Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scipy   python

Repository URL to install this package:

Version: 1.3.3 

/ cluster / hierarchy.py

"""
Hierarchical clustering (:mod:`scipy.cluster.hierarchy`)
========================================================

.. currentmodule:: scipy.cluster.hierarchy

These functions cut hierarchical clusterings into flat clusterings
or find the roots of the forest formed by a cut by providing the flat
cluster ids of each observation.

.. autosummary::
   :toctree: generated/

   fcluster
   fclusterdata
   leaders

These are routines for agglomerative clustering.

.. autosummary::
   :toctree: generated/

   linkage
   single
   complete
   average
   weighted
   centroid
   median
   ward

These routines compute statistics on hierarchies.

.. autosummary::
   :toctree: generated/

   cophenet
   from_mlab_linkage
   inconsistent
   maxinconsts
   maxdists
   maxRstat
   to_mlab_linkage

Routines for visualizing flat clusters.

.. autosummary::
   :toctree: generated/

   dendrogram

These are data structures and routines for representing hierarchies as
tree objects.

.. autosummary::
   :toctree: generated/

   ClusterNode
   leaves_list
   to_tree
   cut_tree
   optimal_leaf_ordering

These are predicates for checking the validity of linkage and
inconsistency matrices as well as for checking isomorphism of two
flat cluster assignments.

.. autosummary::
   :toctree: generated/

   is_valid_im
   is_valid_linkage
   is_isomorphic
   is_monotonic
   correspond
   num_obs_linkage

Utility routines for plotting:

.. autosummary::
   :toctree: generated/

   set_link_color_palette

"""
from __future__ import division, print_function, absolute_import

# Copyright (C) Damian Eads, 2007-2008. New BSD License.

# hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com)
#
# Author: Damian Eads
# Date:   September 22, 2007
#
# Copyright (c) 2007, 2008, Damian Eads
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#   - Redistributions of source code must retain the above
#     copyright notice, this list of conditions and the
#     following disclaimer.
#   - Redistributions in binary form must reproduce the above copyright
#     notice, this list of conditions and the following disclaimer
#     in the documentation and/or other materials provided with the
#     distribution.
#   - Neither the name of the author nor the names of its
#     contributors may be used to endorse or promote products derived
#     from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import warnings
import bisect
from collections import deque

import numpy as np
from . import _hierarchy, _optimal_leaf_ordering
import scipy.spatial.distance as distance

from scipy._lib.six import string_types
from scipy._lib.six import xrange

_LINKAGE_METHODS = {'single': 0, 'complete': 1, 'average': 2, 'centroid': 3,
                    'median': 4, 'ward': 5, 'weighted': 6}
_EUCLIDEAN_METHODS = ('centroid', 'median', 'ward')

__all__ = ['ClusterNode', 'average', 'centroid', 'complete', 'cophenet',
           'correspond', 'cut_tree', 'dendrogram', 'fcluster', 'fclusterdata',
           'from_mlab_linkage', 'inconsistent', 'is_isomorphic',
           'is_monotonic', 'is_valid_im', 'is_valid_linkage', 'leaders',
           'leaves_list', 'linkage', 'maxRstat', 'maxdists', 'maxinconsts',
           'median', 'num_obs_linkage', 'optimal_leaf_ordering',
           'set_link_color_palette', 'single', 'to_mlab_linkage', 'to_tree',
           'ward', 'weighted', 'distance']


class ClusterWarning(UserWarning):
    pass


def _warning(s):
    warnings.warn('scipy.cluster: %s' % s, ClusterWarning, stacklevel=3)


def _copy_array_if_base_present(a):
    """
    Copy the array if its base points to a parent array.
    """
    if a.base is not None:
        return a.copy()
    elif np.issubsctype(a, np.float32):
        return np.array(a, dtype=np.double)
    else:
        return a


def _copy_arrays_if_base_present(T):
    """
    Accept a tuple of arrays T. Copies the array T[i] if its base array
    points to an actual array. Otherwise, the reference is just copied.
    This is useful if the arrays are being passed to a C function that
    does not do proper striding.
    """
    l = [_copy_array_if_base_present(a) for a in T]
    return l


def _randdm(pnts):
    """
    Generate a random distance matrix stored in condensed form.

    Parameters
    ----------
    pnts : int
        The number of points in the distance matrix. Has to be at least 2.

    Returns
    -------
    D : ndarray
        A ``pnts * (pnts - 1) / 2`` sized vector is returned.
    """
    if pnts >= 2:
        D = np.random.rand(pnts * (pnts - 1) / 2)
    else:
        raise ValueError("The number of points in the distance matrix "
                         "must be at least 2.")
    return D


def single(y):
    """
    Perform single/min/nearest linkage on the condensed distance matrix ``y``.

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        The linkage matrix.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.
    scipy.spatial.distance.pdist : pairwise distance metrics

    Examples
    --------
    >>> from scipy.cluster.hierarchy import single, fcluster
    >>> from scipy.spatial.distance import pdist

    First we need a toy dataset to play with::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    Then we get a condensed distance matrix from this dataset:

    >>> y = pdist(X)

    Finally, we can perform the clustering:

    >>> Z = single(y)
    >>> Z
    array([[ 0.,  1.,  1.,  2.],
           [ 2., 12.,  1.,  3.],
           [ 3.,  4.,  1.,  2.],
           [ 5., 14.,  1.,  3.],
           [ 6.,  7.,  1.,  2.],
           [ 8., 16.,  1.,  3.],
           [ 9., 10.,  1.,  2.],
           [11., 18.,  1.,  3.],
           [13., 15.,  2.,  6.],
           [17., 20.,  2.,  9.],
           [19., 21.,  2., 12.]])

    The linkage matrix ``Z`` represents a dendrogram - see
    `scipy.cluster.hierarchy.linkage` for a detailed explanation of its
    contents.

    We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
    each initial point would belong given a distance threshold:

    >>> fcluster(Z, 0.9, criterion='distance')
    array([ 7,  8,  9, 10, 11, 12,  4,  5,  6,  1,  2,  3], dtype=int32)
    >>> fcluster(Z, 1, criterion='distance')
    array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)
    >>> fcluster(Z, 2, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

    Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
    plot of the dendrogram.
    """
    return linkage(y, method='single', metric='euclidean')


def complete(y):
    """
    Perform complete/max/farthest point linkage on a condensed distance matrix.

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        A linkage matrix containing the hierarchical clustering. See
        the `linkage` function documentation for more information
        on its structure.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.
    scipy.spatial.distance.pdist : pairwise distance metrics

    Examples
    --------
    >>> from scipy.cluster.hierarchy import complete, fcluster
    >>> from scipy.spatial.distance import pdist

    First we need a toy dataset to play with::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    Then we get a condensed distance matrix from this dataset:

    >>> y = pdist(X)

    Finally, we can perform the clustering:

    >>> Z = complete(y)
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.41421356,  3.        ],
           [ 5.        , 13.        ,  1.41421356,  3.        ],
           [ 8.        , 14.        ,  1.41421356,  3.        ],
           [11.        , 15.        ,  1.41421356,  3.        ],
           [16.        , 17.        ,  4.12310563,  6.        ],
           [18.        , 19.        ,  4.12310563,  6.        ],
           [20.        , 21.        ,  5.65685425, 12.        ]])

    The linkage matrix ``Z`` represents a dendrogram - see
    `scipy.cluster.hierarchy.linkage` for a detailed explanation of its
    contents.

    We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
Loading ...