Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scipy   python

Repository URL to install this package:

Version: 1.3.3 

/ linalg / _fblas.pypy3-71-x86_64-linux-gnu.so

ELF> Ú@p>	@8@#"t5t5 È<È<&È<&X]Ø] à<à<&à<&@@ÈÈÈ$$PåtdÝÝÝQåtdRåtdÈ<È<&È<&88GNUE€sçp|Ájr»‰ä¦VÆÚ@Ú©CrlĬ(‡!/¾wbÇñò­l-Ïîiˆ> U  xp÷/@ë
–iB&–ò€Ëz4«ÙüÖÈÒëà–s *„^žbq6²FQ0õ, ;Mff'ñªrF"TKðÙR7õRMiº¬ÄID
Á?¸7>ǐ(z¡¤º³`@(~èãà4‡ÄwˆF[ÛÙÕ6`KøË™K†ç²&áŸw~ÇïˆYÞÀ¢ !{ùÿ²¹=\ÀáW¥žÒ”Fzh²’YêTÝ£Ül8’›DxPä‹UÎè[¦Ž#²1ÎþŽøeù°e__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassesPyPyComplex_CheckPyPyType_IsSubtypePyPySequence_CheckPyPyErr_OccurredPyPyErr_SetStringPyPyComplex_AsCComplexPyPyLong_AsLongPyPyFloat_AS_DOUBLEPyPyUnicode_CheckPyPySequence_GetItem_PyPy_DeallocPyPyExc_TypeErrorfree_PyPy_NoneStructPyPyArg_ParseTupleAndKeywordsPyPyComplex_FromDoublesPyPy_BuildValuePyPyNumber_LongPyPyErr_ClearPyPyObject_GetAttrStringsprintfPyPyNumber_FloatmallocPyInit__fblasPyPyModule_Create2PyPyType_TypePyPyImport_ImportModulePyPyCapsule_TypePyPyExc_RuntimeErrorPyPyExc_ImportErrorPyPyErr_PrintPyPyCapsule_GetPointerPyPyModule_GetDictPyPyBytes_FromStringPyPyDict_SetItemStringPyPyUnicode_FromStringPyPyErr_NewExceptionPyPyDict_GetItemStringsdot_PyPyObject_SetAttrStringddot_cdotu_zdotu_cdotc_zdotc_snrm2_scnrm2_dnrm2_dznrm2_sasum_scasum_dasum_dzasum_PyPyErr_FormatPyPyExc_AttributeErrorsrotg_drotg_crotg_zrotg_srotmg_drotmg_csrot_zdrot_srotm_drotm_sswap_dswap_cswap_zswap_cscal_zscal_csscal_zdscal_scopy_dcopy_ccopy_zcopy_saxpy_daxpy_caxpy_zaxpy_isamax_idamax_icamax_izamax_sgemv_dgemv_cgemv_zgemv_sgbmv_dgbmv_cgbmv_zgbmv_ssbmv_dsbmv_chbmv_zhbmv_sspmv_dspmv_cspmv_zspmv_chpmv_zhpmv_ssymv_dsymv_chemv_zhemv_sger_dger_cgeru_zgeru_cgerc_zgerc_ssyr_dsyr_csyr_zsyr_cher_zher_ssyr2_dsyr2_cher2_zher2_sspr_dspr_cspr_zspr_chpr_zhpr_sspr2_dspr2_chpr2_zhpr2_stbsv_dtbsv_ctbsv_ztbsv_stpsv_dtpsv_ctpsv_ztpsv_strmv_dtrmv_ctrmv_ztrmv_strsv_dtrsv_ctrsv_ztrsv_stbmv_dtbmv_ctbmv_ztbmv_stpmv_dtpmv_ctpmv_ztpmv_sgemm_dgemm_cgemm_zgemm_ssymm_dsymm_csymm_zsymm_chemm_zhemm_ssyrk_dsyrk_csyrk_zsyrk_cherk_zherk_ssyr2k_dsyr2k_csyr2k_zsyr2k_cher2k_zher2k_strmm_dtrmm_ctrmm_ztrmm_strsm_dtrsm_ctrsm_ztrsm_PyPyUnicode_FromFormatPyPyOS_snprintfPyPyMem_Freestderrfprintffwrite_PyPyObject_NewPyPyDict_NewmemsetPyPyExc_ValueErrorstrcmpmemcpyPyPyDict_DelItemStringPyPyCapsule_NewPyPyObject_GenericGetAttrstrlenPyPyUnicode_FromStringAndSizePyPyUnicode_ConcatPyPyMem_MallocPyPyErr_NoMemorycladiv_zladiv_liblapack.so.3libf77blas.so.3libcblas.so.3libatlas.so.3libgfortran.so.3libm.so.6libgcc_s.so.1libquadmath.so.0libc.so.6GLIBC_2.14GLIBC_2.2.5
	”‘–	ui	"	È<&pÛÐ<&0ÛÀA&ÀA&àŠ'~mèŠ'½m‹'~m‹'½m ‹'~m(‹'½m@‹'~mH‹'½m`‹'mh‹'mp‹'mx‹'"m ‹'m¨‹'m°‹'m¸‹'"mà‹'Cmè‹'Omð‹'¬mø‹'ÄmŒ'à:Œ'%mŒ'*mŒ'/m Œ'4m(Œ'9m0Œ'Em@Œ'CmHŒ'OmPŒ'¬mXŒ'Äm`Œ'à:hŒ'%mpŒ'*mxŒ'/m€Œ'4mˆŒ'9mŒ'Em Œ'Cm¨Œ'Om°Œ'¬m¸Œ'Äm'à:Ȍ'%mЌ'*m،'/màŒ'4mèŒ'9mðŒ'Em'Cm'Om'¬m'Äm 'à:('%m0'*m8'/m@'4mH'9mP'Em`'Cmh'Omp'Qmx'à:€'%mˆ'*m'/m˜'4m '9m¨'Em
'Cmȍ'OmЍ'Qm؍'à:à'%mè'*mð'/mø'4mŽ'9mŽ'Em Ž'Cm(Ž'Om0Ž'à:8Ž'%m@Ž'*mHŽ'/mPŽ'4m`Ž'CmhŽ'OmpŽ'à:xŽ'%m€Ž'*mˆŽ'/mŽ'4m Ž'Cm¨Ž'Om°Ž'à:¸Ž'%m'*mȎ'/mЎ'4màŽ'CmèŽ'OmðŽ'à:øŽ'%m'*m'/m'4m '~m('Cm0'à:8'%m@'*m`'~mh'Cmp'à:x'%m€'*m '~m¨'Cm°'à:¸'%m'*mà'~mè'Cmð'à:ø'%m'*m '~m('Cm0'à:8'%m@'*mH'9m`'~mh'Cmp'à:x'%m€'*mˆ'9m 'Cm¨'Om°'à:¸'%m'*mȐ'/mА'4mà'Cmè'Omð'à:ø'%m‘'*m‘'/m‘'4m ‘'Cm(‘'Om0‘'à:8‘'%m@‘'*mH‘'/mP‘'4m`‘'Cmh‘'Omp‘'à:x‘'%m€‘'*mˆ‘'/m‘'4m ‘'Cm¨‘'Om°‘'à:¸‘'~m'%mȑ'*mБ'/mؑ'4m’'Cm’'Om’'à:’'~m ’'%m(’'*m0’'/m8’'4m`’'Cmh’'Omp’'à:x’'~m€’'%mˆ’'*m’'/m˜’'4m'CmȒ'OmВ'à:ؒ'~mà’'%mè’'*mð’'/mø’'4m “'Cm(“'Om0“'à:8“'%m@“'*mH“'/mP“'4m`“'Cmh“'Omp“'à:x“'%m€“'*mˆ“'/m“'4m “'Cm¨“'Om°“'à:¸“'%m'*mȓ'/mГ'4mà“'Cmè“'Omð“'à:ø“'%m”'*m”'/m”'4m ”'Cm(”'Om0”'à:8”'%m@”'*mH”'/mP”'4m`”'Cmh”'Omp”'à:x”'%m€”'*mˆ”'/m”'4m ”'Cm¨”'à:°”'%m¸”'*mà”'Cmè”'à:ð”'%mø”'*m •'Cm(•'à:0•'%m8•'*m`•'Cmh•'à:p•'%mx•'*m •'Cm¨•'à:°•'%m¸•'*mà•'Cmè•'à:ð•'%mø•'*m –'Cm(–'à:0–'%m8–'*m`–'Cmh–'à:p–'%mx–'*m –'Cm¨–'à:°–'%m¸–'*mà–'Cmè–'à:ð–'%mø–'*m —'Cm(—'à:0—'%m8—'*m`—'Cmh—'à:p—'%mx—'*m —'Wm¨—'~m°—'Cm¸—']m'Omȗ'%mЗ'*mؗ'/mà—'4mè—'bmð—'Em˜'Wm˜'~m˜'Cm˜']m ˜'Om(˜'%m0˜'*m8˜'/m@˜'4mH˜'bmP˜'Em`˜'Wmh˜'~mp˜'Cmx˜']m€˜'Omˆ˜'%m˜'*m˜˜'/m ˜'4m¨˜'bm°˜'Em'WmȘ'~mИ'Cmؘ']mà˜'Omè˜'%mð˜'*mø˜'/m™'4m™'bm™'Em ™'Um(™'à:0™'hm8™'km@™'WmH™'~mP™'CmX™'*m`™'%mh™']mp™'Omx™'4m€™'/mˆ™'bm™'Em ™'Um¨™'à:°™'hm¸™'km'Wmș'~mЙ'Cmؙ'*mà™'%mè™']mð™'Omø™'4mš'/mš'bmš'Em š'Um(š'à:0š'hm8š'km@š'WmHš'~mPš'CmXš'*m`š'%mhš']mpš'Omxš'4m€š'/mˆš'bmš'Em š'Um¨š'à:°š'hm¸š'km'WmȚ'~mК'Cmؚ'*màš'%mèš']mðš'Omøš'4m›'/m›'bm›'Em ›'°L(›'Wm0›'~m8›'Cm@›'*mH›'%mP›']mX›'Om`›'4mh›'/mp›'nmx›'Em ›'°L¨›'Wm°›'~m¸›'Cm'*mț'%mЛ']m؛'Omà›'4mè›'/mð›'nmø›'Em œ'°L(œ'Wm0œ'~m8œ'Cm@œ'*mHœ'%mPœ']mXœ'Om`œ'4mhœ'/mpœ'nmxœ'Em œ'°L¨œ'Wm°œ'~m¸œ'Cm'*mȜ'%mМ']m؜'Omàœ'4mèœ'/mðœ'nmøœ'Em 'à:('Wm0'Šm8'Cm@'*mH'%mP']mX'Om`'4mh'/mp'nmx'Em 'à:¨'Wm°'Šm¸'Cm'*mȝ'%mН']m؝'Omà'4mè'/mð'nmø'Em ž'à:(ž'Wm0ž'Šm8ž'Cm@ž'*mHž'%mPž']mXž'Om`ž'4mhž'/mpž'nmxž'Em ž'à:¨ž'Wm°ž'Šm¸ž'Cm'*mȞ'%mО']m؞'Omàž'4mèž'/mðž'nmøž'Em Ÿ'à:(Ÿ'Wm0Ÿ'Šm8Ÿ'Cm@Ÿ'*mHŸ'%mPŸ']mXŸ'Om`Ÿ'4mhŸ'/mpŸ'nmxŸ'Em Ÿ'à:¨Ÿ'Wm°Ÿ'Šm¸Ÿ'Cm'*mȟ'%mП']m؟'OmàŸ'4mèŸ'/mðŸ'nmøŸ'Em  'Wm( '~m0 'Cm8 ']m@ 'OmH '%mP '*mX '/m` '4mh 'nmp 'Em€ 'Wmˆ '~m 'Cm˜ ']m  'Om¨ '%m° '*m¸ '/m '4mȠ'nmР'Emà 'Wmè '~mð 'Cmø ']m¡'Om¡'%m¡'*m¡'/m ¡'4m(¡'nm0¡'Em@¡'WmH¡'~mP¡'CmX¡']m`¡'Omh¡'%mp¡'*mx¡'/m€¡'4mˆ¡'nm¡'Em ¡'Wm¨¡'Cm°¡'Om¸¡'*m!'4mȡ'~mС'9mء'Emà¡'tm¢'Wm¢'Cm¢'Om¢'*m ¢'4m(¢'~m0¢'9m8¢'Em@¢'tm`¢'Wmh¢'Cmp¢'Omx¢'*m€¢'4mˆ¢'~m¢'9m˜¢'Em ¢'tm"'WmȢ'CmТ'Omآ'*mà¢'4mè¢'~mð¢'9mø¢'Em£'tm £'Wm(£'Cm0£'Om8£'*m@£'4mH£'~mP£'9mX£'Em`£'tm€£'Wmˆ£'Cm£'Om˜£'*m £'4m¨£'~m°£'9m¸£'Em#'tmà£'Wmè£'Cmð£'nmø£'*m¤'%m¤'à:¤'~m¤'tm@¤'WmH¤'CmP¤'nmX¤'*m`¤'%mh¤'à:p¤'~mx¤'tm ¤'Wm¨¤'Cm°¤'nm¸¤'*m$'%mȤ'à:Ф'~mؤ'tm¥'Wm¥'Cm¥'nm¥'*m ¥'%m(¥'à:0¥'~m8¥'tm`¥'Wmh¥'Cmp¥'nmx¥'*m€¥'%mˆ¥'à:¥'~m˜¥'tm%'Wmȥ'CmХ'nmإ'*mà¥'%mè¥'à:ð¥'~mø¥'tm ¦'Wm(¦'Cm0¦'Om8¦'nm@¦'*mH¦'%mP¦'4mX¦'/m`¦'à:h¦'~mp¦'tm€¦'Wmˆ¦'Cm¦'Om˜¦'nm ¦'*m¨¦'%m°¦'4m¸¦'/m&'à:Ȧ'~mЦ'tmà¦'Wmè¦'Cmð¦'Omø¦'nm§'*m§'%m§'4m§'/m §'à:(§'~m0§'tm@§'WmH§'CmP§'OmX§'nm`§'*mh§'%mp§'4mx§'/m€§'à:ˆ§'~m§'tm §'à:¨§'Wm°§'Cm¸§'Šm''*mȧ'%mЧ'nmا'€m¨'à:¨'Wm¨'Cm¨'Šm ¨'*m(¨'%m0¨'nm8¨'€m`¨'à:h¨'Wmp¨'Cmx¨'Šm€¨'*mˆ¨'%m¨'nm˜¨'€m('à:Ȩ'WmШ'Cmب'Šmà¨'*mè¨'%mð¨'nmø¨'€m ©'à:(©'Wm0©'Cm8©'Šm@©'*mH©'%mP©'nmX©'€m€©'à:ˆ©'Wm©'Cm˜©'Šm ©'*m¨©'%m°©'nm¸©'€mà©'à:è©'Wmð©'Cmø©'Omª'Šmª'*mª'%mª'4m ª'/m(ª'nm0ª'€m@ª'à:Hª'WmPª'CmXª'Om`ª'Šmhª'*mpª'%mxª'4m€ª'/mˆª'nmª'€m ª'à:¨ª'Wm°ª'Cm¸ª'Om*'ŠmȪ'*mЪ'%mت'4màª'/mèª'nmðª'€m«'à:«'Wm«'Cm«'Om «'Šm(«'*m0«'%m8«'4m@«'/mH«'nmP«'€m`«'°Lh«'~mp«'Cmx«'*m€«'%mˆ«'nm«'bm˜«'m «'9m+'°Lȫ'~mЫ'Cmث'*mà«'%mè«'nmð«'bmø«'m¬'9m ¬'°L(¬'~m0¬'Cm8¬'*m@¬'%mH¬'nmP¬'bmX¬'m`¬'9m€¬'°Lˆ¬'~m¬'Cm˜¬'*m ¬'%m¨¬'nm°¬'bm¸¬'m,'9mà¬'à:è¬'Šmð¬'Cmø¬'*m­'%m­'nm­'bm­'m ­'9m@­'à:H­'ŠmP­'CmX­'*m`­'%mh­'nmp­'bmx­'m€­'9m ­'à:¨­'Šm°­'Cm¸­'*m-'%mȭ'nmЭ'bmح'mà­'9m®'à:®'Šm®'Cm®'*m ®'%m(®'nm0®'bm8®'m@®'9m`®'~mh®'Cmp®'%mx®'*m€®'nmˆ®'bm®'m˜®'9m.'~mȮ'CmЮ'%mخ'*mà®'nmè®'bmð®'mø®'9m ¯'~m(¯'Cm0¯'%m8¯'*m@¯'nmH¯'bmP¯'mX¯'9m€¯'~mˆ¯'Cm¯'%m˜¯'*m ¯'nm¨¯'bm°¯'m¸¯'9mà¯'~mè¯'Cmð¯'*mø¯'%m°'nm°'bm°'m°'9m@°'~mH°'CmP°'*mX°'%m`°'nmh°'bmp°'mx°'9m °'~m¨°'Cm°°'*m¸°'%m0'nmȰ'bmа'mذ'9m±'~m±'Cm±'*m±'%m ±'nm(±'bm0±'m8±'9m`±'°Lh±'~mp±'Cmx±'*m€±'%mˆ±'nm±'bm˜±'m ±'9m1'°Lȱ'~mб'Cmر'*mà±'%mè±'nmð±'bmø±'m²'9m ²'°L(²'~m0²'Cm8²'*m@²'%mH²'nmP²'bmX²'m`²'9m€²'°Lˆ²'~m²'Cm˜²'*m ²'%m¨²'nm°²'bm¸²'m2'9mà²'à:è²'Šmð²'Cmø²'*m³'%m³'nm³'bm³'m ³'9m@³'à:H³'ŠmP³'CmX³'*m`³'%mh³'nmp³'bmx³'m€³'9m ³'à:¨³'Šm°³'Cm¸³'*m3'%mȳ'nmг'bmس'mà³'9m´'à:´'Šm´'Cm´'*m ´'%m(´'nm0´'bm8´'m@´'9m`´'Wmh´'~mp´'½mx´']m€´'¬mˆ´'’m´'šm˜´'¢m4'Wmȴ'~mд'½mش']mà´'¬mè´'’mð´'šmø´'¢m µ'Wm(µ'~m0µ'½m8µ']m@µ'¬mHµ'’mPµ'šmXµ'¢m€µ'Wmˆµ'~mµ'½m˜µ']m µ'¬m¨µ'’m°µ'šm¸µ'¢màµ'Wmèµ'~mðµ'½møµ']m¶'¬m¶'®m¶'nm¶'¢m@¶'WmH¶'~mP¶'½mX¶']m`¶'¬mh¶'®mp¶'nmx¶'¢m ¶'Wm¨¶'~m°¶'½m¸¶']m6'¬mȶ'®mж'nmض'¢m·'Wm·'~m·'½m·']m ·'¬m(·'®m0·'nm8·'¢m`·'Wmh·'~mp·'½mx·']m€·'¬mˆ·'®m·'nm˜·'¢m7'Wmȷ'~mз'½mط']mà·'¬mè·'®mð·'nmø·'¢m ¸'Wm(¸'~m0¸']m8¸'¬m@¸'bmH¸'nmP¸'¢m`¸'Wmh¸'~mp¸']mx¸'¬m€¸'bmˆ¸'nm¸'¢m ¸'Wm¨¸'~m°¸']m¸¸'¬m8'bmȸ'nmи'¢mà¸'Wmè¸'~mð¸']mø¸'¬m¹'bm¹'nm¹'¢m ¹'Wm(¹'~m0¹']m8¹'¬m@¹'bmH¹'nmP¹'¢m`¹'Wmh¹'~mp¹']mx¹'¬m€¹'bmˆ¹'nm¹'¢m ¹'Wm¨¹'~m°¹'½m¸¹']m9'¬mȹ'bmй'nmع'¢mº'Wmº'~mº'½mº']m º'¬m(º'bm0º'nm8º'¢m`º'Wmhº'~mpº'½mxº']m€º'¬mˆº'bmº'nm˜º'¢m:'WmȺ'~mк'½mغ']màº'¬mèº'bmðº'nmøº'¢m »'Wm(»'~m0»'½m8»']m@»'¬mH»'bmP»'nmX»'¢m€»'Wmˆ»'~m»'½m˜»']m »'¬m¨»'bm°»'nm¸»'¢mà»'Wmè»'~mð»'½mø»'®m¼'nm¼'’m¼'m¼'³m@¼'WmH¼'~mP¼'½mX¼'®m`¼'nmh¼'’mp¼'mx¼'³m ¼'Wm¨¼'~m°¼'½m¸¼'®m<'nmȼ'’mм'mؼ'³m½'Wm½'~m½'½m½'®m ½'nm(½'’m0½'m8½'³m`½'Wmh½'~mp½'½mx½'®m€½'nmˆ½'’m½'m˜½'³m='WmȽ'~mн'½mؽ'®mà½'nmè½'’mð½'mø½'³m ¾'Wm(¾'~m0¾'½m8¾'®m@¾'nmH¾'’mP¾'mX¾'³m€¾'Wmˆ¾'~m¾'½m˜¾'®m ¾'nm¨¾'’m°¾'m¸¾'³m¿'¿m(¿'@š(`¿'ôcÀÀ'`tÈÀ'@Š'ÐÀ'k0Â'€ì8Â' ‰'@Â'í8 Ã'Àá¨Ã'‰'°Ã'Ú8Å'àÅ'`ˆ' Å'ãc€Æ'àqˆÆ'€‡'Æ'kðÇ'€êøÇ' †'È'€c`É'°khÉ'àƒ'pÉ'¨jÐÊ'päØÊ' 'àÊ'c@Ì'€eHÌ'`~'PÌ'7j°Í'`Þ¸Í' {'ÀÍ'K Ï'ðÉ(Ï'Àx'0Ï'¢JÐ'ðØÐ'àu' Ð'2JÒ'ð¾Ò'Às'Ò'ÅIpÓ'ð¹xÓ' q'€Ó'XIàÔ'ð´èÔ'€o'ðÔ'ëHPÖ'à¯XÖ'`m'`Ö'ÂbÀ×'bÈ×'àk'Ð×'êi0Ù' Û8Ù'`j'@Ù'S Ú'àZ¨Ú'àh'°Ú'"ZÜ'0ÖÜ'`g' Ü'wb€Ý'À^ˆÝ' e'Ý'ŸiðÞ'À×øÞ'àc'ß'~H`à'Ъhà'àa'pà'HÐá'%Øá'à_'àá'¤G@ã'° Hã'à]'Pã'7G°ä'›¸ä'à['Àä'b æ' Y(æ' Y'0æ'3iç'@Ò˜ç'`W' ç'¥Ré' Ué' U'é'·Ypê' Ðxê'àR'€ê'ÐFØë'@6àë'@–èë'Q'ðë'iFHí'p6Pí'‘Xí' O'`í'²[¸î' 6Àî'péÈî'@M'Ðî'E[(ð'ð60ð' ä8ð'`K'@ð'ØZ˜ñ'07 ñ'ÐÞ¨ñ'€I'°ñ'kZó'€7ó'€Ùó' G' ó' Fxô'À7€ô' ˆô'@F'ô'ÖEèõ'à7ðõ'@Šøõ'àD'ö'EX÷'8`÷'ð†h÷'€C'p÷'FEÈø' 8Ðø' ƒØø' B'àø'E8ú'@8@ú'@€Hú'À@'Pú'¶D¨û'`8°û'à|¸û'`?'Àû'pDý'€8 ý'y(ý'>'0ý'&Dˆþ' 8þ'@v˜þ' <' þ'ÜC(s(@;'(’Cp(Àox(à9'€(HCà(€lè(€8'ð(üBP(@iX( 7'`(½aÀ( QÈ(€4'Ð(åh0(Ë8(à1'@(WR (`M¨( /'°(iY
(pÉ
(`,' 
(.a€( Hˆ(`)'(Vhð( Áø(`&'
(ÈQ`( Ch(`#'p(ÚXÐ( ÀØ(` 'à(»`@(P@H(€'P(ãg°(๸( 'À(UQ (p;((À'0(gX(p¸˜(à' (Z`(°8( '(‚gp(p²x(`'€(ôPà(3è(€'ð(XP(±X( 	'`(“PÀ(°+È(À'Ð(¥W0(°©8(à'@(` (À1¨(@'°(0g!( «!( þ& !(AP€"(P$ˆ"(àû&"(SWð#(à¢ø#( ù&$(7k`%(`îh%( ö&p%(pkÐ&( óØ&( ô&à&(©k@((ùH(( ñ&P((åk°)(€þ¸)( ï&À)(!l +(à(+( ì&0+(]l,(P	˜,( ê& ,(¾_.(Ð,.(è&.(æfp/(à¦x/(àå&€/(÷Oà0(Pè0(Àã&ð0(	WP2(@žX2( á&`2(°OÀ3(PÈ3(€ß&Ð3(ÂV05( ™85(`Ý&@5(a_ 6( %¨6(@Ú&°6(‰f8(8( ×& 8(SO€9(ˆ9(Ô&9(eVð:(€’ø:(àÐ&;(_`<(ð h<(àÎ&p<(?fÐ=(0›Ø=(àÌ&à=(	O@?(PH?(àÊ&P?(V°@(ð¸@(àÈ&À@(Ð^ B(@(B(àÆ&0B(øeC( –˜C(àÄ& C(s^E(`E(@Â&E(›epF(àxF( ¿&€F(¬NàG(`èG(½&ðG(¾UPI(@‡XI(`º&`I(”BÀJ(pcÈJ(¸&ÐJ('B0L( ]8L( µ&@L(ºA M(ÐW¨M(@³&°M(MAO(RO(à°& O(ï@€P( LˆP(€®&P(‘@ðQ(@GøQ( ¬&R(3@`S(àAhS()&pS(Õ?ÐT(€<ØT(`§&àT(R?@V( 7HV(@¥&PV(Ð>°W(À1¸W( £&ÀW(N> Y(`,(Y(¡&0Y(Ì=Z(ð&˜Z(àž& Z(o=\( !\( œ&\(=p](Px](`š&€](µ<à^(è^( ˜&ð^(X<P`(°X`(à•&``(ì;Àa(àÈa(€“&Ða(;0c(8c( ‘&@c(; d(@¨d(&°d(Š:f(púf(`Œ& f(,:€g(õˆg(Š&g(Î9ðh(°ïøh( ‡&i(p9`j(Pêhj(@…&pj(9Ðk(ðäØk(à‚&àk( ^@m(pHm( €&Pm(He°n(ð‰¸n(`~&Àn(YN p(ð(p( |&0p(kUq(`˜q(ày& q(Õ]s(à	s(Àw&s(ýdpt(€„xt( u&€t(Nàu(ûèu(`s&ðu( UPw(|Xw( q&`w(ÃMÀx(0õÈx(àn&Ðx(ÕT0z( v8z( l&@z(˜] {(P¨{( j&°{(Àd}(0€}( h& }(†M€~(@ðˆ~( f&~(˜Tð(Prø( d&€(JM`(Pëh( b&p(\TЂ(n؂( `&à‚(I]@„(°ÿH„(€^&P„(qd°…(°z¸…(`\&(ûL ‡(på(‡( Z&0‡(
Tˆ(h˜ˆ(àW& ˆ(«LŠ(ßŠ( U&Š(½Sp‹( cx‹(`S&€‹(æ\àŒ(ÀúèŒ(@Q&ðŒ(dPŽ(ðuXŽ( O&`Ž(HL(Úȏ(M&Џ(ZS0‘(P^8‘(àJ&@‘(ƒ\ ’(põ¨’( H&°’( \”(@ð”(`F& ”(åK€•(0Õˆ•( D&•(‚Kð–(ðÏø–(àA& ˜(„Ù¸˜(àȘ(€/И(°+à˜(P™(€ ?&(?&
0?&8?&@?&H?&P?&#X?&'`?&-h?&0p?&<x?&C€?&Gˆ?&J?&L˜?&N ?&S¨?&`°?&w¸?&~À?&„È?&ŠÐ?&ŒØ?&´à?&µè?&½ð?&Èø?&͸À'(Â'.˜Ã'7Å'†xÆ'9èÇ'zXÉ'PÈÊ'Ø8Ì'V¨Í'!Ï'ֈÐ'BøÑ'$hÓ'ØÔ'HÖ'¦¸×'\(Ù'j˜Ú'Ü'"xÝ'‰èÞ'mXà'ƒÈá'_8ã'T¨ä'Ïæ'Aˆç'(øè'hê'˜øÿ'yh(‘Ø(ÑH(+¸(²((±˜(
(ux(cè(iX(6È(8(5¨(¾(ʈ(8ø(
h(¨Ø(bH(¸(Â((W˜(š!(Òx"(=è#(ÔX%(ÃÈ&(8((g¨)(U+(^ˆ,( ø-(‹h/(MØ0(H2(R¸3((5(™˜6(>8(Ëx9(Äè:(X<(È=(Ð8?(d¨@(EB(kˆC(øD(ehF(ŽØG(³HI(2¸J(|(L(’˜M(O(IxP(3èQ(XS(&ÈT( 8V(—¨W(Y(”ˆZ(ø[(}h](KØ^()H`(f¸a(É(c(°˜d(?f(Ùxg(Áèh(;Xj(¶Èk(¥8m(‚¨n(p(:ˆq(aør(sht(1Øu(¹Hw(«¸x(¢(z(›˜{(Õ}(ˆx~(Àè({X(¼Ȃ(8„(¨…(‡‡(Xˆˆ(Åø‰(·h‹(¤،(pHŽ(¸(D(‘(¬˜’(Ç”(x•([è–(»@& @&(@&	0@&8@&@@&H@&%P@&*X@&,`@&/h@&4p@&@x@&F€@&Hˆ@&O@&Q˜@&Y @&Z¨@&]°@&h¸@&lÀ@&nÈ@&oÐ@&qØ@&rà@&tè@&vð@&xø@&€A&A&…A&“A&• A&–(A&œ0A&ž8A&Ÿ@A&¡HA&£PA&§XA&©`A&ªhA&­pA&®xA&¯€A&¸ˆA&ºA&¿˜A&Æ A&̨A&ΰA&Ó¸A&×HƒìH‹h%H…ÀtÿÐHƒÄÃÿ5Bi%ÿ%Di%@ÿ%Bi%héàÿÿÿÿ%:i%héÐÿÿÿÿ%2i%héÀÿÿÿÿ%*i%hé°ÿÿÿÿ%"i%hé ÿÿÿÿ%i%héÿÿÿÿ%i%hé€ÿÿÿÿ%
i%hépÿÿÿÿ%i%hé`ÿÿÿÿ%úh%h	éPÿÿÿÿ%òh%h
é@ÿÿÿÿ%êh%hé0ÿÿÿÿ%âh%hé ÿÿÿÿ%Úh%h
