"""
This module defines export functions for decision trees.
"""
# Authors: Gilles Louppe <g.louppe@gmail.com>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Brian Holt <bdholt1@gmail.com>
# Noel Dawe <noel@dawe.me>
# Satrajit Gosh <satrajit.ghosh@gmail.com>
# Trevor Stephens <trev.stephens@gmail.com>
# Li Li <aiki.nogard@gmail.com>
# Giuseppe Vettigli <vettigli@gmail.com>
# License: BSD 3 clause
from io import StringIO
from numbers import Integral
import numpy as np
from ..utils.validation import check_is_fitted
from ..base import is_classifier
from . import _criterion
from . import _tree
from ._reingold_tilford import buchheim, Tree
from . import DecisionTreeClassifier
def _color_brew(n):
"""Generate n colors with equally spaced hues.
Parameters
----------
n : int
The number of colors required.
Returns
-------
color_list : list, length n
List of n tuples of form (R, G, B) being the components of each color.
"""
color_list = []
# Initialize saturation & value; calculate chroma & value shift
s, v = 0.75, 0.9
c = s * v
m = v - c
for h in np.arange(25, 385, 360. / n).astype(int):
# Calculate some intermediate values
h_bar = h / 60.
x = c * (1 - abs((h_bar % 2) - 1))
# Initialize RGB with same hue & chroma as our color
rgb = [(c, x, 0),
(x, c, 0),
(0, c, x),
(0, x, c),
(x, 0, c),
(c, 0, x),
(c, x, 0)]
r, g, b = rgb[int(h_bar)]
# Shift the initial RGB values to match value and store
rgb = [(int(255 * (r + m))),
(int(255 * (g + m))),
(int(255 * (b + m)))]
color_list.append(rgb)
return color_list
class Sentinel:
def __repr__(self):
return '"tree.dot"'
SENTINEL = Sentinel()
def plot_tree(decision_tree, max_depth=None, feature_names=None,
class_names=None, label='all', filled=False,
impurity=True, node_ids=False,
proportion=False, rotate=False, rounded=False,
precision=3, ax=None, fontsize=None):
"""Plot a decision tree.
The sample counts that are shown are weighted with any sample_weights that
might be present.
The visualization is fit automatically to the size of the axis.
Use the ``figsize`` or ``dpi`` arguments of ``plt.figure`` to control
the size of the rendering.
Read more in the :ref:`User Guide <tree>`.
.. versionadded:: 0.21
Parameters
----------
decision_tree : decision tree regressor or classifier
The decision tree to be plotted.
max_depth : int, optional (default=None)
The maximum depth of the representation. If None, the tree is fully
generated.
feature_names : list of strings, optional (default=None)
Names of each of the features.
class_names : list of strings, bool or None, optional (default=None)
Names of each of the target classes in ascending numerical order.
Only relevant for classification and not supported for multi-output.
If ``True``, shows a symbolic representation of the class name.
label : {'all', 'root', 'none'}, optional (default='all')
Whether to show informative labels for impurity, etc.
Options include 'all' to show at every node, 'root' to show only at
the top root node, or 'none' to not show at any node.
filled : bool, optional (default=False)
When set to ``True``, paint nodes to indicate majority class for
classification, extremity of values for regression, or purity of node
for multi-output.
impurity : bool, optional (default=True)
When set to ``True``, show the impurity at each node.
node_ids : bool, optional (default=False)
When set to ``True``, show the ID number on each node.
proportion : bool, optional (default=False)
When set to ``True``, change the display of 'values' and/or 'samples'
to be proportions and percentages respectively.
rotate : bool, optional (default=False)
When set to ``True``, orient tree left to right rather than top-down.
rounded : bool, optional (default=False)
When set to ``True``, draw node boxes with rounded corners and use
Helvetica fonts instead of Times-Roman.
precision : int, optional (default=3)
Number of digits of precision for floating point in the values of
impurity, threshold and value attributes of each node.
ax : matplotlib axis, optional (default=None)
Axes to plot to. If None, use current axis. Any previous content
is cleared.
fontsize : int, optional (default=None)
Size of text font. If None, determined automatically to fit figure.
