from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from scipy.special import factorial
from scipy._lib.six import xrange
from scipy._lib._util import _asarray_validated
__all__ = ["KroghInterpolator", "krogh_interpolate", "BarycentricInterpolator",
"barycentric_interpolate", "approximate_taylor_polynomial"]
def _isscalar(x):
"""Check whether x is if a scalar type, or 0-dim"""
return np.isscalar(x) or hasattr(x, 'shape') and x.shape == ()
class _Interpolator1D(object):
"""
Common features in univariate interpolation
Deal with input data type and interpolation axis rolling. The
actual interpolator can assume the y-data is of shape (n, r) where
`n` is the number of x-points, and `r` the number of variables,
and use self.dtype as the y-data type.
Attributes
----------
_y_axis
Axis along which the interpolation goes in the original array
_y_extra_shape
Additional trailing shape of the input arrays, excluding
the interpolation axis.
dtype
Dtype of the y-data arrays. Can be set via _set_dtype, which
forces it to be float or complex.
Methods
-------
__call__
_prepare_x
_finish_y
_reshape_yi
_set_yi
_set_dtype
_evaluate
"""
__slots__ = ('_y_axis', '_y_extra_shape', 'dtype')
def __init__(self, xi=None, yi=None, axis=None):
self._y_axis = axis
self._y_extra_shape = None
self.dtype = None
if yi is not None:
self._set_yi(yi, xi=xi, axis=axis)
def __call__(self, x):
"""
Evaluate the interpolant
Parameters
----------
x : array_like
Points to evaluate the interpolant at.
Returns
-------
y : array_like
Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.
"""
x, x_shape = self._prepare_x(x)
y = self._evaluate(x)
return self._finish_y(y, x_shape)
def _evaluate(self, x):
"""
Actually evaluate the value of the interpolator.
"""
raise NotImplementedError()
def _prepare_x(self, x):
"""Reshape input x array to 1-D"""
x = _asarray_validated(x, check_finite=False, as_inexact=True)
x_shape = x.shape
return x.ravel(), x_shape
def _finish_y(self, y, x_shape):
"""Reshape interpolated y back to n-d array similar to initial y"""
y = y.reshape(x_shape + self._y_extra_shape)
if self._y_axis != 0 and x_shape != ():
nx = len(x_shape)
ny = len(self._y_extra_shape)
s = (list(range(nx, nx + self._y_axis))
+ list(range(nx)) + list(range(nx+self._y_axis, nx+ny)))
y = y.transpose(s)
return y
def _reshape_yi(self, yi, check=False):
yi = np.rollaxis(np.asarray(yi), self._y_axis)
if check and yi.shape[1:] != self._y_extra_shape:
ok_shape = "%r + (N,) + %r" % (self._y_extra_shape[-self._y_axis:],
self._y_extra_shape[:-self._y_axis])
raise ValueError("Data must be of shape %s" % ok_shape)
return yi.reshape((yi.shape[0], -1))
def _set_yi(self, yi, xi=None, axis=None):
if axis is None:
axis = self._y_axis
if axis is None:
raise ValueError("no interpolation axis specified")
yi = np.asarray(yi)
shape = yi.shape
if shape == ():
shape = (1,)
if xi is not None and shape[axis] != len(xi):
raise ValueError("x and y arrays must be equal in length along "
"interpolation axis.")
self._y_axis = (axis % yi.ndim)
self._y_extra_shape = yi.shape[:self._y_axis]+yi.shape[self._y_axis+1:]
self.dtype = None
self._set_dtype(yi.dtype)
def _set_dtype(self, dtype, union=False):
if np.issubdtype(dtype, np.complexfloating) \
or np.issubdtype(self.dtype, np.complexfloating):
self.dtype = np.complex_
else:
if not union or self.dtype != np.complex_:
self.dtype = np.float_
class _Interpolator1DWithDerivatives(_Interpolator1D):
def derivatives(self, x, der=None):
"""
Evaluate many derivatives of the polynomial at the point x
Produce an array of all derivative values at the point x.
Parameters
----------
x : array_like
Point or points at which to evaluate the derivatives
der : int or None, optional
How many derivatives to extract; None for all potentially
nonzero derivatives (that is a number equal to the number
of points). This number includes the function value as 0th
derivative.
Returns
-------
d : ndarray
Array with derivatives; d[j] contains the j-th derivative.
Shape of d[j] is determined by replacing the interpolation
axis in the original array with the shape of x.