éÿÿÿÿ%Òh%héÿÿÿÿ%Êh%héðþÿÿÿ%Âh%héàþÿÿÿ%ºh%héÐþÿÿÿ%²h%héÀþÿÿÿ%ªh%hé°þÿÿÿ%¢h%hé þÿÿÿ%šh%héþÿÿÿ%’h%hé€þÿÿÿ%Šh%hépþÿÿÿ%‚h%hé`þÿÿÿ%zh%héPþÿÿÿ%rh%hé@þÿÿÿ%jh%hé0þÿÿÿ%bh%hé þÿÿÿ%Zh%héþÿÿÿ%Rh%héþÿÿÿ%Jh%héðýÿÿÿ%Bh%h éàýÿÿÿ%:h%h!éÐýÿÿÿ%2h%h"éÀýÿÿÿ%*h%h#é°ýÿÿÿ%"h%h$é ýÿÿÿ%h%h%éýÿÿÿ%h%h&é€ýÿÿÿ%
h%h'épýÿÿÿ%h%h(é`ýÿÿÿ%úg%h)éPýÿÿÿ%òg%h*é@ýÿÿÿ%êg%h+é0ýÿÿÿ%âg%h,é ýÿÿÿ%Úg%h-éýÿÿÿ%Òg%h.éýÿÿÿ%Êg%h/éðüÿÿÿ%Âg%h0éàüÿÿÿ%ºg%h1éÐüÿÿÿ%²g%h2éÀüÿÿÿ%ªg%h3é°üÿÿÿ%¢g%h4é üÿÿÿ%úd%fÿ%úd%fÿ%"e%fÿ%"e%fÿ%2e%fÿ%Be%fÿ%Je%fÿ%Je%fÿ%Je%fÿ%Je%fÿ%Je%fÿ%Je%fÿ%Ze%fÿ%Ze%fÿ%Ze%fH=y¿'Hy¿'UH)øH‰åHƒøvH‹®d%H…Àt	]ÿàfD]Ã@f.„H=9¿'H52¿'UH)þH‰åHÁþH‰ðHÁè?HÆHÑþtH‹yd%H…Àt]ÿàf„]Ã@f.„€=é¾'u'Hƒ=_d%UH‰åtH‹=rf%èýþÿÿèHÿÿÿ]Æ>'óÃ@f.„H=aa%Hƒ?ué^ÿÿÿfDH‹¹c%H…ÀtéUH‰åÿÐ]é@ÿÿÿAVAUI‰ýATUH‰÷SI‰ÖH‰óHƒì0èSûÿÿ…À…›H-̾'H‹{H‹EH‹°ˆH9÷tè[ýÿÿA‰ÄH‹{H‹EE…ät{H‹°H9þ„è6ýÿÿ…À…þH‹EH‹{H‹°H9÷tèýÿÿ…ÀH‹E„áHt$H‰ßA¼ÿðÛl$AÝ]Ûl$ AÝ]HƒÄ0D‰à[]A\A]A^ÃDH‹pPH9÷„+è¾üÿÿ…ÀH‹{H‹E…H‹pH9÷„Ñèœüÿÿ…À…äH‹{ö‡˜IÇE…»ö‡³H‰ß…{è6ýÿÿ…ÀtH‹Cö€³„ªè\ûÿÿH…À„L‰öH‰ÇE1äèõüÿÿéKÿÿÿH‹EHt$H‰ßA¼ÿðfïÒD‰àfïÛóZT$óZ\$òAUòA]HƒÄ0[]A\A]A^ÄH‰ßA¼èbùÿÿòAED‰àòAMHƒÄ0[]A\A]A^ÃfD‹K …É…ÿÿÿH‹{H‹EDH‹pH9þt
èŠûÿÿ…ÀH‹Etr¿H‹¨ˆÿh1ÒH‰ÆH‰ßÿÕH…À„xþÿÿH‹@A¼òòAEò@D‰àòAEHƒÄ0[]A\A]A^ÃfDL‰îH‰ßA¼ÿðé,þÿÿH‹¨è¿ÿhH‰ßH‰ÆÿÕëŽ@è[úÿÿfïÀA¼òH*ÀòAEéìýÿÿ‹S …Ò„Cÿÿÿé0þÿÿH‰ßA¼è¢øÿÿòAEéÂýÿÿH‰ßè¯úÿÿ…À…Fþÿÿ1öH‰ßè½øÿÿH…ÀH‰Ã„0þÿÿL‰òH‰ÆL‰ïèÓüÿÿ…ÀH‹t;HƒèA¼H…ÀH‰…qýÿÿH‰ßèNøÿÿédýÿÿf„H‹a`%H‹éîýÿÿHƒèH…ÀH‰…ÐýÿÿH‰ßèøÿÿéÃýÿÿ@H‹9»'Hc5"»'H…ÀtBSH‹-»'H…Û„ìL‹

»'M…É„Ü‹8W‰HcÒI;tƒD³ü‹»'…ÒHEÃ[óÃf„ƒþŽ¯I‹yHcHHWÿH9Ñ…¢L@ºë"€L‰ÇI‹ÑIƒÀLcHƒÂHƒéI9Êu9ÖA‰ÓÞD9Þ„‚IcÓH<ECÿHcÖH“H‰ÂND€ÇAüHƒÂÇBüHƒéI9ÐuåD)ރHcöƒD³üéBÿÿÿf.„1À[é=ÿÿÿA»ë’HcÖHxA»ÇD“üÇë¶H‰Çè÷ÿÿH‰ßè÷ÿÿ1À[éÿÿÿf.„ATUH‰÷SH‰ÖH‰ËH,XH
•ª&Hƒì`H‹_%LL$LD$HÇD$ÇD$H‰D$H‰D$1ÀèŽøÿÿ1҅Àt/Hl$ H‹t$HόH‰ïèŸúÿÿ‰D$‹D$…ÀuH‹D$H‹T$HƒÄ`H‰Ð[]A\ÃDLd$0H‹t$H׌L‰çè_úÿÿ‰D$‹D$…ÀtÀHL$PHT$@L‰æH‰ïÿÓèìöÿÿH…ÀtÇD$‹D$…Àt”òL$HòD$@è¶öÿÿòL$XH‰ÃòD$Pè¢öÿÿH=;WH‰ÂH‰Þ1Àèþ÷ÿÿH‰D$éQÿÿÿ@USH‰÷H‰ËH‰ÖH
N©&HƒìhH‹ó]%HÿVLL$0LD$(HÇD$ ÇD$H‰D$(H‰D$01Àè`÷ÿÿ1҅ÀtOfïÀHl$PH‹t$(H-ŒH‰ïòD$PòD$XòD$è[ùÿÿ…ÀòD$u!‰D$‹D$…ÀuFH‹D$ H‹T$ HƒÄhH‰Ð[]иfï҉D$‹D$fïÛòZT$PóT$8…ÀòZ\$Xó\$<tºH‹t$0Hó‹H‰ïòD$PòD$Xèßøÿÿ…Àt%fïä¸fïíòZd$Pód$@òZl$Xól$D‰D$‹D$…À„aÿÿÿHT$HHt$@H|$8H‰éÿÓè=õÿÿH…ÀtÇD$‹D$…À„/ÿÿÿfïÀfïÉóZD$HóZL$LèûôÿÿfïÀH‰ÃfïÉóZD$PóZL$TèßôÿÿH=xUH‰ÂH‰Þ1Àè;öÿÿH‰D$ éÜþÿÿAUATI‰üUSH‰óHƒìH‹Fö€³u;H‰÷I‰ÕèˆõÿÿH…ÀH‰ÅtXH‰ÇèøôÿÿA‰$Hƒmt5¸HƒÄ[]A\A]ÃDH‰÷èÐôÿÿA‰$HƒÄ¸[]A\A]Ã@H‰ïè@óÿÿëÁfDH‰ßèóÿÿ…À…ÀH‹Cö€³t#è&ôÿÿH…ÀHDS¶'L‰îH‰ÇèÀõÿÿ1Àë„@H‰ßèõÿÿ…ÀuÑH‰ßè´õÿÿ…ÀtÅH‰ß1öèóÿÿH‰ÃH…Ût°èFôÿÿL‰êH‰ÞL‰çèøþÿÿ…ÀH‹t)HƒèH…ÀH‰…$ÿÿÿH‰ßè™òÿÿ¸éÿÿÿ€HƒèH…ÀH‰…]ÿÿÿH‰ßèpòÿÿéPÿÿÿH5TH‰ßè™ôÿÿH‰Ãë„@AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHñSH
êÎ&HìˆH‹¬Z%H‰D$@H‰D$PHD$HÇD$0ÇD$ÇD$H‰\$8H‰\$HÇD$H‰\$XÇD$H‰\$`ÇD$ H‰\$hÇD$$H‰\$pÇD$(H‰\$xÇD$,H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$pè~óÿÿHƒÄ@1҅À„šLd$H‹t$0H׈L‰çègýÿÿ‰D$‹D$…Àtk‹L$…ɈH‹t$hH9ÞtuH|$H	‰è4ýÿÿ‰D$‹D$…Àt8‹L$ƒùv_Hœ$€H ‰H5°RH‰ß1ÀèOñÿÿH‹=´'H‰ÞèpóÿÿH‹D$(H‹T$(HĀH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$pH9Þ„’H|$ Hîˆè¡üÿÿ‰D$‹D$…Àt¥H‹t$xH9Þt{H|$$H‰èzüÿÿ‰D$‹D$…À„zÿÿÿ‹L$$ƒùveHœ$€H‰H5Ré=ÿÿÿfDHœ$€HهH5ÂQéÿÿÿDÇD$ évÿÿÿ‹D$ÇD$$…À„ÿÿÿH‹t$XH9Þ„VH|$HâˆèÝûÿÿ‰D$‹D$…À„Ýþÿÿ‹t$…ö„BH‹t$`H9Þ„QH|$H‰è¢ûÿÿ‰D$‹D$…À„¢þÿÿL‹D$@Ht$8¹º¿èd8H…ÀH‰Ã„æ‹T$¹B¯™÷ùH˜H9D$8Œô1|$L‹D$PHt$Hº¿L‹k”ÀÁàƒÈ‰Áè
8H…ÀI‰Æ„²‹L$‹t$‹D$HcT$H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽD…Òx	H9׏”H‹=ұ'H5ƒ‰è>ñÿÿH;\$@„ÃýÿÿHƒ+…¹ýÿÿH‰ßèaîÿÿé¬ýÿÿ@‹D$ÇD$…À…ÃþÿÿéýÿÿHœ$€1ÉH®‡H53PéYýÿÿÇD$é·þÿÿH‹=V±'H5GˆèÂðÿÿéÿÿÿHÁâIVƒ|$$‹D$ H5†OI‰ÑH“OHDօÀtƒøH5…OH|OHEðƒ|$HjOH=iOL‰áM‰èHDøHƒìHD$PÿÕè îÿÿH…ÀZYtÇD$‹D$…À„÷þÿÿH=OL‰ö1ÀèÔïÿÿH‰D$(éÜþÿÿH‹=›°'H5ˆèðÿÿéÄþÿÿèMîÿÿH…À…„üÿÿH‹=u°'H5‡èáïÿÿélüÿÿè'îÿÿH…À…þÿÿH‹=O°'H5x‡è»ïÿÿéxþÿÿfDAVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHïNH
