Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scikit-learn   python

Repository URL to install this package:

Version: 0.22 

/ preprocessing / tests / test_label.py

import numpy as np

import pytest

from scipy.sparse import issparse
from scipy.sparse import coo_matrix
from scipy.sparse import csc_matrix
from scipy.sparse import csr_matrix
from scipy.sparse import dok_matrix
from scipy.sparse import lil_matrix

from sklearn.utils.multiclass import type_of_target

from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import ignore_warnings

from sklearn.preprocessing._label import LabelBinarizer
from sklearn.preprocessing._label import MultiLabelBinarizer
from sklearn.preprocessing._label import LabelEncoder
from sklearn.preprocessing._label import label_binarize

from sklearn.preprocessing._label import _inverse_binarize_thresholding
from sklearn.preprocessing._label import _inverse_binarize_multiclass
from sklearn.preprocessing._label import _encode

from sklearn import datasets

iris = datasets.load_iris()


def toarray(a):
    if hasattr(a, "toarray"):
        a = a.toarray()
    return a


def test_label_binarizer():
    # one-class case defaults to negative label
    # For dense case:
    inp = ["pos", "pos", "pos", "pos"]
    lb = LabelBinarizer(sparse_output=False)
    expected = np.array([[0, 0, 0, 0]]).T
    got = lb.fit_transform(inp)
    assert_array_equal(lb.classes_, ["pos"])
    assert_array_equal(expected, got)
    assert_array_equal(lb.inverse_transform(got), inp)

    # For sparse case:
    lb = LabelBinarizer(sparse_output=True)
    got = lb.fit_transform(inp)
    assert issparse(got)
    assert_array_equal(lb.classes_, ["pos"])
    assert_array_equal(expected, got.toarray())
    assert_array_equal(lb.inverse_transform(got.toarray()), inp)

    lb = LabelBinarizer(sparse_output=False)
    # two-class case
    inp = ["neg", "pos", "pos", "neg"]
    expected = np.array([[0, 1, 1, 0]]).T
    got = lb.fit_transform(inp)
    assert_array_equal(lb.classes_, ["neg", "pos"])
    assert_array_equal(expected, got)

    to_invert = np.array([[1, 0],
                          [0, 1],
                          [0, 1],
                          [1, 0]])
    assert_array_equal(lb.inverse_transform(to_invert), inp)

    # multi-class case
    inp = ["spam", "ham", "eggs", "ham", "0"]
    expected = np.array([[0, 0, 0, 1],
                         [0, 0, 1, 0],
                         [0, 1, 0, 0],
                         [0, 0, 1, 0],
                         [1, 0, 0, 0]])
    got = lb.fit_transform(inp)
    assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam'])
    assert_array_equal(expected, got)
    assert_array_equal(lb.inverse_transform(got), inp)


def test_label_binarizer_unseen_labels():
    lb = LabelBinarizer()

    expected = np.array([[1, 0, 0],
                         [0, 1, 0],
                         [0, 0, 1]])
    got = lb.fit_transform(['b', 'd', 'e'])
    assert_array_equal(expected, got)

    expected = np.array([[0, 0, 0],
                         [1, 0, 0],
                         [0, 0, 0],
                         [0, 1, 0],
                         [0, 0, 1],
                         [0, 0, 0]])
    got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f'])
    assert_array_equal(expected, got)


def test_label_binarizer_set_label_encoding():
    lb = LabelBinarizer(neg_label=-2, pos_label=0)

    # two-class case with pos_label=0
    inp = np.array([0, 1, 1, 0])
    expected = np.array([[-2, 0, 0, -2]]).T
    got = lb.fit_transform(inp)
    assert_array_equal(expected, got)
    assert_array_equal(lb.inverse_transform(got), inp)

    lb = LabelBinarizer(neg_label=-2, pos_label=2)