Returns
-------
annotations : list of artists
List containing the artists for the annotation boxes making up the
tree.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> clf = clf.fit(iris.data, iris.target)
>>> tree.plot_tree(clf) # doctest: +SKIP
[Text(251.5,345.217,'X[3] <= 0.8...
"""
exporter = _MPLTreeExporter(
max_depth=max_depth, feature_names=feature_names,
class_names=class_names, label=label, filled=filled,
impurity=impurity, node_ids=node_ids,
proportion=proportion, rotate=rotate, rounded=rounded,
precision=precision, fontsize=fontsize)
return exporter.export(decision_tree, ax=ax)
class _BaseTreeExporter:
def __init__(self, max_depth=None, feature_names=None,
class_names=None, label='all', filled=False,
impurity=True, node_ids=False,
proportion=False, rotate=False, rounded=False,
precision=3, fontsize=None):
self.max_depth = max_depth
self.feature_names = feature_names
self.class_names = class_names
self.label = label
self.filled = filled
self.impurity = impurity
self.node_ids = node_ids
self.proportion = proportion
self.rotate = rotate
self.rounded = rounded
self.precision = precision
self.fontsize = fontsize
def get_color(self, value):
# Find the appropriate color & intensity for a node
if self.colors['bounds'] is None:
# Classification tree
color = list(self.colors['rgb'][np.argmax(value)])
sorted_values = sorted(value, reverse=True)
if len(sorted_values) == 1:
alpha = 0
else:
alpha = ((sorted_values[0] - sorted_values[1])
/ (1 - sorted_values[1]))
else:
# Regression tree or multi-output
color = list(self.colors['rgb'][0])
alpha = ((value - self.colors['bounds'][0]) /
(self.colors['bounds'][1] - self.colors['bounds'][0]))
# unpack numpy scalars
alpha = float(alpha)
# compute the color as alpha against white
color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color]
# Return html color code in #RRGGBB format
return '#%2x%2x%2x' % tuple(color)
def get_fill_color(self, tree, node_id):
# Fetch appropriate color for node
if 'rgb' not in self.colors:
# Initialize colors and bounds if required
self.colors['rgb'] = _color_brew(tree.n_classes[0])
if tree.n_outputs != 1:
# Find max and min impurities for multi-output
self.colors['bounds'] = (np.min(-tree.impurity),
np.max(-tree.impurity))
elif (tree.n_classes[0] == 1 and
len(np.unique(tree.value)) != 1):
# Find max and min values in leaf nodes for regression
self.colors['bounds'] = (np.min(tree.value),
np.max(tree.value))
if tree.n_outputs == 1:
node_val = (tree.value[node_id][0, :] /
tree.weighted_n_node_samples[node_id])
if tree.n_classes[0] == 1:
# Regression
node_val = tree.value[node_id][0, :]
else:
# If multi-output color node by impurity
node_val = -tree.impurity[node_id]
return self.get_color(node_val)
def node_to_str(self, tree, node_id, criterion):
# Generate the node content string
if tree.n_outputs == 1:
value = tree.value[node_id][0, :]
else:
value = tree.value[node_id]