*É&HìˆH‹LU%H‰D$@H‰D$PHD$HÇD$0ÇD$ÇD$H‰\$8H‰\$HÇD$H‰\$XÇD$H‰\$`ÇD$ H‰\$hÇD$$H‰\$pÇD$(H‰\$xÇD$,H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$pèîÿÿHƒÄ@1҅À„šLd$H‹t$0H‡L‰çèøÿÿ‰D$‹D$…Àtk‹L$…ɈH‹t$hH9ÞtuH|$H‡èÔ÷ÿÿ‰D$‹D$…Àt8‹L$ƒùv_Hœ$€HH5®MH‰ß1ÀèïëÿÿH‹= ®'H‰ÞèîÿÿH‹D$(H‹T$(HĀH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$pH9Þ„’H|$ H¾†èA÷ÿÿ‰D$‹D$…Àt¥H‹t$xH9Þt{H|$$H׆è÷ÿÿ‰D$‹D$…À„zÿÿÿ‹L$$ƒùveHœ$€HºƒH5Mé=ÿÿÿfDHœ$€Hy‚H5ÀLéÿÿÿDÇD$ évÿÿÿ‹D$ÇD$$…À„ÿÿÿH‹t$XH9Þ„VH|$Hz†è}öÿÿ‰D$‹D$…À„Ýþÿÿ‹t$…ö„BH‹t$`H9Þ„QH|$H†èBöÿÿ‰D$‹D$…À„¢þÿÿL‹D$@Ht$8¹º¿è3H…ÀH‰Ã„ã‹T$¹B¯™÷ùH˜H9D$8Œô1|$L‹D$PHt$Hº¿L‹k”ÀÁàƒÈ‰Áèª2H…ÀI‰Æ„¯‹L$‹t$‹D$HcT$H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽA…Òx	H9׏”H‹=r¬'H5#„èÞëÿÿH;\$@„ÃýÿÿHƒ+…¹ýÿÿH‰ßèéÿÿé¬ýÿÿ@‹D$ÇD$…À…ÃþÿÿéýÿÿHœ$€1ÉHN‚H51KéYýÿÿÇD$é·þÿÿH‹=ö«'H5ç‚èbëÿÿéÿÿÿI‹Fƒ|$$H5.JLЋD$ H6JHDօÀtƒøH5(JHJHEðƒ|$H
JH=JL‰áM‰èHDøHƒìHD$PÿÕèCéÿÿH…ÀZYtÇD$‹D$…À„úþÿÿH=²IL‰ö1ÀèwêÿÿH‰D$(éßþÿÿH‹=>«'H5·‚èªêÿÿéÇþÿÿèðèÿÿH…À…‡üÿÿH‹=«'H5„è„êÿÿéoüÿÿèÊèÿÿH…À…“þÿÿH‹=òª'H5«„è^êÿÿé{þÿÿf„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHíIH
jÃ&HìˆH‹ìO%H‰D$@H‰D$PHD$HÇD$0ÇD$ÇD$H‰\$8H‰\$HÇD$H‰\$XÇD$H‰\$`ÇD$ H‰\$hÇD$$H‰\$pÇD$(H‰\$xÇD$,H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$pè¾èÿÿHƒÄ@1҅À„šLd$H‹t$0HǃL‰çè§òÿÿ‰D$‹D$…Àtk‹L$…ɈH‹t$hH9ÞtuH|$Hуètòÿÿ‰D$‹D$…Àt8‹L$ƒùv_Hœ$€H`~H5¬HH‰ß1ÀèæÿÿH‹=@©'H‰Þè°èÿÿH‹D$(H‹T$(HĀH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$pH9Þ„’H|$ H~ƒèáñÿÿ‰D$‹D$…Àt¥H‹t$xH9Þt{H|$$H—ƒèºñÿÿ‰D$‹D$…À„zÿÿÿ‹L$$ƒùveHœ$€HZ~H5Hé=ÿÿÿfDHœ$€H}H5¾GéÿÿÿDÇD$ évÿÿÿ‹D$ÇD$$…À„ÿÿÿH‹t$XH9Þ„VH|$H:ƒèñÿÿ‰D$‹D$…À„Ýþÿÿ‹t$…ö„BH‹t$`H9Þ„QH|$H?ƒèâðÿÿ‰D$‹D$…À„¢þÿÿL‹D$@Ht$8¹º¿è¤-H…ÀH‰Ã„ã‹T$¹B¯™÷ùH˜H9D$8Œô1|$L‹D$PHt$Hº¿L‹k”ÀÁàƒÈ‰ÁèJ-H…ÀI‰Æ„¯‹L$‹t$‹D$HcT$H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽA…Òx	H9׏”H‹=§'H5Ã~è~æÿÿH;\$@„ÃýÿÿHƒ+…¹ýÿÿH‰ßè¡ãÿÿé¬ýÿÿ@‹D$ÇD$…À…ÃþÿÿéýÿÿHœ$€1ÉHî|H5/FéYýÿÿÇD$é·þÿÿH‹=–¦'H5‡}èæÿÿéÿÿÿI‹Fƒ|$$H5ÎDLЋD$ HÖDHDօÀtƒøH5ÈDH¿DHEðƒ|$H­DH=¬DL‰áM‰èHDøHƒìHD$PÿÕèããÿÿH…ÀZYtÇD$‹D$…À„úþÿÿH=RDL‰ö1ÀèåÿÿH‰D$(éßþÿÿH‹=ޥ'H5W}èJåÿÿéÇþÿÿèãÿÿH…À…‡üÿÿH‹=¸¥'H5Aè$åÿÿéoüÿÿèjãÿÿH…À…“þÿÿH‹=’¥'H5kèþäÿÿé{þÿÿf„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHëDH
ª½&HìˆH‹ŒJ%H‰D$@H‰D$PHD$HÇD$0ÇD$ÇD$H‰\$8H‰\$HÇD$H‰\$XÇD$H‰\$`ÇD$ H‰\$hÇD$$H‰\$pÇD$(H‰\$xÇD$,H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$pè^ãÿÿHƒÄ@1҅À„šLd$H‹t$0H‡€L‰çèGíÿÿ‰D$‹D$…Àtk‹L$…ɈH‹t$hH9ÞtuH|$H‘€èíÿÿ‰D$‹D$…Àt8‹L$ƒùv_Hœ$€HyH5ªCH‰ß1Àè/áÿÿH‹=à£'H‰ÞèPãÿÿH‹D$(H‹T$(HĀH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$pH9Þ„’H|$ H>€èìÿÿ‰D$‹D$…Àt¥H‹t$xH9Þt{H|$$HW€èZìÿÿ‰D$‹D$…À„zÿÿÿ‹L$$ƒùveHœ$€HúxH5ÿBé=ÿÿÿfDHœ$€H¹wH5¼BéÿÿÿDÇD$ évÿÿÿ‹D$ÇD$$…À„ÿÿÿH‹t$XH9Þ„VH|$Húè½ëÿÿ‰D$‹D$…À„Ýþÿÿ‹t$…ö„BH‹t$`H9Þ„QH|$Hÿè‚ëÿÿ‰D$‹D$…À„¢þÿÿL‹D$@Ht$8¹º¿èD(H…ÀH‰Ã„ã‹T$¹B¯™÷ùH˜H9D$8Œô1|$L‹D$PHt$Hº¿L‹k”ÀÁàƒÈ‰Áèê'H…ÀI‰Æ„¯‹L$‹t$‹D$HcT$H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽA…Òx	H9׏”H‹=²¡'H5cyèáÿÿH;\$@„ÃýÿÿHƒ+…¹ýÿÿH‰ßèAÞÿÿé¬ýÿÿ@‹D$ÇD$…À…ÃþÿÿéýÿÿHœ$€1ÉHŽwH5-AéYýÿÿÇD$é·þÿÿH‹=6¡'H5'xè¢àÿÿéÿÿÿI‹Fƒ|$$H5n?L‹D$ Hv?HDօÀtƒøH5h?H_?HEðƒ|$HM?H=L?L‰áM‰èHDøHƒìHD$PÿÕèƒÞÿÿH…ÀZYtÇD$‹D$…À„úþÿÿH=ò>L‰ö1Àè·ßÿÿH‰D$(éßþÿÿH‹=~ 'H5÷wèêßÿÿéÇþÿÿè0ÞÿÿH…À…‡üÿÿH‹=X 'H5~èÄßÿÿéoüÿÿè
ÞÿÿH…À…“þÿÿH‹=2 'H5+~èžßÿÿé{þÿÿf„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHé?H
ê·&Hì˜H‹,E%H‰„$ˆH‰„$H‰D$PHD$ HÇD$8ÇD$ÇD$ÇD$H‰\$@H‰\$HÇD$ÇD$ H‰\$XÇD$$H‰\$`ÇD$(H‰\$hÇD$,H‰\$pÇD$0H‰\$xÇD$4H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$xèãÝÿÿHƒÄ@…À„H‹t$hH9ÞtuH|$$H)}èÌçÿÿ‰D$‹D$…Àt8‹L$$ƒùv_Hœ$H¸sH5±>H‰ß1ÀèçÛÿÿH‹=˜ž'H‰ÞèÞÿÿH‹D$0H‹D$0HĐ[]A\A]A^ÃfD‹D$ÇD$$…ÀtÐH‹t$pH9ÞtnH|$(HÚ|è=çÿÿ‰D$‹D$…Àt©H‹t$xH9ÞtoH|$,Hó|èçÿÿ‰D$‹D$…Àt‚‹L$,ƒùv]Hœ$HºsH5>éEÿÿÿfDÇD$(ëfDHĐ1À[]A\A]A^ÃfD‹D$ÇD$,…À„ÿÿÿH‹t$XH9Þ„¦H|$H¢|è…æÿÿ‰D$‹D$…À„íþÿÿ‹D$…À„’H‹t$`H9Þ„¡H|$ H§|èJæÿÿ‰D$‹D$…À„²þÿÿL‹D$@H´$€¹º¿è	#H…ÀH‰Ã„¬H‹Œ$ˆL‹h…ɉL$ˆHHƒ¼$€¸Ld$HO„$€H‹t$8Hµ|L‰ç‰D$èÁåÿÿ‰D$‹D$…À„‹L$…Ɉ,;L$"1|$L‹D$PHt$Hº¿”ÀÁàƒÈ‰Áè`"H…ÀI‰Æ„ó‹L$‹t$‹D$HcT$ H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽ«…Òx	H9׏ìH‹=(œ'H5Ùsè”ÛÿÿH;\$@„ýÿÿHƒ+…wýÿÿH‰ßè·Øÿÿéjýÿÿf‹D$ÇD$…À„TýÿÿénþÿÿHœ$1ÉHrH5ô;éýÿÿÇD$ égþÿÿH¬$Hå;H5ù;H‰ï1ÀèÝØÿÿH‹=Ž›'H‰îèþÚÿÿéeÿÿÿH¬$H’{H5Ô;ëÊè,ÙÿÿH…À…ËüÿÿH‹=T›'H5ÝzèÀÚÿÿé³üÿÿHÁâ‹L$(H59H‰ÐIFƒ|$,H‘9HDօÉtƒùH5ƒ9H
z9HEñƒ|$$H
h9H=g9M‰éHDùHL$HƒìLD$$APPM‰àHD$,PÿÕHƒÄ èØÿÿH…ÀtÇD$‹D$…À„þÿÿH=þ8L‰ö1ÀèÃÙÿÿH‰D$0éuþÿÿH‹=Šš'H5rèöÙÿÿé]þÿÿè<ØÿÿH…À…OþÿÿH‹=dš'H5­zèÐÙÿÿé7þÿÿf.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH¡:H