    # multi-class case
    inp = np.array([3, 2, 1, 2, 0])
    expected = np.array([[-2, -2, -2, +2],
                         [-2, -2, +2, -2],
                         [-2, +2, -2, -2],
                         [-2, -2, +2, -2],
                         [+2, -2, -2, -2]])
    got = lb.fit_transform(inp)
    assert_array_equal(expected, got)
    assert_array_equal(lb.inverse_transform(got), inp)


@ignore_warnings
def test_label_binarizer_errors():
    # Check that invalid arguments yield ValueError
    one_class = np.array([0, 0, 0, 0])
    lb = LabelBinarizer().fit(one_class)

    multi_label = [(2, 3), (0,), (0, 2)]
    with pytest.raises(ValueError):
        lb.transform(multi_label)

    lb = LabelBinarizer()
    with pytest.raises(ValueError):
        lb.transform([])
    with pytest.raises(ValueError):
        lb.inverse_transform([])

    with pytest.raises(ValueError):
        LabelBinarizer(neg_label=2, pos_label=1)
    with pytest.raises(ValueError):
        LabelBinarizer(neg_label=2, pos_label=2)

    with pytest.raises(ValueError):
        LabelBinarizer(neg_label=1, pos_label=2, sparse_output=True)

    # Fail on y_type
    with pytest.raises(ValueError):
        _inverse_binarize_thresholding(y=csr_matrix([[1, 2], [2, 1]]),
                                       output_type="foo", classes=[1, 2],
                                       threshold=0)

    # Sequence of seq type should raise ValueError
    y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]]
    with pytest.raises(ValueError):
        LabelBinarizer().fit_transform(y_seq_of_seqs)

    # Fail on the number of classes
    with pytest.raises(ValueError):
        _inverse_binarize_thresholding(y=csr_matrix([[1, 2], [2, 1]]),
                                       output_type="foo",
                                       classes=[1, 2, 3],
                                       threshold=0)

    # Fail on the dimension of 'binary'
    with pytest.raises(ValueError):
        _inverse_binarize_thresholding(y=np.array([[1, 2, 3], [2, 1, 3]]),
                                       output_type="binary",
                                       classes=[1, 2, 3],
                                       threshold=0)

    # Fail on multioutput data
    with pytest.raises(ValueError):
        LabelBinarizer().fit(np.array([[1, 3], [2, 1]]))
    with pytest.raises(ValueError):
        label_binarize(np.array([[1, 3], [2, 1]]), [1, 2, 3])


@pytest.mark.parametrize(
        "values, classes, unknown",
        [(np.array([2, 1, 3, 1, 3], dtype='int64'),
          np.array([1, 2, 3], dtype='int64'), np.array([4], dtype='int64')),
         (np.array(['b', 'a', 'c', 'a', 'c'], dtype=object),
          np.array(['a', 'b', 'c'], dtype=object),
          np.array(['d'], dtype=object)),
         (np.array(['b', 'a', 'c', 'a', 'c']),
          np.array(['a', 'b', 'c']), np.array(['d']))],
        ids=['int64', 'object', 'str'])
def test_label_encoder(values, classes, unknown):
    # Test LabelEncoder's transform, fit_transform and
    # inverse_transform methods
    le = LabelEncoder()
    le.fit(values)
    assert_array_equal(le.classes_, classes)
    assert_array_equal(le.transform(values), [1, 0, 2, 0, 2])
    assert_array_equal(le.inverse_transform([1, 0, 2, 0, 2]), values)
    le = LabelEncoder()
    ret = le.fit_transform(values)
    assert_array_equal(ret, [1, 0, 2, 0, 2])

    with pytest.raises(ValueError, match="unseen labels"):
        le.transform(unknown)


def test_label_encoder_negative_ints():
    le = LabelEncoder()
    le.fit([1, 1, 4, 5, -1, 0])
    assert_array_equal(le.classes_, [-1, 0, 1, 4, 5])
    assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]),
                       [1, 2, 3, 3, 4, 0, 0])
    assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]),
                       [0, 1, 4, 4, 5, -1, -1])
    with pytest.raises(ValueError):
        le.transform([0, 6])