# Should labels be shown?
labels = (self.label == 'root' and node_id == 0) or self.label == 'all'
characters = self.characters
node_string = characters[-1]
# Write node ID
if self.node_ids:
if labels:
node_string += 'node '
node_string += characters[0] + str(node_id) + characters[4]
# Write decision criteria
if tree.children_left[node_id] != _tree.TREE_LEAF:
# Always write node decision criteria, except for leaves
if self.feature_names is not None:
feature = self.feature_names[tree.feature[node_id]]
else:
feature = "X%s%s%s" % (characters[1],
tree.feature[node_id],
characters[2])
node_string += '%s %s %s%s' % (feature,
characters[3],
round(tree.threshold[node_id],
self.precision),
characters[4])
# Write impurity
if self.impurity:
if isinstance(criterion, _criterion.FriedmanMSE):
criterion = "friedman_mse"
elif not isinstance(criterion, str):
criterion = "impurity"
if labels:
node_string += '%s = ' % criterion
node_string += (str(round(tree.impurity[node_id], self.precision))
+ characters[4])
# Write node sample count
if labels:
node_string += 'samples = '
if self.proportion:
percent = (100. * tree.n_node_samples[node_id] /
float(tree.n_node_samples[0]))
node_string += (str(round(percent, 1)) + '%' +
characters[4])
else:
node_string += (str(tree.n_node_samples[node_id]) +
characters[4])
# Write node class distribution / regression value
if self.proportion and tree.n_classes[0] != 1:
# For classification this will show the proportion of samples
value = value / tree.weighted_n_node_samples[node_id]
if labels:
node_string += 'value = '
if tree.n_classes[0] == 1:
# Regression
value_text = np.around(value, self.precision)
elif self.proportion:
# Classification
value_text = np.around(value, self.precision)
elif np.all(np.equal(np.mod(value, 1), 0)):
# Classification without floating-point weights
value_text = value.astype(int)
else:
# Classification with floating-point weights
value_text = np.around(value, self.precision)
# Strip whitespace
value_text = str(value_text.astype('S32')).replace("b'", "'")
value_text = value_text.replace("' '", ", ").replace("'", "")
if tree.n_classes[0] == 1 and tree.n_outputs == 1:
value_text = value_text.replace("[", "").replace("]", "")
value_text = value_text.replace("\n ", characters[4])
node_string += value_text + characters[4]
# Write node majority class
if (self.class_names is not None and
tree.n_classes[0] != 1 and
tree.n_outputs == 1):
# Only done for single-output classification trees
if labels:
node_string += 'class = '
if self.class_names is not True:
class_name = self.class_names[np.argmax(value)]
else:
class_name = "y%s%s%s" % (characters[1],
np.argmax(value),
characters[2])
node_string += class_name
# Clean up any trailing newlines
if node_string.endswith(characters[4]):
node_string = node_string[:-len(characters[4])]
return node_string + characters[5]
class _DOTTreeExporter(_BaseTreeExporter):
def __init__(self, out_file=SENTINEL, max_depth=None,
feature_names=None, class_names=None, label='all',
filled=False, leaves_parallel=False, impurity=True,
node_ids=False, proportion=False, rotate=False, rounded=False,
special_characters=False, precision=3):
super().__init__(
max_depth=max_depth, feature_names=feature_names,
class_names=class_names, label=label, filled=filled,
impurity=impurity,
node_ids=node_ids, proportion=proportion, rotate=rotate,
rounded=rounded,
precision=precision)
self.leaves_parallel = leaves_parallel
self.out_file = out_file
self.special_characters = special_characters
# PostScript compatibility for special characters
if special_characters:
self.characters = ['#', '<SUB>', '</SUB>', '≤', '<br/>',
'>', '<']
else:
self.characters = ['#', '[', ']', '<=', '\\n', '"', '"']
# validate
if isinstance(precision, Integral):
if precision < 0:
raise ValueError("'precision' should be greater or equal to 0."