º±&Hì˜H‹\?%H‰„$ˆH‰„$H‰D$PHD$ HÇD$8ÇD$ÇD$ÇD$H‰\$@H‰\$HÇD$ÇD$ H‰\$XÇD$$H‰\$`ÇD$(H‰\$hÇD$,H‰\$pÇD$0H‰\$xÇD$4H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$xèØÿÿHƒÄ@…À„H‹t$hH9ÞtuH|$$H©yèüáÿÿ‰D$‹D$…Àt8‹L$$ƒùv_Hœ$HèmH5i9H‰ß1ÀèÖÿÿH‹=Ș'H‰Þè8ØÿÿH‹D$0H‹D$0HĐ[]A\A]A^ÃfD‹D$ÇD$$…ÀtÐH‹t$pH9ÞtnH|$(HZyèmáÿÿ‰D$‹D$…Àt©H‹t$xH9ÞtoH|$,HsyèFáÿÿ‰D$‹D$…Àt‚‹L$,ƒùv]Hœ$HêmH5Æ8éEÿÿÿfDÇD$(ëfDHĐ1À[]A\A]A^ÃfD‹D$ÇD$,…À„ÿÿÿH‹t$XH9Þ„¦H|$H"yèµàÿÿ‰D$‹D$…À„íþÿÿ‹D$…À„’H‹t$`H9Þ„¡H|$ H'yèzàÿÿ‰D$‹D$…À„²þÿÿL‹D$@H´$€¹º¿è9H…ÀH‰Ã„¬H‹Œ$ˆL‹h…ɉL$ˆHHƒ¼$€¸Ld$HO„$€H‹t$8H5yL‰ç‰D$èñßÿÿ‰D$‹D$…À„‹L$…Ɉ,;L$"1|$L‹D$PHt$Hº¿”ÀÁàƒÈ‰ÁèH…ÀI‰Æ„ð‹L$‹t$‹D$HcT$ H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽ¨…Òx	H9׏ìH‹=X–'H5	nèÄÕÿÿH;\$@„ýÿÿHƒ+…wýÿÿH‰ßèçÒÿÿéjýÿÿf‹D$ÇD$…À„TýÿÿénþÿÿHœ$1ÉH6lH5¬6éýÿÿÇD$ égþÿÿH¬$H6H5–6H‰ï1Àè
ÓÿÿH‹=¾•'H‰îè.ÕÿÿéeÿÿÿH¬$HÂuH5q6ëÊè\ÓÿÿH…À…ËüÿÿH‹=„•'H5]wèðÔÿÿé³üÿÿI‹Fƒ|$,H5¼3LЋD$(HÄ3HDօÀtƒøH5¶3H­3HEðƒ|$$H›3H=š3HL$M‰éHDøHƒìHD$$PAPM‰àHD$,PÿÕHƒÄ èÀÒÿÿH…ÀtÇD$‹D$…À„“þÿÿH=13L‰ö1ÀèöÓÿÿH‰D$0éxþÿÿH‹=½”'H56lè)Ôÿÿé`þÿÿèoÒÿÿH…À…RþÿÿH‹=—”'H5wèÔÿÿé:þÿÿ@f.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH>5H
Š«&Hì˜H‹Œ9%H‰„$ˆH‰„$H‰D$PHD$ HÇD$8ÇD$ÇD$ÇD$H‰\$@H‰\$HÇD$ÇD$ H‰\$XÇD$$H‰\$`ÇD$(H‰\$hÇD$,H‰\$pÇD$0H‰\$xÇD$4H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$xèCÒÿÿHƒÄ@…À„H‹t$hH9ÞtuH|$$Hùuè,Üÿÿ‰D$‹D$…Àt8‹L$$ƒùv_Hœ$HhH54H‰ß1ÀèGÐÿÿH‹=ø’'H‰ÞèhÒÿÿH‹D$0H‹D$0HĐ[]A\A]A^ÃfD‹D$ÇD$$…ÀtÐH‹t$pH9ÞtnH|$(HªuèÛÿÿ‰D$‹D$…Àt©H‹t$xH9ÞtoH|$,HÃuèvÛÿÿ‰D$‹D$…Àt‚‹L$,ƒùv]Hœ$HhH5c3éEÿÿÿfDÇD$(ëfDHĐ1À[]A\A]A^ÃfD‹D$ÇD$,…À„ÿÿÿH‹t$XH9Þ„¦H|$HruèåÚÿÿ‰D$‹D$…À„íþÿÿ‹D$…À„’H‹t$`H9Þ„¡H|$ HwuèªÚÿÿ‰D$‹D$…À„²þÿÿL‹D$@H´$€¹º¿èiH…ÀH‰Ã„¬H‹Œ$ˆL‹h…ɉL$ˆHHƒ¼$€¸Ld$HO„$€H‹t$8H…uL‰ç‰D$è!Úÿÿ‰D$‹D$…À„‹L$…Ɉ,;L$"1|$L‹D$PHt$Hº¿”ÀÁàƒÈ‰ÁèÀH…ÀI‰Æ„ð‹L$‹t$‹D$HcT$ H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽ¨…Òx	H9׏ìH‹=ˆ'H59hèôÏÿÿH;\$@„ýÿÿHƒ+…wýÿÿH‰ßèÍÿÿéjýÿÿf‹D$ÇD$…À„TýÿÿénþÿÿHœ$1ÉHffH5I1éýÿÿÇD$ égþÿÿH¬$HE0H531H‰ï1Àè=ÍÿÿH‹=î'H‰îè^ÏÿÿéeÿÿÿH¬$HòoH51ëÊèŒÍÿÿH…À…ËüÿÿH‹=´'H5­sè Ïÿÿé³üÿÿI‹Fƒ|$,H5ì-LЋD$(Hô-HDօÀtƒøH5æ-HÝ-HEðƒ|$$HË-H=Ê-HL$M‰éHDøHƒìHD$$PAPM‰àHD$,PÿÕHƒÄ èðÌÿÿH…ÀtÇD$‹D$…À„“þÿÿH=a-L‰ö1Àè&ÎÿÿH‰D$0éxþÿÿH‹=íŽ'H5ffèYÎÿÿé`þÿÿèŸÌÿÿH…À…RþÿÿH‹=ǎ'H5Psè3Îÿÿé:þÿÿ@f.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHÛ/H
Z¥&Hì˜H‹¼3%H‰„$ˆH‰„$H‰D$PHD$ HÇD$8ÇD$ÇD$ÇD$H‰\$@H‰\$HÇD$ÇD$ H‰\$XÇD$$H‰\$`ÇD$(H‰\$hÇD$,H‰\$pÇD$0H‰\$xÇD$4H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$xèsÌÿÿHƒÄ@…À„H‹t$hH9ÞtuH|$$HIrè\Öÿÿ‰D$‹D$…Àt8‹L$$ƒùv_Hœ$HHbH5£.H‰ß1ÀèwÊÿÿH‹=('H‰Þè˜ÌÿÿH‹D$0H‹D$0HĐ[]A\A]A^ÃfD‹D$ÇD$$…ÀtÐH‹t$pH9ÞtnH|$(HúqèÍÕÿÿ‰D$‹D$…Àt©H‹t$xH9ÞtoH|$,Hrè¦Õÿÿ‰D$‹D$…Àt‚‹L$,ƒùv]Hœ$HJbH5.éEÿÿÿfDÇD$(ëfDHĐ1À[]A\A]A^ÃfD‹D$ÇD$,…À„ÿÿÿH‹t$XH9Þ„¦H|$HÂqèÕÿÿ‰D$‹D$…À„íþÿÿ‹D$…À„’H‹t$`H9Þ„¡H|$ HÇqèÚÔÿÿ‰D$‹D$…À„²þÿÿL‹D$@H´$€¹º¿è™H…ÀH‰Ã„¬H‹Œ$ˆL‹h…ɉL$ˆHHƒ¼$€¸Ld$HO„$€H‹t$8HÕqL‰ç‰D$èQÔÿÿ‰D$‹D$…À„‹L$…Ɉ,;L$"1|$L‹D$PHt$Hº¿”ÀÁàƒÈ‰ÁèðH…ÀI‰Æ„ð‹L$‹t$‹D$HcT$ H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽ¨…Òx	H9׏ìH‹=¸Š'H5ibè$ÊÿÿH;\$@„ýÿÿHƒ+…wýÿÿH‰ßèGÇÿÿéjýÿÿf‹D$ÇD$…À„TýÿÿénþÿÿHœ$1ÉH–`H5æ+éýÿÿÇD$ égþÿÿH¬$Hu*H5Ð+H‰ï1ÀèmÇÿÿH‹=Š'H‰îèŽÉÿÿéeÿÿÿH¬$H"jH5«+ëÊè¼ÇÿÿH…À…ËüÿÿH‹=ä‰'H5ýoèPÉÿÿé³üÿÿI‹Fƒ|$,H5(L‹D$(H$(HDօÀtƒøH5(H
(HEðƒ|$$Hû'H=ú'HL$M‰éHDøHƒìHD$$PAPM‰àHD$,PÿÕHƒÄ è ÇÿÿH…ÀtÇD$‹D$…À„“þÿÿH=‘'L‰ö1ÀèVÈÿÿH‰D$0éxþÿÿH‹=‰'H5–`è‰Èÿÿé`þÿÿèÏÆÿÿH…À…RþÿÿH‹=÷ˆ'H5 oècÈÿÿé:þÿÿ@f.„AUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
3Ÿ&HìˆH‹õ-%He*H‰D$pH‰D$xH‰D$8HD$HÇD$(ÇD$ÇD$H‰\$0ÇD$ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`èÖÆÿÿHƒÄ0…À„H‹t$XH9ÞtpH|$HÌnè¿Ðÿÿ‰D$‹D$…Àt8‹L$ƒùvZHœ$€H«\H5r)H‰ß1ÀèÚÄÿÿH‹=‹‡'H‰ÞèûÆÿÿH‹D$(H‹D$(HĈ[]A\A]ËD$ÇD$…ÀtÕH‹t$`H9ÞtnH|$ H‚nè5Ðÿÿ‰D$‹D$…Àt®H‹t$hH9ÞtoH|$$H›nèÐÿÿ‰D$‹D$…Àt‡‹L$$ƒùv]Hœ$€H²\H5Ô(éJÿÿÿfDÇD$ ëfDHĈ1À[]A\A]Ä‹D$ÇD$$…À„!ÿÿÿH‹t$HH9Þ„ÎH|$HJnè}Ïÿÿ‰D$‹D$…À„òþÿÿ‹|$…ÿ„ºH‹t$PH9Þ„ÉH|$HOnèBÏÿÿ‰D$‹D$…À„·þÿÿL‹D$0Ht$p¹º¿èH…ÀH‰Ã„0H‹L$pH;L$xtH‹=ý…'H5†nèiÅÿÿH;\$0„cþÿÿHƒ+…YþÿÿH‰ßèŒÂÿÿéLþÿÿ€‹D$ÇD$…À„1þÿÿéFÿÿÿHœ$€1ÉHÖ[H5’'éöýÿÿÇD$é?ÿÿÿ…ÉL‹`‰L$ˆa‹t$H…ɸHNÈ1ÀL‹D$@‰L$º¿…öHt$8”ÀÁàƒÈ‰Áè!H…ÀI‰Å„s‹L$‹t$‹D$HcT$H‹|$8Áù1΃è)ίÆÐH˜H9ÇŽÑ…Òˆ±H9׎¨HÁâ‹L$ H56#H‰ÐIEƒ|$$H:#HDօÉtƒùH5,#H