@pytest.mark.parametrize("dtype", ['str', 'object'])
def test_label_encoder_str_bad_shape(dtype):
    le = LabelEncoder()
    le.fit(np.array(["apple", "orange"], dtype=dtype))
    msg = "bad input shape"
    with pytest.raises(ValueError, match=msg):
        le.transform("apple")


def test_label_encoder_errors():
    # Check that invalid arguments yield ValueError
    le = LabelEncoder()
    with pytest.raises(ValueError):
        le.transform([])
    with pytest.raises(ValueError):
        le.inverse_transform([])

    # Fail on unseen labels
    le = LabelEncoder()
    le.fit([1, 2, 3, -1, 1])
    msg = "contains previously unseen labels"
    with pytest.raises(ValueError, match=msg):
        le.inverse_transform([-2])
    with pytest.raises(ValueError, match=msg):
        le.inverse_transform([-2, -3, -4])

    # Fail on inverse_transform("")
    msg = "bad input shape ()"
    with pytest.raises(ValueError, match=msg):
        le.inverse_transform("")


@pytest.mark.parametrize(
        "values",
        [np.array([2, 1, 3, 1, 3], dtype='int64'),
         np.array(['b', 'a', 'c', 'a', 'c'], dtype=object),
         np.array(['b', 'a', 'c', 'a', 'c'])],
        ids=['int64', 'object', 'str'])
def test_label_encoder_empty_array(values):
    le = LabelEncoder()
    le.fit(values)
    # test empty transform
    transformed = le.transform([])
    assert_array_equal(np.array([]), transformed)
    # test empty inverse transform
    inverse_transformed = le.inverse_transform([])
    assert_array_equal(np.array([]), inverse_transformed)


def test_sparse_output_multilabel_binarizer():
    # test input as iterable of iterables
    inputs = [
        lambda: [(2, 3), (1,), (1, 2)],
        lambda: ({2, 3}, {1}, {1, 2}),
        lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]),
    ]
    indicator_mat = np.array([[0, 1, 1],
                              [1, 0, 0],
                              [1, 1, 0]])

    inverse = inputs[0]()
    for sparse_output in [True, False]:
        for inp in inputs:
            # With fit_transform
            mlb = MultiLabelBinarizer(sparse_output=sparse_output)
            got = mlb.fit_transform(inp())
            assert issparse(got) == sparse_output
            if sparse_output:
                # verify CSR assumption that indices and indptr have same dtype
                assert got.indices.dtype == got.indptr.dtype
                got = got.toarray()
            assert_array_equal(indicator_mat, got)
            assert_array_equal([1, 2, 3], mlb.classes_)
            assert mlb.inverse_transform(got) == inverse

            # With fit
            mlb = MultiLabelBinarizer(sparse_output=sparse_output)
            got = mlb.fit(inp()).transform(inp())
            assert issparse(got) == sparse_output
            if sparse_output:
                # verify CSR assumption that indices and indptr have same dtype
                assert got.indices.dtype == got.indptr.dtype
                got = got.toarray()
            assert_array_equal(indicator_mat, got)
            assert_array_equal([1, 2, 3], mlb.classes_)
            assert mlb.inverse_transform(got) == inverse

    with pytest.raises(ValueError):
        mlb.inverse_transform(csr_matrix(np.array([[0, 1, 1],
                                                   [2, 0, 0],
                                                   [1, 1, 0]])))


def test_multilabel_binarizer():
    # test input as iterable of iterables
    inputs = [
        lambda: [(2, 3), (1,), (1, 2)],
        lambda: ({2, 3}, {1}, {1, 2}),
        lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]),
    ]
    indicator_mat = np.array([[0, 1, 1],
                              [1, 0, 0],
                              [1, 1, 0]])
    inverse = inputs[0]()
    for inp in inputs:
        # With fit_transform
        mlb = MultiLabelBinarizer()
        got = mlb.fit_transform(inp())
        assert_array_equal(indicator_mat, got)
        assert_array_equal([1, 2, 3], mlb.classes_)
        assert mlb.inverse_transform(got) == inverse