" Got {} instead.".format(precision))
else:
raise ValueError("'precision' should be an integer. Got {}"
" instead.".format(type(precision)))
# The depth of each node for plotting with 'leaf' option
self.ranks = {'leaves': []}
# The colors to render each node with
self.colors = {'bounds': None}
def export(self, decision_tree):
# Check length of feature_names before getting into the tree node
# Raise error if length of feature_names does not match
# n_features_ in the decision_tree
if self.feature_names is not None:
if len(self.feature_names) != decision_tree.n_features_:
raise ValueError("Length of feature_names, %d "
"does not match number of features, %d"
% (len(self.feature_names),
decision_tree.n_features_))
# each part writes to out_file
self.head()
# Now recurse the tree and add node & edge attributes
if isinstance(decision_tree, _tree.Tree):
self.recurse(decision_tree, 0, criterion="impurity")
else:
self.recurse(decision_tree.tree_, 0,
criterion=decision_tree.criterion)
self.tail()
def tail(self):
# If required, draw leaf nodes at same depth as each other
if self.leaves_parallel:
for rank in sorted(self.ranks):
self.out_file.write(
"{rank=same ; " +
"; ".join(r for r in self.ranks[rank]) + "} ;\n")
self.out_file.write("}")
def head(self):
self.out_file.write('digraph Tree {\n')
# Specify node aesthetics
self.out_file.write('node [shape=box')
rounded_filled = []
if self.filled:
rounded_filled.append('filled')
if self.rounded:
rounded_filled.append('rounded')
if len(rounded_filled) > 0:
self.out_file.write(
', style="%s", color="black"'
% ", ".join(rounded_filled))
if self.rounded:
self.out_file.write(', fontname=helvetica')
self.out_file.write('] ;\n')
# Specify graph & edge aesthetics
if self.leaves_parallel:
self.out_file.write(
'graph [ranksep=equally, splines=polyline] ;\n')
if self.rounded:
self.out_file.write('edge [fontname=helvetica] ;\n')
if self.rotate:
self.out_file.write('rankdir=LR ;\n')
def recurse(self, tree, node_id, criterion, parent=None, depth=0):
if node_id == _tree.TREE_LEAF:
raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF)
left_child = tree.children_left[node_id]
right_child = tree.children_right[node_id]
# Add node with description
if self.max_depth is None or depth <= self.max_depth:
# Collect ranks for 'leaf' option in plot_options
if left_child == _tree.TREE_LEAF:
self.ranks['leaves'].append(str(node_id))
elif str(depth) not in self.ranks:
self.ranks[str(depth)] = [str(node_id)]
else:
self.ranks[str(depth)].append(str(node_id))
self.out_file.write(
'%d [label=%s' % (node_id, self.node_to_str(tree, node_id,
criterion)))
if self.filled:
self.out_file.write(', fillcolor="%s"'
% self.get_fill_color(tree, node_id))
self.out_file.write('] ;\n')
if parent is not None:
# Add edge to parent
self.out_file.write('%d -> %d' % (parent, node_id))
if parent == 0:
# Draw True/False labels if parent is root node
angles = np.array([45, -45]) * ((self.rotate - .5) * -2)
self.out_file.write(' [labeldistance=2.5, labelangle=')
if node_id == 1:
self.out_file.write('%d, headlabel="True"]' %
angles[0])
else:
self.out_file.write('%d, headlabel="False"]' %
angles[1])
self.out_file.write(' ;\n')
if left_child != _tree.TREE_LEAF:
self.recurse(tree, left_child, criterion=criterion,
parent=node_id, depth=depth + 1)
self.recurse(tree, right_child, criterion=criterion,
parent=node_id, depth=depth + 1)
else:
self.ranks['leaves'].append(str(node_id))
self.out_file.write('%d [label="(...)"' % node_id)
if self.filled:
# color cropped nodes grey
self.out_file.write(', fillcolor="#C0C0C0"')
self.out_file.write('] ;\n' % node_id)
if parent is not None:
# Add edge to parent
self.out_file.write('%d -> %d ;\n' % (parent, node_id))
class _MPLTreeExporter(_BaseTreeExporter):
def __init__(self, max_depth=None, feature_names=None,
class_names=None, label='all', filled=False,
impurity=True, node_ids=False,
proportion=False, rotate=False, rounded=False,
precision=3, fontsize=None):
super().__init__(
max_depth=max_depth, feature_names=feature_names,
class_names=class_names, label=label, filled=filled,
impurity=impurity, node_ids=node_ids, proportion=proportion,
rotate=rotate, rounded=rounded, precision=precision)
self.fontsize = fontsize
# validate
if isinstance(precision, Integral):
if precision < 0:
raise ValueError("'precision' should be greater or equal to 0."