##HEñƒ|$LD$H
#H=#HDùHL$APPM‰àLL$ÿÕèBÂÿÿH…ÀZYtÇD$‹D$…À„nþÿÿH=±"L‰î1ÀèvÃÿÿH‰D$(éSþÿÿH‹==„'H5†mè©Ãÿÿé;þÿÿH‹=%„'H56mè‘Ãÿÿé#þÿÿH¬$€HD$H5&1ÀH‰ïè<ÁÿÿH‹=íƒ'H‰îè]Ãÿÿéïýÿÿè£ÁÿÿH…À…OüÿÿH‹=˃'H5lè7Ãÿÿé7üÿÿè}ÁÿÿH…À…»ýÿÿH‹=¥ƒ'H5flèÃÿÿé£ýÿÿff.„AUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
ƒ™&HìˆH‹¥(%Hr%H‰D$pH‰D$xH‰D$8HD$HÇD$(ÇD$ÇD$H‰\$0ÇD$ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`è†ÁÿÿHƒÄ0…À„H‹t$XH9ÞtpH|$HlèoËÿÿ‰D$‹D$…Àt8‹L$ƒùvZHœ$€H[WH5$H‰ß1À芿ÿÿH‹=;‚'H‰Þè«ÁÿÿH‹D$(H‹D$(HĈ[]A\A]ËD$ÇD$…ÀtÕH‹t$`H9ÞtnH|$ HºkèåÊÿÿ‰D$‹D$…Àt®H‹t$hH9ÞtoH|$$HÓkè¾Êÿÿ‰D$‹D$…Àt‡‹L$$ƒùv]Hœ$€HbWH5á#éJÿÿÿfDÇD$ ëfDHĈ1À[]A\A]Ä‹D$ÇD$$…À„!ÿÿÿH‹t$HH9Þ„ÎH|$H‚kè-Êÿÿ‰D$‹D$…À„òþÿÿ‹|$…ÿ„ºH‹t$PH9Þ„ÉH|$H‡kèòÉÿÿ‰D$‹D$…À„·þÿÿL‹D$0Ht$p¹º¿è´H…ÀH‰Ã„-H‹L$pH;L$xtH‹=­€'H56ièÀÿÿH;\$0„cþÿÿHƒ+…YþÿÿH‰ßè<½ÿÿéLþÿÿ€‹D$ÇD$…À„1þÿÿéFÿÿÿHœ$€1ÉH†VH5Ÿ"éöýÿÿÇD$é?ÿÿÿ…ÉL‹`‰L$ˆ^‹t$H…ɸHNÈ1ÀL‹D$@‰L$º¿…öHt$8”ÀÁàƒÈ‰ÁèÑH…ÀI‰Å„p‹L$‹t$‹D$HcT$H‹|$8Áù1΃è)ίÆÐH˜H9ÇŽÎ…Òˆ®H9׎¥I‹Eƒ|$$H5åLЋD$ HíHDօÀtƒøH5ßHÖHEðƒ|$HÄH=ÃHL$HDøHD$PAPM‰àLL$ÿÕèõ¼ÿÿH…ÀZYtÇD$‹D$…À„qþÿÿH=dL‰î1Àè)¾ÿÿH‰D$(éVþÿÿH‹=ð~'H59hè\¾ÿÿé>þÿÿH‹=Ø~'H5égèD¾ÿÿé&þÿÿH¬$€H÷H5!1ÀH‰ïèï»ÿÿH‹= ~'H‰îè¾ÿÿéòýÿÿèV¼ÿÿH…À…RüÿÿH‹=~~'H5?ièê½ÿÿé:üÿÿè0¼ÿÿH…À…¾ýÿÿH‹=X~'H5iièĽÿÿé¦ýÿÿDf.„AUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
ӓ&HìˆH‹U#%H H‰D$pH‰D$xH‰D$8HD$HÇD$(ÇD$ÇD$H‰\$0ÇD$ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`è6¼ÿÿHƒÄ0…À„H‹t$XH9ÞtpH|$H”hèÆÿÿ‰D$‹D$…Àt8‹L$ƒùvZHœ$€HRH5ŒH‰ß1Àè:ºÿÿH‹=ë|'H‰Þè[¼ÿÿH‹D$(H‹D$(HĈ[]A\A]ËD$ÇD$…ÀtÕH‹t$`H9ÞtnH|$ HJhè•Åÿÿ‰D$‹D$…Àt®H‹t$hH9ÞtoH|$$HchènÅÿÿ‰D$‹D$…Àt‡‹L$$ƒùv]Hœ$€HRH5îéJÿÿÿfDÇD$ ëfDHĈ1À[]A\A]Ä‹D$ÇD$$…À„!ÿÿÿH‹t$HH9Þ„ÎH|$HhèÝÄÿÿ‰D$‹D$…À„òþÿÿ‹|$…ÿ„ºH‹t$PH9Þ„ÉH|$Hhè¢Äÿÿ‰D$‹D$…À„·þÿÿL‹D$0Ht$p¹º¿èdH…ÀH‰Ã„-H‹L$pH;L$xtH‹=]{'H5æcèɺÿÿH;\$0„cþÿÿHƒ+…YþÿÿH‰ßèì·ÿÿéLþÿÿ€‹D$ÇD$…À„1þÿÿéFÿÿÿHœ$€1ÉH6QH5¬éöýÿÿÇD$é?ÿÿÿ…ÉL‹`‰L$ˆ^‹t$H…ɸHNÈ1ÀL‹D$@‰L$º¿…öHt$8”ÀÁàƒÈ‰ÁèH…ÀI‰Å„p‹L$‹t$‹D$HcT$H‹|$8Áù1΃è)ίÆÐH˜H9ÇŽÎ…Òˆ®H9׎¥I‹Eƒ|$$H5•LЋD$ HHDօÀtƒøH5H†HEðƒ|$HtH=sHL$HDøHD$PAPM‰àLL$ÿÕ襷ÿÿH…ÀZYtÇD$‹D$…À„qþÿÿH=L‰î1ÀèٸÿÿH‰D$(éVþÿÿH‹= y'H5ébè¹ÿÿé>þÿÿH‹=ˆy'H5™bèô¸ÿÿé&þÿÿH¬$€H§H5(1ÀH‰ï蟶ÿÿH‹=Py'H‰îè8ÿÿéòýÿÿè·ÿÿH…À…RüÿÿH‹=.y'H5Ïe蚸ÿÿé:üÿÿèà¶ÿÿH…À…¾ýÿÿH‹=y'H5ùeèt¸ÿÿé¦ýÿÿDf.„AUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
#Ž&HìˆH‹%HŒH‰D$pH‰D$xH‰D$8HD$HÇD$(ÇD$ÇD$H‰\$0ÇD$ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`èæ¶ÿÿHƒÄ0…À„H‹t$XH9ÞtpH|$H$eèÏÀÿÿ‰D$‹D$…Àt8‹L$ƒùvZHœ$€H»LH5™H‰ß1Àèê´ÿÿH‹=›w'H‰Þè·ÿÿH‹D$(H‹D$(HĈ[]A\A]ËD$ÇD$…ÀtÕH‹t$`H9ÞtnH|$ HÚdèEÀÿÿ‰D$‹D$…Àt®H‹t$hH9ÞtoH|$$HódèÀÿÿ‰D$‹D$…Àt‡‹L$$ƒùv]Hœ$€HÂLH5ûéJÿÿÿfDÇD$ ëfDHĈ1À[]A\A]Ä‹D$ÇD$$…À„!ÿÿÿH‹t$HH9Þ„ÎH|$H¢d荿ÿÿ‰D$‹D$…À„òþÿÿ‹|$…ÿ„ºH‹t$PH9Þ„ÉH|$H§dèR¿ÿÿ‰D$‹D$…À„·þÿÿL‹D$0Ht$p¹º¿èüH…ÀH‰Ã„-H‹L$pH;L$xtH‹=
v'H5–^èyµÿÿH;\$0„cþÿÿHƒ+…YþÿÿH‰ß蜲ÿÿéLþÿÿ€‹D$ÇD$…À„1þÿÿéFÿÿÿHœ$€1ÉHæKH5¹éöýÿÿÇD$é?ÿÿÿ…ÉL‹`‰L$ˆ^‹t$H…ɸHNÈ1ÀL‹D$@‰L$º¿…öHt$8”ÀÁàƒÈ‰Áè1ûH…ÀI‰Å„p‹L$‹t$‹D$HcT$H‹|$8Áù1΃è)ίÆÐH˜H9ÇŽÎ…Òˆ®H9׎¥I‹Eƒ|$$H5EL‹D$ HMHDօÀtƒøH5?H6HEðƒ|$H$H=#HL$HDøHD$PAPM‰àLL$ÿÕèU²ÿÿH…ÀZYtÇD$‹D$…À„qþÿÿH=ÄL‰î1À艳ÿÿH‰D$(éVþÿÿH‹=Pt'H5™]輳ÿÿé>þÿÿH‹=8t'H5I]褳ÿÿé&þÿÿH¬$€HWH551ÀH‰ïèO±ÿÿH‹=t'H‰îèp³ÿÿéòýÿÿ趱ÿÿH…À…RüÿÿH‹=Þs'H5_bèJ³ÿÿé:üÿÿ萱ÿÿH…À…¾ýÿÿH‹=¸s'H5‰bè$³ÿÿé¦ýÿÿDf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHªH
hˆ&HìˆH‹ª%H‰D$pH‰D$xH‰D$8HD$HÇD$(ÇD$ÇD$H‰\$0ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`蚱ÿÿHƒÄ0…À„þH‹t$`H9Þ„ H|$ H´aè»ÿÿ‰D$‹D$…Àu#H‹D$(H‹D$(HĈ[]A\A]A^A_À‹L$ ƒùwoH‹t$XH9Þ„©H|$HÕaè(»ÿÿ‰D$‹D$…Àt©‹L$ƒù†“Hœ$€HèaH5^ë5€‹D$ÇD$ …Àu™éhÿÿÿHœ$€H9aH5H‰ß1Àè¯ÿÿH‹=¹q'H‰Þè)±ÿÿé1ÿÿÿ@1Àé0ÿÿÿf„‹D$ÇD$…À„	ÿÿÿH‹t$hH9ÞtJH|$$H†aèaºÿÿ‰D$‹D$…À„Þþÿÿ‹L$$ƒùv4Hœ$€H™aH5ªékÿÿÿD‹D$ÇD$$…À„¡þÿÿH‹t$PH9Þ„ÏH|$HŠaèõ¹ÿÿ‰D$‹D$…À„rþÿÿ‹t$…ö„»ƒ|$L‹D$@Ht$8º¿Ƀá ƒÁè£öH…ÀI‰Å„ÄL‹D$0Ht$p¹º¿L‹pèuöH…ÀI‰Ä„H‹D$xH9D$ptlH‹=np'H5÷XèگÿÿL;d$0„ÜýÿÿIƒ,$…ÑýÿÿL‰çèü¬ÿÿéÄýÿÿ‹D$ÇD$…À…Jÿÿÿé«ýÿÿHœ$€1ÉHÝ`H5é?þÿÿH‹t$HM‹|$H9Þ„eH|$H‚aèݸÿÿ‰D$‹D$…À„sÿÿÿ‹L$…ɈL‹L$8HcÑL9ʍó‹t$‹D$H‹|$pÁþ1ð‰|$)ðwÿ¯ÆÈH˜I9ÁŽ=HÁâ‹D$ H5×
Iփ|$$Hß
HDօÀtƒøH5Ï
HÊ
HDðƒ|$H¼
H=¯
HL$M‰øI‰ÉHEøHD$PAVÿÕèé¬ÿÿH…ÀZYtÇD$‹D$…À„¤þÿÿH=X
