Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scikit-learn   python

Repository URL to install this package:

Version: 0.22 

/ neighbors / _unsupervised.py

"""Unsupervised nearest neighbors learner"""
from ._base import NeighborsBase
from ._base import KNeighborsMixin
from ._base import RadiusNeighborsMixin
from ._base import UnsupervisedMixin


class NearestNeighbors(NeighborsBase, KNeighborsMixin,
                       RadiusNeighborsMixin, UnsupervisedMixin):
    """Unsupervised learner for implementing neighbor searches.

    Read more in the :ref:`User Guide <unsupervised_neighbors>`.

    .. versionadded:: 0.9

    Parameters
    ----------
    n_neighbors : int, optional (default = 5)
        Number of neighbors to use by default for :meth:`kneighbors` queries.

    radius : float, optional (default = 1.0)
        Range of parameter space to use by default for :meth:`radius_neighbors`
        queries.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`KDTree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method.

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, optional (default = 30)
        Leaf size passed to BallTree or KDTree.  This can affect the
        speed of the construction and query, as well as the memory
        required to store the tree.  The optimal value depends on the
        nature of the problem.

    metric : string or callable, default 'minkowski'
        the distance metric to use for the tree.  The default metric is
        minkowski, and with p=2 is equivalent to the standard Euclidean
        metric. See the documentation of the DistanceMetric class for a
        list of available metrics.
        If metric is "precomputed", X is assumed to be a distance matrix and
        must be square during fit. X may be a :term:`Glossary <sparse graph>`,
        in which case only "nonzero" elements may be considered neighbors.

    p : integer, optional (default = 2)
        Parameter for the Minkowski metric from
        sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric_params : dict, optional (default = None)
        Additional keyword arguments for the metric function.

    n_jobs : int or None, optional (default=None)
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    effective_metric_ : string
        Metric used to compute distances to neighbors.

    effective_metric_params_ : dict
        Parameters for the metric used to compute distances to neighbors.

    Examples
    --------
      >>> import numpy as np
      >>> from sklearn.neighbors import NearestNeighbors
      >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]

      >>> neigh = NearestNeighbors(2, 0.4)
      >>> neigh.fit(samples)
      NearestNeighbors(...)

      >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
      array([[2, 0]]...)

      >>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False)
      >>> np.asarray(nbrs[0][0])
      array(2)

    See also
    --------
    KNeighborsClassifier
    RadiusNeighborsClassifier
    KNeighborsRegressor
    RadiusNeighborsRegressor
    BallTree

    Notes
    -----
    See :ref:`Nearest Neighbors <neighbors>` in the online documentation
    for a discussion of the choice of ``algorithm`` and ``leaf_size``.

    https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
    """

    def __init__(self, n_neighbors=5, radius=1.0,
                 algorithm='auto', leaf_size=30, metric='minkowski',
                 p=2, metric_params=None, n_jobs=None):
        super().__init__(
              n_neighbors=n_neighbors,
              radius=radius,
              algorithm=algorithm,
              leaf_size=leaf_size, metric=metric, p=p,
              metric_params=metric_params, n_jobs=n_jobs)