        # With fit
        mlb = MultiLabelBinarizer()
        got = mlb.fit(inp()).transform(inp())
        assert_array_equal(indicator_mat, got)
        assert_array_equal([1, 2, 3], mlb.classes_)
        assert mlb.inverse_transform(got) == inverse


def test_multilabel_binarizer_empty_sample():
    mlb = MultiLabelBinarizer()
    y = [[1, 2], [1], []]
    Y = np.array([[1, 1],
                  [1, 0],
                  [0, 0]])
    assert_array_equal(mlb.fit_transform(y), Y)


def test_multilabel_binarizer_unknown_class():
    mlb = MultiLabelBinarizer()
    y = [[1, 2]]
    Y = np.array([[1, 0], [0, 1]])
    w = 'unknown class(es) [0, 4] will be ignored'
    matrix = assert_warns_message(UserWarning, w,
                                  mlb.fit(y).transform, [[4, 1], [2, 0]])
    assert_array_equal(matrix, Y)

    Y = np.array([[1, 0, 0], [0, 1, 0]])
    mlb = MultiLabelBinarizer(classes=[1, 2, 3])
    matrix = assert_warns_message(UserWarning, w,
                                  mlb.fit(y).transform, [[4, 1], [2, 0]])
    assert_array_equal(matrix, Y)


def test_multilabel_binarizer_given_classes():
    inp = [(2, 3), (1,), (1, 2)]
    indicator_mat = np.array([[0, 1, 1],
                              [1, 0, 0],
                              [1, 0, 1]])
    # fit_transform()
    mlb = MultiLabelBinarizer(classes=[1, 3, 2])
    assert_array_equal(mlb.fit_transform(inp), indicator_mat)
    assert_array_equal(mlb.classes_, [1, 3, 2])

    # fit().transform()
    mlb = MultiLabelBinarizer(classes=[1, 3, 2])
    assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
    assert_array_equal(mlb.classes_, [1, 3, 2])

    # ensure works with extra class
    mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2])
    assert_array_equal(mlb.fit_transform(inp),
                       np.hstack(([[0], [0], [0]], indicator_mat)))
    assert_array_equal(mlb.classes_, [4, 1, 3, 2])

    # ensure fit is no-op as iterable is not consumed
    inp = iter(inp)
    mlb = MultiLabelBinarizer(classes=[1, 3, 2])
    assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)

    # ensure a ValueError is thrown if given duplicate classes
    err_msg = "The classes argument contains duplicate classes. Remove " \
              "these duplicates before passing them to MultiLabelBinarizer."
    mlb = MultiLabelBinarizer(classes=[1, 3, 2, 3])
    with pytest.raises(ValueError, match=err_msg):
        mlb.fit(inp)


def test_multilabel_binarizer_multiple_calls():
    inp = [(2, 3), (1,), (1, 2)]
    indicator_mat = np.array([[0, 1, 1],
                              [1, 0, 0],
                              [1, 0, 1]])

    indicator_mat2 = np.array([[0, 1, 1],
                               [1, 0, 0],
                               [1, 1, 0]])

    # first call
    mlb = MultiLabelBinarizer(classes=[1, 3, 2])
    assert_array_equal(mlb.fit_transform(inp), indicator_mat)
    # second call change class
    mlb.classes = [1, 2, 3]
    assert_array_equal(mlb.fit_transform(inp), indicator_mat2)


def test_multilabel_binarizer_same_length_sequence():
    # Ensure sequences of the same length are not interpreted as a 2-d array
    inp = [[1], [0], [2]]
    indicator_mat = np.array([[0, 1, 0],
                              [1, 0, 0],
                              [0, 0, 1]])
    # fit_transform()
    mlb = MultiLabelBinarizer()
    assert_array_equal(mlb.fit_transform(inp), indicator_mat)
    assert_array_equal(mlb.inverse_transform(indicator_mat), inp)