" Got {} instead.".format(precision))
else:
raise ValueError("'precision' should be an integer. Got {}"
" instead.".format(type(precision)))
# The depth of each node for plotting with 'leaf' option
self.ranks = {'leaves': []}
# The colors to render each node with
self.colors = {'bounds': None}
self.characters = ['#', '[', ']', '<=', '\n', '', '']
self.bbox_args = dict(fc='w')
if self.rounded:
self.bbox_args['boxstyle'] = "round"
self.arrow_args = dict(arrowstyle="<-")
def _make_tree(self, node_id, et, criterion, depth=0):
# traverses _tree.Tree recursively, builds intermediate
# "_reingold_tilford.Tree" object
name = self.node_to_str(et, node_id, criterion=criterion)
if (et.children_left[node_id] != _tree.TREE_LEAF
and (self.max_depth is None or depth <= self.max_depth)):
children = [self._make_tree(et.children_left[node_id], et,
criterion, depth=depth + 1),
self._make_tree(et.children_right[node_id], et,
criterion, depth=depth + 1)]
else:
return Tree(name, node_id)
return Tree(name, node_id, *children)
def export(self, decision_tree, ax=None):
import matplotlib.pyplot as plt
from matplotlib.text import Annotation
if ax is None:
ax = plt.gca()
ax.clear()
ax.set_axis_off()
my_tree = self._make_tree(0, decision_tree.tree_,
decision_tree.criterion)
draw_tree = buchheim(my_tree)
# important to make sure we're still
# inside the axis after drawing the box
# this makes sense because the width of a box
# is about the same as the distance between boxes
max_x, max_y = draw_tree.max_extents() + 1
ax_width = ax.get_window_extent().width
ax_height = ax.get_window_extent().height
scale_x = ax_width / max_x
scale_y = ax_height / max_y
self.recurse(draw_tree, decision_tree.tree_, ax,
scale_x, scale_y, ax_height)
anns = [ann for ann in ax.get_children()
if isinstance(ann, Annotation)]
# update sizes of all bboxes
renderer = ax.figure.canvas.get_renderer()
for ann in anns:
ann.update_bbox_position_size(renderer)
if self.fontsize is None:
# get figure to data transform
# adjust fontsize to avoid overlap
# get max box width and height
extents = [ann.get_bbox_patch().get_window_extent()
for ann in anns]
max_width = max([extent.width for extent in extents])
max_height = max([extent.height for extent in extents])
# width should be around scale_x in axis coordinates
size = anns[0].get_fontsize() * min(scale_x / max_width,
scale_y / max_height)
for ann in anns:
ann.set_fontsize(size)
return anns
def recurse(self, node, tree, ax, scale_x, scale_y, height, depth=0):
kwargs = dict(bbox=self.bbox_args, ha='center', va='center',
zorder=100 - 10 * depth, xycoords='axes pixels')
if self.fontsize is not None:
kwargs['fontsize'] = self.fontsize
# offset things by .5 to center them in plot
xy = ((node.x + .5) * scale_x, height - (node.y + .5) * scale_y)
if self.max_depth is None or depth <= self.max_depth:
if self.filled:
kwargs['bbox']['fc'] = self.get_fill_color(tree,
node.tree.node_id)
if node.parent is None:
# root
ax.annotate(node.tree.label, xy, **kwargs)
else:
xy_parent = ((node.parent.x + .5) * scale_x,
height - (node.parent.y + .5) * scale_y)
kwargs["arrowprops"] = self.arrow_args
ax.annotate(node.tree.label, xy_parent, xy, **kwargs)
for child in node.children:
self.recurse(child, tree, ax, scale_x, scale_y, height,
depth=depth + 1)
else:
xy_parent = ((node.parent.x + .5) * scale_x,
height - (node.parent.y + .5) * scale_y)
kwargs["arrowprops"] = self.arrow_args
kwargs['bbox']['fc'] = 'grey'
ax.annotate("\n (...) \n", xy_parent, xy, **kwargs)
def export_graphviz(decision_tree, out_file=None, max_depth=None,
feature_names=None, class_names=None, label='all',
filled=False, leaves_parallel=False, impurity=True,
node_ids=False, proportion=False, rotate=False,
rounded=False, special_characters=False, precision=3):
"""Export a decision tree in DOT format.
This function generates a GraphViz representation of the decision tree,
which is then written into `out_file`. Once exported, graphical renderings
can be generated using, for example::
$ dot -Tps tree.dot -o tree.ps (PostScript format)
$ dot -Tpng tree.dot -o tree.png (PNG format)
The sample counts that are shown are weighted with any sample_weights that
might be present.