Examples
--------
>>> from scipy.interpolate import KroghInterpolator
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
array([1.0,2.0,3.0])
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
array([[1.0,1.0],
[2.0,2.0],
[3.0,3.0]])
"""
x, x_shape = self._prepare_x(x)
y = self._evaluate_derivatives(x, der)
y = y.reshape((y.shape[0],) + x_shape + self._y_extra_shape)
if self._y_axis != 0 and x_shape != ():
nx = len(x_shape)
ny = len(self._y_extra_shape)
s = ([0] + list(range(nx+1, nx + self._y_axis+1))
+ list(range(1,nx+1)) +
list(range(nx+1+self._y_axis, nx+ny+1)))
y = y.transpose(s)
return y
def derivative(self, x, der=1):
"""
Evaluate one derivative of the polynomial at the point x
Parameters
----------
x : array_like
Point or points at which to evaluate the derivatives
der : integer, optional
Which derivative to extract. This number includes the
function value as 0th derivative.
Returns
-------
d : ndarray
Derivative interpolated at the x-points. Shape of d is
determined by replacing the interpolation axis in the
original array with the shape of x.
Notes
-----
This is computed by evaluating all derivatives up to the desired
one (using self.derivatives()) and then discarding the rest.
"""
x, x_shape = self._prepare_x(x)
y = self._evaluate_derivatives(x, der+1)
return self._finish_y(y[der], x_shape)
class KroghInterpolator(_Interpolator1DWithDerivatives):
"""
Interpolating polynomial for a set of points.
The polynomial passes through all the pairs (xi,yi). One may
additionally specify a number of derivatives at each point xi;
this is done by repeating the value xi and specifying the
derivatives as successive yi values.
Allows evaluation of the polynomial and all its derivatives.
For reasons of numerical stability, this function does not compute
the coefficients of the polynomial, although they can be obtained
by evaluating all the derivatives.
Parameters
----------
xi : array_like, length N
Known x-coordinates. Must be sorted in increasing order.
yi : array_like
Known y-coordinates. When an xi occurs two or more times in
a row, the corresponding yi's represent derivative values.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Notes
-----
Be aware that the algorithms implemented here are not necessarily
the most numerically stable known. Moreover, even in a world of
exact computation, unless the x coordinates are chosen very
carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice -
polynomial interpolation itself is a very ill-conditioned process
due to the Runge phenomenon. In general, even with well-chosen
x values, degrees higher than about thirty cause problems with
numerical instability in this code.
Based on [1]_.
References
----------
.. [1] Krogh, "Efficient Algorithms for Polynomial Interpolation
and Numerical Differentiation", 1970.
Examples
--------
To produce a polynomial that is zero at 0 and 1 and has
derivative 2 at 0, call
>>> from scipy.interpolate import KroghInterpolator
>>> KroghInterpolator([0,0,1],[0,2,0])
This constructs the quadratic 2*X**2-2*X. The derivative condition
is indicated by the repeated zero in the xi array; the corresponding
yi values are 0, the function value, and 2, the derivative value.
For another example, given xi, yi, and a derivative ypi for each
point, appropriate arrays can be constructed as:
>>> xi = np.linspace(0, 1, 5)
>>> yi, ypi = np.random.rand(2, 5)
>>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
>>> KroghInterpolator(xi_k, yi_k)
To produce a vector-valued polynomial, supply a higher-dimensional
array for yi:
>>> KroghInterpolator([0,1],[[2,3],[4,5]])
This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.
"""
def __init__(self, xi, yi, axis=0):
_Interpolator1DWithDerivatives.__init__(self, xi, yi, axis)
self.xi = np.asarray(xi)
self.yi = self._reshape_yi(yi)
self.n, self.r = self.yi.shape
c = np.zeros((self.n+1, self.r), dtype=self.dtype)
c[0] = self.yi[0]
Vk = np.zeros((self.n, self.r), dtype=self.dtype)
for k in xrange(1,self.n):
s = 0
while s <= k and xi[k-s] == xi[k]:
s += 1
s -= 1
Vk[0] = self.yi[k]/float(factorial(s))
for i in xrange(k-s):
if xi[i] == xi[k]:
raise ValueError("Elements if `xi` can't be equal.")
if s == 0:
Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k])
else:
Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k])
c[k] = Vk[k-s]
self.c = c
def _evaluate(self, x):
pi = 1
p = np.zeros((len(x), self.r), dtype=self.dtype)
p += self.c[0,np.newaxis,:]
for k in range(1, self.n):
w = x - self.xi[k-1]
pi = w*pi
p += pi[:,np.newaxis] * self.c[k]
return p
def _evaluate_derivatives(self, x, der=None):
n = self.n
r = self.r
if der is None:
der = self.n
pi = np.zeros((n, len(x)))
w = np.zeros((n, len(x)))
pi[0] = 1
p = np.zeros((len(x), self.r), dtype=self.dtype)
p += self.c[0, np.newaxis, :]
for k in xrange(1, n):
w[k-1] = x - self.xi[k-1]
pi[k] = w[k-1] * pi[k-1]
p += pi[k, :, np.newaxis] * self.c[k]
cn = np.zeros((max(der, n+1), len(x), r), dtype=self.dtype)
Loading ...