    # fit().transform()
    mlb = MultiLabelBinarizer()
    assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
    assert_array_equal(mlb.inverse_transform(indicator_mat), inp)


def test_multilabel_binarizer_non_integer_labels():
    tuple_classes = np.empty(3, dtype=object)
    tuple_classes[:] = [(1,), (2,), (3,)]
    inputs = [
        ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']),
        ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']),
        ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes),
    ]
    indicator_mat = np.array([[0, 1, 1],
                              [1, 0, 0],
                              [1, 1, 0]])
    for inp, classes in inputs:
        # fit_transform()
        mlb = MultiLabelBinarizer()
        assert_array_equal(mlb.fit_transform(inp), indicator_mat)
        assert_array_equal(mlb.classes_, classes)
        assert_array_equal(mlb.inverse_transform(indicator_mat), inp)

        # fit().transform()
        mlb = MultiLabelBinarizer()
        assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
        assert_array_equal(mlb.classes_, classes)
        assert_array_equal(mlb.inverse_transform(indicator_mat), inp)

    mlb = MultiLabelBinarizer()
    with pytest.raises(TypeError):
        mlb.fit_transform([({}), ({}, {'a': 'b'})])


def test_multilabel_binarizer_non_unique():
    inp = [(1, 1, 1, 0)]
    indicator_mat = np.array([[1, 1]])
    mlb = MultiLabelBinarizer()
    assert_array_equal(mlb.fit_transform(inp), indicator_mat)


def test_multilabel_binarizer_inverse_validation():
    inp = [(1, 1, 1, 0)]
    mlb = MultiLabelBinarizer()
    mlb.fit_transform(inp)
    # Not binary
    with pytest.raises(ValueError):
        mlb.inverse_transform(np.array([[1, 3]]))
    # The following binary cases are fine, however
    mlb.inverse_transform(np.array([[0, 0]]))
    mlb.inverse_transform(np.array([[1, 1]]))
    mlb.inverse_transform(np.array([[1, 0]]))

    # Wrong shape
    with pytest.raises(ValueError):
        mlb.inverse_transform(np.array([[1]]))
    with pytest.raises(ValueError):
        mlb.inverse_transform(np.array([[1, 1, 1]]))


def test_label_binarize_with_class_order():
    out = label_binarize([1, 6], classes=[1, 2, 4, 6])
    expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]])
    assert_array_equal(out, expected)

    # Modified class order
    out = label_binarize([1, 6], classes=[1, 6, 4, 2])
    expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])
    assert_array_equal(out, expected)

    out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1])
    expected = np.array([[0, 0, 1, 0],
                         [0, 0, 0, 1],
                         [0, 1, 0, 0],
                         [1, 0, 0, 0]])
    assert_array_equal(out, expected)


def check_binarized_results(y, classes, pos_label, neg_label, expected):
    for sparse_output in [True, False]:
        if ((pos_label == 0 or neg_label != 0) and sparse_output):
            with pytest.raises(ValueError):
                label_binarize(y, classes, neg_label=neg_label,
                               pos_label=pos_label,
                               sparse_output=sparse_output)
            continue

        # check label_binarize
        binarized = label_binarize(y, classes, neg_label=neg_label,
                                   pos_label=pos_label,
                                   sparse_output=sparse_output)
        assert_array_equal(toarray(binarized), expected)
        assert issparse(binarized) == sparse_output

        # check inverse
        y_type = type_of_target(y)
        if y_type == "multiclass":
            inversed = _inverse_binarize_multiclass(binarized, classes=classes)

        else:
            inversed = _inverse_binarize_thresholding(binarized,
                                                      output_type=y_type,
                                                      classes=classes,
                                                      threshold=((neg_label +
                                                                 pos_label) /
                                                                 2.))

        assert_array_equal(toarray(inversed), toarray(y))

