 2008.*
See https://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf
This model is an extension of the Sequential Karhunen-Loeve Transform from:
*A. Levy and M. Lindenbaum, Sequential Karhunen-Loeve Basis Extraction and
its Application to Images, IEEE Transactions on Image Processing, Volume 9,
Number 8, pp. 1371-1374, August 2000.*
See https://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf
We have specifically abstained from an optimization used by authors of both
papers, a QR decomposition used in specific situations to reduce the
algorithmic complexity of the SVD. The source for this technique is
*Matrix Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5,
section 5.4.4, pp 252-253.*. This technique has been omitted because it is
advantageous only when decomposing a matrix with ``n_samples`` (rows)
>= 5/3 * ``n_features`` (columns), and hurts the readability of the
implemented algorithm. This would be a good opportunity for future
optimization, if it is deemed necessary.
References
----------
D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual
Tracking, International Journal of Computer Vision, Volume 77,
Issue 1-3, pp. 125-141, May 2008.
G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5,
Section 5.4.4, pp. 252-253.
See also
--------
PCA
KernelPCA
SparsePCA
TruncatedSVD
"""
def __init__(self, n_components=None, whiten=False, copy=True,
batch_size=None):
self.n_components = n_components
self.whiten = whiten
self.copy = copy
self.batch_size = batch_size
def fit(self, X, y=None):
"""Fit the model with X, using minibatches of size batch_size.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
Training data, where n_samples is the number of samples and
n_features is the number of features.
y : Ignored
Returns
-------
self : object
Returns the instance itself.
"""
self.components_ = None
self.n_samples_seen_ = 0
self.mean_ = .0
self.var_ = .0
self.singular_values_ = None
self.explained_variance_ = None
self.explained_variance_ratio_ = None
self.singular_values_ = None
self.noise_variance_ = None
X = check_array(X, accept_sparse=['csr', 'csc', 'lil'],
copy=self.copy, dtype=[np.float64, np.float32])
n_samples, n_features = X.shape
if self.batch_size is None:
self.batch_size_ = 5 * n_features
else:
self.batch_size_ = self.batch_size
for batch in gen_batches(n_samples, self.batch_size_,
min_batch_size=self.n_components or 0):
X_batch = X[batch]
if sparse.issparse(X_batch):
X_batch = X_batch.toarray()
self.partial_fit(X_batch, check_input=False)
return self
def partial_fit(self, X, y=None, check_input=True):
"""Incremental fit with X. All of X is processed as a single batch.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples and
n_features is the number of features.
check_input : bool
Run check_array on X.
y : Ignored
Returns
-------
self : object
Returns the instance itself.
"""
if check_input:
if sparse.issparse(X):
raise TypeError(
"IncrementalPCA.partial_fit does not support "
"sparse input. Either convert data to dense "
"or use IncrementalPCA.fit to do so in batches.")
X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32])
n_samples, n_features = X.shape
if not hasattr(self, 'components_'):
self.components_ = None
if self.n_components is None:
if self.components_ is None:
self.n_components_ = min(n_samples, n_features)
else:
self.n_components_ = self.components_.shape[0]
elif not 1 <= self.n_components <= n_features:
raise ValueError("n_components=%r invalid for n_features=%d, need "
"more rows than columns for IncrementalPCA "
"processing" % (self.n_components, n_features))
elif not self.n_components <= n_samples:
raise ValueError("n_components=%r must be less or equal to "
"the batch number of samples "
"%d." % (self.n_components, n_samples))
else:
self.n_components_ = self.n_components
if (self.components_ is not None) and (self.components_.shape[0] !=
self.n_components_):
raise ValueError("Number of input features has changed from %i "
"to %i between calls to partial_fit! Try "
"setting n_components to a fixed value." %
(self.components_.shape[0], self.n_components_))
# This is the first partial_fit
if not hasattr(self, 'n_samples_seen_'):
self.n_samples_seen_ = 0
self.mean_ = .0
self.var_ = .0
# Update stats - they are 0 if this is the fisrt step
col_mean, col_var, n_total_samples = \
_incremental_mean_and_var(
X, last_mean=self.mean_, last_variance=self.var_,
last_sample_count=np.repeat(self.n_samples_seen_, X.shape[1]))
n_total_samples = n_total_samples[0]
# Whitening
if self.n_samples_seen_ == 0:
# If it is the first step, simply whiten X
X -= col_mean
else:
col_batch_mean = np.mean(X, axis=0)
X -= col_batch_mean
# Build matrix of combined previous basis and new data
mean_correction = \
np.sqrt((self.n_samples_seen_ * n_samples) /
n_total_samples) * (self.mean_ - col_batch_mean)
X = np.vstack((self.singular_values_.reshape((-1, 1)) *
self.components_, X, mean_correction))
U, S, V = linalg.svd(X, full_matrices=False)
U, V = svd_flip(U, V, u_based_decision=False)
explained_variance = S ** 2 / (n_total_samples - 1)
explained_variance_ratio = S ** 2 / np.sum(col_var * n_total_samples)
self.n_samples_seen_ = n_total_samples
self.components_ = V[:self.n_components_]
self.singular_values_ = S[:self.n_components_]
self.mean_ = col_mean
self.var_ = col_var
self.explained_variance_ = explained_variance[:self.n_components_]
self.explained_variance_ratio_ = \
explained_variance_ratio[:self.n_components_]
if self.n_components_ < n_features:
self.noise_variance_ = \
explained_variance[self.n_components_:].mean()
else:
self.noise_variance_ = 0.
return self
def transform(self, X):
"""Apply dimensionality reduction to X.
X is projected on the first principal components previously extracted
from a training set, using minibatches of size batch_size if X is
sparse.
Parameters
----------
X : array-like, shape (n_samples, n_features)
New data, where n_samples is the number of samples
and n_features is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
Examples
--------
>>> import numpy as np
>>> from sklearn.decomposition import IncrementalPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2],
... [1, 1], [2, 1], [3, 2]])
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
>>> ipca.fit(X)
IncrementalPCA(batch_size=3, n_components=2)
>>> ipca.transform(X) # doctest: +SKIP
"""
if sparse.issparse(X):
n_samples = X.shape[0]
output = []
for batch in gen_batches(n_samples, self.batch_size_,
min_batch_size=self.n_components or 0):
output.append(super().transform(X[batch].toarray()))
return np.vstack(output)
else:
return super().transform(X)