Read more in the :ref:`User Guide <tree>`.
Parameters
----------
decision_tree : decision tree classifier
The decision tree to be exported to GraphViz.
out_file : file object or string, optional (default=None)
Handle or name of the output file. If ``None``, the result is
returned as a string.
.. versionchanged:: 0.20
Default of out_file changed from "tree.dot" to None.
max_depth : int, optional (default=None)
The maximum depth of the representation. If None, the tree is fully
generated.
feature_names : list of strings, optional (default=None)
Names of each of the features.
class_names : list of strings, bool or None, optional (default=None)
Names of each of the target classes in ascending numerical order.
Only relevant for classification and not supported for multi-output.
If ``True``, shows a symbolic representation of the class name.
label : {'all', 'root', 'none'}, optional (default='all')
Whether to show informative labels for impurity, etc.
Options include 'all' to show at every node, 'root' to show only at
the top root node, or 'none' to not show at any node.
filled : bool, optional (default=False)
When set to ``True``, paint nodes to indicate majority class for
classification, extremity of values for regression, or purity of node
for multi-output.
leaves_parallel : bool, optional (default=False)
When set to ``True``, draw all leaf nodes at the bottom of the tree.
impurity : bool, optional (default=True)
When set to ``True``, show the impurity at each node.
node_ids : bool, optional (default=False)
When set to ``True``, show the ID number on each node.
proportion : bool, optional (default=False)
When set to ``True``, change the display of 'values' and/or 'samples'
to be proportions and percentages respectively.
rotate : bool, optional (default=False)
When set to ``True``, orient tree left to right rather than top-down.
rounded : bool, optional (default=False)
When set to ``True``, draw node boxes with rounded corners and use
Helvetica fonts instead of Times-Roman.
special_characters : bool, optional (default=False)
When set to ``False``, ignore special characters for PostScript
compatibility.
precision : int, optional (default=3)
Number of digits of precision for floating point in the values of
impurity, threshold and value attributes of each node.
Returns
-------
dot_data : string
String representation of the input tree in GraphViz dot format.
Only returned if ``out_file`` is None.
.. versionadded:: 0.18
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier()
>>> iris = load_iris()
>>> clf = clf.fit(iris.data, iris.target)
>>> tree.export_graphviz(clf)
'digraph Tree {...
"""
check_is_fitted(decision_tree)
own_file = False
return_string = False
try:
if isinstance(out_file, str):
out_file = open(out_file, "w", encoding="utf-8")
own_file = True
if out_file is None:
return_string = True
out_file = StringIO()
exporter = _DOTTreeExporter(
out_file=out_file, max_depth=max_depth,
feature_names=feature_names, class_names=class_names, label=label,
filled=filled, leaves_parallel=leaves_parallel, impurity=impurity,
node_ids=node_ids, proportion=proportion, rotate=rotate,
rounded=rounded, special_characters=special_characters,
precision=precision)
exporter.export(decision_tree)
if return_string:
return exporter.out_file.getvalue()
finally:
if own_file:
out_file.close()
def _compute_depth(tree, node):
"""
Returns the depth of the subtree rooted in node.
"""
def compute_depth_(current_node, current_depth,
children_left, children_right, depths):
depths += [current_depth]
left = children_left[current_node]
right = children_right[current_node]
if left != -1 and right != -1:
compute_depth_(left, current_depth+1,
children_left, children_right, depths)
compute_depth_(right, current_depth+1,
children_left, children_right, depths)
depths = []
compute_depth_(node, 1, tree.children_left, tree.children_right, depths)
return max(depths)
def export_text(decision_tree, feature_names=None, max_depth=10,
spacing=3, decimals=2, show_weights=False):
"""Build a text report showing the rules of a decision tree.
Note that backwards compatibility may not be supported.
Parameters
----------
decision_tree : object
The decision tree estimator to be exported.
It can be an instance of
DecisionTreeClassifier or DecisionTreeRegressor.
feature_names : list, optional (default=None)
A list of length n_features containing the feature names.