        # Check label binarizer
        lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label,
                            sparse_output=sparse_output)
        binarized = lb.fit_transform(y)
        assert_array_equal(toarray(binarized), expected)
        assert issparse(binarized) == sparse_output
        inverse_output = lb.inverse_transform(binarized)
        assert_array_equal(toarray(inverse_output), toarray(y))
        assert issparse(inverse_output) == issparse(y)


def test_label_binarize_binary():
    y = [0, 1, 0]
    classes = [0, 1]
    pos_label = 2
    neg_label = -1
    expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1))

    check_binarized_results(y, classes, pos_label, neg_label, expected)

    # Binary case where sparse_output = True will not result in a ValueError
    y = [0, 1, 0]
    classes = [0, 1]
    pos_label = 3
    neg_label = 0
    expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1))

    check_binarized_results(y, classes, pos_label, neg_label, expected)


def test_label_binarize_multiclass():
    y = [0, 1, 2]
    classes = [0, 1, 2]
    pos_label = 2
    neg_label = 0
    expected = 2 * np.eye(3)

    check_binarized_results(y, classes, pos_label, neg_label, expected)

    with pytest.raises(ValueError):
        label_binarize(y, classes, neg_label=-1, pos_label=pos_label,
                       sparse_output=True)


def test_label_binarize_multilabel():
    y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]])
    classes = [0, 1, 2]
    pos_label = 2
    neg_label = 0
    expected = pos_label * y_ind
    y_sparse = [sparse_matrix(y_ind)
                for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix,
                                      dok_matrix, lil_matrix]]

    for y in [y_ind] + y_sparse:
        check_binarized_results(y, classes, pos_label, neg_label,
                                expected)

    with pytest.raises(ValueError):
        label_binarize(y, classes, neg_label=-1, pos_label=pos_label,
                       sparse_output=True)


def test_invalid_input_label_binarize():
    with pytest.raises(ValueError):
        label_binarize([0, 2], classes=[0, 2], pos_label=0, neg_label=1)
    with pytest.raises(ValueError, match="continuous target data is not "):
        label_binarize([1.2, 2.7], classes=[0, 1])
    with pytest.raises(ValueError, match="mismatch with the labels"):
        label_binarize([[1, 3]], classes=[1, 2, 3])


def test_inverse_binarize_multiclass():
    got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0],
                                                   [-1, 0, -1],
                                                   [0, 0, 0]]),
                                       np.arange(3))
    assert_array_equal(got, np.array([1, 1, 0]))


@pytest.mark.parametrize(
        "values, expected",
        [(np.array([2, 1, 3, 1, 3], dtype='int64'),
          np.array([1, 2, 3], dtype='int64')),
         (np.array(['b', 'a', 'c', 'a', 'c'], dtype=object),
          np.array(['a', 'b', 'c'], dtype=object)),
         (np.array(['b', 'a', 'c', 'a', 'c']),
          np.array(['a', 'b', 'c']))],
        ids=['int64', 'object', 'str'])
def test_encode_util(values, expected):
    uniques = _encode(values)
    assert_array_equal(uniques, expected)
    uniques, encoded = _encode(values, encode=True)
    assert_array_equal(uniques, expected)
    assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))
    _, encoded = _encode(values, uniques, encode=True)
    assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))


def test_encode_check_unknown():
    # test for the check_unknown parameter of _encode()
    uniques = np.array([1, 2, 3])
    values = np.array([1, 2, 3, 4])

    # Default is True, raise error
    with pytest.raises(ValueError,
                       match='y contains previously unseen labels'):
        _encode(values, uniques, encode=True, check_unknown=True)

    # dont raise error if False
    _encode(values, uniques, encode=True, check_unknown=False)

    # parameter is ignored for object dtype
    uniques = np.array(['a', 'b', 'c'], dtype=object)
    values = np.array(['a', 'b', 'c', 'd'], dtype=object)
    with pytest.raises(ValueError,
                       match='y contains previously unseen labels'):
        _encode(values, uniques, encode=True, check_unknown=False)