If None generic names will be used ("feature_0", "feature_1", ...).
max_depth : int, optional (default=10)
Only the first max_depth levels of the tree are exported.
Truncated branches will be marked with "...".
spacing : int, optional (default=3)
Number of spaces between edges. The higher it is, the wider the result.
decimals : int, optional (default=2)
Number of decimal digits to display.
show_weights : bool, optional (default=False)
If true the classification weights will be exported on each leaf.
The classification weights are the number of samples each class.
Returns
-------
report : string
Text summary of all the rules in the decision tree.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.tree import export_text
>>> iris = load_iris()
>>> X = iris['data']
>>> y = iris['target']
>>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
>>> decision_tree = decision_tree.fit(X, y)
>>> r = export_text(decision_tree, feature_names=iris['feature_names'])
>>> print(r)
|--- petal width (cm) <= 0.80
| |--- class: 0
|--- petal width (cm) > 0.80
| |--- petal width (cm) <= 1.75
| | |--- class: 1
| |--- petal width (cm) > 1.75
| | |--- class: 2
"""
check_is_fitted(decision_tree)
tree_ = decision_tree.tree_
if is_classifier(decision_tree):
class_names = decision_tree.classes_
right_child_fmt = "{} {} <= {}\n"
left_child_fmt = "{} {} > {}\n"
truncation_fmt = "{} {}\n"
if max_depth < 0:
raise ValueError("max_depth bust be >= 0, given %d" % max_depth)
if (feature_names is not None and
len(feature_names) != tree_.n_features):
raise ValueError("feature_names must contain "
"%d elements, got %d" % (tree_.n_features,
len(feature_names)))
if spacing <= 0:
raise ValueError("spacing must be > 0, given %d" % spacing)
if decimals < 0:
raise ValueError("decimals must be >= 0, given %d" % decimals)
if isinstance(decision_tree, DecisionTreeClassifier):
value_fmt = "{}{} weights: {}\n"
if not show_weights:
value_fmt = "{}{}{}\n"
else:
value_fmt = "{}{} value: {}\n"
if feature_names:
feature_names_ = [feature_names[i] if i != _tree.TREE_UNDEFINED
else None for i in tree_.feature]
else:
feature_names_ = ["feature_{}".format(i) for i in tree_.feature]
export_text.report = ""
def _add_leaf(value, class_name, indent):
val = ''
is_classification = isinstance(decision_tree,
DecisionTreeClassifier)
if show_weights or not is_classification:
val = ["{1:.{0}f}, ".format(decimals, v) for v in value]
val = '['+''.join(val)[:-2]+']'
if is_classification:
val += ' class: ' + str(class_name)
export_text.report += value_fmt.format(indent, '', val)
def print_tree_recurse(node, depth):
indent = ("|" + (" " * spacing)) * depth
indent = indent[:-spacing] + "-" * spacing
value = None
if tree_.n_outputs == 1:
value = tree_.value[node][0]
else:
value = tree_.value[node].T[0]
class_name = np.argmax(value)
if (tree_.n_classes[0] != 1 and
tree_.n_outputs == 1):
class_name = class_names[class_name]
if depth <= max_depth+1:
info_fmt = ""
info_fmt_left = info_fmt
info_fmt_right = info_fmt
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_names_[node]
threshold = tree_.threshold[node]
threshold = "{1:.{0}f}".format(decimals, threshold)
export_text.report += right_child_fmt.format(indent,
name,
threshold)
export_text.report += info_fmt_left
print_tree_recurse(tree_.children_left[node], depth+1)
export_text.report += left_child_fmt.format(indent,
name,
threshold)
export_text.report += info_fmt_right
print_tree_recurse(tree_.children_right[node], depth+1)
else: # leaf
_add_leaf(value, class_name, indent)
else:
subtree_depth = _compute_depth(tree_, node)
if subtree_depth == 1:
_add_leaf(value, class_name, indent)
else:
trunc_report = 'truncated branch of depth %d' % subtree_depth
export_text.report += truncation_fmt.format(indent,
trunc_report)
print_tree_recurse(0, 1)
return export_text.report