L‰î1Àè®ÿÿH‰D$(é‰þÿÿ讬ÿÿH…À…büÿÿH‹=Ön'H5Ç_èB®ÿÿéJüÿÿHœ$€HŽ`H5CH‰ß1Àèí«ÿÿH‹=žn'H‰Þè®ÿÿé/þÿÿ‹D$ÇD$…À„þÿÿ1Éé­þÿÿè9¬ÿÿH…À…íûÿÿH‹=an'H5¢_èͭÿÿéÕûÿÿHœ$€‰ùHO`H5Þë‡@f.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH¼H
˜‚&HìˆH‹:%H‰D$pH‰D$xH‰D$8HD$HÇD$(ÇD$ÇD$H‰\$0ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`è*¬ÿÿHƒÄ0…À„þH‹t$`H9Þ„ H|$ Hd_è¶ÿÿ‰D$‹D$…Àu#H‹D$(H‹D$(HĈ[]A\A]A^A_À‹L$ ƒùwoH‹t$XH9Þ„©H|$HM_踵ÿÿ‰D$‹D$…Àt©‹L$ƒù†“Hœ$€Hx\H5pë5€‹D$ÇD$ …Àu™éhÿÿÿHœ$€HÉ[H5&H‰ß1À蘩ÿÿH‹=Il'H‰Þ蹫ÿÿé1ÿÿÿ@1Àé0ÿÿÿf„‹D$ÇD$…À„	ÿÿÿH‹t$hH9ÞtJH|$$HÆ^èñ´ÿÿ‰D$‹D$…À„Þþÿÿ‹L$$ƒùv4Hœ$€H)\H5¼ékÿÿÿD‹D$ÇD$$…À„¡þÿÿH‹t$PH9Þ„ÏH|$Hš^腴ÿÿ‰D$‹D$…À„rþÿÿ‹t$…ö„»ƒ|$L‹D$@Ht$8º¿Ƀá ƒÁè3ñH…ÀI‰Å„ÁL‹D$0Ht$p¹º¿L‹pèñH…ÀI‰Ä„H‹D$xH9D$ptlH‹=þj'H5‡SèjªÿÿL;d$0„ÜýÿÿIƒ,$…ÑýÿÿL‰ç茧ÿÿéÄýÿÿ‹D$ÇD$…À…Jÿÿÿé«ýÿÿHœ$€1ÉHm[H5¢é?þÿÿH‹t$HM‹|$H9Þ„bH|$Hb^èm³ÿÿ‰D$‹D$…À„sÿÿÿ‹L$…ɈL‹L$8HcùL9ύð‹T$‹D$H‹t$pÁú1Љt$)ЍVÿ¯ÂÈH˜I9ÁŽ:ƒ|$$‹D$ H5fHvMþHDօÀtƒøH5bH]HDðƒ|$HOH=BHL$M‰øHEøHD$PAQI‰ÉÿÕè|§ÿÿH…ÀZYtÇD$‹D$…À„§þÿÿH=ëL‰î1À谨ÿÿH‰D$(éŒþÿÿèA§ÿÿH…À…eüÿÿH‹=ii'H5ª\èըÿÿéMüÿÿHœ$€H![H5X
H‰ß1À耦ÿÿH‹=1i'H‰Þ表ÿÿé2þÿÿ‹D$ÇD$…À„þÿÿ1Éé°þÿÿè̦ÿÿH…À…ðûÿÿH‹=ôh'H5…\è`¨ÿÿéØûÿÿ‰ñHœ$€HâZH5ó뇐AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHÞH
Ø|&HìˆH‹Ú
%H‰D$pH‰D$xH‰D$8HD$HÇD$(ÇD$ÇD$H‰\$0ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`èʦÿÿHƒÄ0…À„þH‹t$`H9Þ„ H|$ Hä[诰ÿÿ‰D$‹D$…Àu#H‹D$(H‹D$(HĈ[]A\A]A^A_À‹L$ ƒùwoH‹t$XH9Þ„©H|$HÍ[èX°ÿÿ‰D$‹D$…Àt©‹L$ƒù†“Hœ$€HWH5’ë5€‹D$ÇD$ …Àu™éhÿÿÿHœ$€HiVH5HH‰ß1Àè8¤ÿÿH‹=éf'H‰ÞèY¦ÿÿé1ÿÿÿ@1Àé0ÿÿÿf„‹D$ÇD$…À„	ÿÿÿH‹t$hH9ÞtJH|$$HF[葯ÿÿ‰D$‹D$…À„Þþÿÿ‹L$$ƒùv4Hœ$€HÉVH5Þ
ékÿÿÿD‹D$ÇD$$…À„¡þÿÿH‹t$PH9Þ„ÏH|$H[è%¯ÿÿ‰D$‹D$…À„rþÿÿ‹t$…ö„»ƒ|$L‹D$@Ht$8º¿Ƀá ƒÁèÓëH…ÀI‰Å„ÁL‹D$0Ht$p¹º¿L‹pè¥ëH…ÀI‰Ä„H‹D$xH9D$ptlH‹=že'H5'Nè
¥ÿÿL;d$0„ÜýÿÿIƒ,$…ÑýÿÿL‰çè,¢ÿÿéÄýÿÿ‹D$ÇD$…À…Jÿÿÿé«ýÿÿHœ$€1ÉH
VH5Ä	é?þÿÿH‹t$HM‹|$H9Þ„bH|$HâZè
®ÿÿ‰D$‹D$…À„sÿÿÿ‹L$…ɈL‹L$8HcùL9ύð‹T$‹D$H‹t$pÁú1Љt$)ЍVÿ¯ÂÈH˜I9ÁŽ:ƒ|$$‹D$ H5HMþHDօÀtƒøH5HýHDðƒ|$HïH=âHL$M‰øHEøHD$PAQI‰ÉÿÕè¢ÿÿH…ÀZYtÇD$‹D$…À„§þÿÿH=‹L‰î1ÀèP£ÿÿH‰D$(éŒþÿÿèá¡ÿÿH…À…eüÿÿH‹=	d'H5*Yèu£ÿÿéMüÿÿHœ$€HÁUH5zH‰ß1Àè ¡ÿÿH‹=Ñc'H‰ÞèA£ÿÿé2þÿÿ‹D$ÇD$…À„þÿÿ1Éé°þÿÿèl¡ÿÿH…À…ðûÿÿH‹=”c'H5Yè£ÿÿéØûÿÿ‰ñHœ$€H‚UH5뇐AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHH
w&HìˆH‹z%H‰D$pH‰D$xH‰D$8HD$HÇD$(ÇD$ÇD$H‰\$0ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`èj¡ÿÿHƒÄ0…À„þH‹t$`H9Þ„ H|$ HdXèO«ÿÿ‰D$‹D$…Àu#H‹D$(H‹D$(HĈ[]A\A]A^A_À‹L$ ƒùwoH‹t$XH9Þ„©H|$HMXèøªÿÿ‰D$‹D$…Àt©‹L$ƒù†“Hœ$€H¸QH5´ë5€‹D$ÇD$ …Àu™éhÿÿÿHœ$€H	QH5jH‰ß1Àè؞ÿÿH‹=‰a'H‰Þèù ÿÿé1ÿÿÿ@1Àé0ÿÿÿf„‹D$ÇD$…À„	ÿÿÿH‹t$hH9ÞtJH|$$HÆWè1ªÿÿ‰D$‹D$…À„Þþÿÿ‹L$$ƒùv4Hœ$€HiQH5ékÿÿÿD‹D$ÇD$$…À„¡þÿÿH‹t$PH9Þ„ÏH|$HšWèũÿÿ‰D$‹D$…À„rþÿÿ‹t$…ö„»ƒ|$L‹D$@Ht$8º¿Ƀá ƒÁèsæH…ÀI‰Å„ÁL‹D$0Ht$p¹º¿L‹pèEæH…ÀI‰Ä„H‹D$xH9D$ptlH‹=>`'H5ÇH誟ÿÿL;d$0„ÜýÿÿIƒ,$…ÑýÿÿL‰çè̜ÿÿéÄýÿÿ‹D$ÇD$…À…Jÿÿÿé«ýÿÿHœ$€1ÉH­PH5æé?þÿÿH‹t$HM‹|$H9Þ„bH|$HbW譨ÿÿ‰D$‹D$…À„sÿÿÿ‹L$…ɈL‹L$8HcùL9ύð‹T$‹D$H‹t$pÁú1Љt$)ЍVÿ¯ÂÈH˜I9ÁŽ:ƒ|$$‹D$ H5¦ýH¶ýM¾HDօÀtƒøH5¢ýHýHDðƒ|$HýH=‚ýHL$M‰øHEøHD$PAQI‰ÉÿÕ輜ÿÿH…ÀZYtÇD$‹D$…À„§þÿÿH=+ýL‰î1ÀèðÿÿH‰D$(éŒþÿÿ聜ÿÿH…À…eüÿÿH‹=©^'H5ªUèžÿÿéMüÿÿHœ$€HaPH5œH‰ß1ÀèÿÿH‹=q^'H‰Þèáÿÿé2þÿÿ‹D$ÇD$…À„þÿÿ1Éé°þÿÿèœÿÿH…À…ðûÿÿH‹=4^'H5…U蠝ÿÿéØûÿÿ‰ñHœ$€H"PH57뇐AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH$H
Zq&HìˆH‹%H‰D$@H‰D$PHD$HÇD$0ÇD$ÇD$H‰\$8H‰\$HÇD$H‰\$XÇD$H‰\$`ÇD$ H‰\$hÇD$$H‰\$pÇD$(H‰\$xÇD$,H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$pèî›ÿÿHƒÄ@1҅À„šLd$H‹t$0HÏTL‰çèץÿÿ‰D$‹D$…Àtk‹L$…ɈH‹t$hH9ÞtuH|$HÙT褥ÿÿ‰D$‹D$…Àt8‹L$ƒùv_Hœ$€H1H5ãH‰ß1À这ÿÿH‹=p\'H‰Þèà›ÿÿH‹D$(H‹T$(HĀH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$pH9Þ„’H|$ H†Tè¥ÿÿ‰D$‹D$…Àt¥H‹t$xH9Þt{H|$$HŸTèê¤ÿÿ‰D$‹D$…À„zÿÿÿ‹L$$ƒùveHœ$€HŠ1H58é=ÿÿÿfDHœ$€HI0H5õéÿÿÿDÇD$ évÿÿÿ‹D$ÇD$$…À„ÿÿÿH‹t$XH9Þ„VH|$HBTèM¤ÿÿ‰D$‹D$…À„Ýþÿÿ‹t$…ö„BH‹t$`H9Þ„QH|$HGTè¤ÿÿ‰D$‹D$…À„¢þÿÿL‹D$@Ht$8¹º¿èÔàH…ÀH‰Ã„æ‹T$¹B¯™÷ùH˜H9D$8Œô1|$L‹D$PHt$Hº¿L‹k”ÀÁàƒÈ‰ÁèzàH…ÀI‰Æ„²‹L$‹t$‹D$HcT$H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽD…Òx	H9׏”H‹=BZ'H5ó1讙ÿÿH;\$@„ÃýÿÿHƒ+…¹ýÿÿH‰ßèіÿÿé¬ýÿÿ@‹D$ÇD$…À…ÃþÿÿéýÿÿHœ$€1ÉH0H5fÿéYýÿÿÇD$é·þÿÿH‹=ÆY'H5·0è2™ÿÿéÿÿÿHÁâIVƒ|$$‹D$ H5ö÷I‰ÑHøHDօÀtƒøH5õ÷Hì÷HEðƒ|$HÚ÷H=Ù÷L‰áM‰èHDøHƒìHD$PÿÕè—ÿÿH…ÀZYtÇD$‹D$…À„÷þÿÿH=÷L‰ö1ÀèD˜ÿÿH‰D$(éÜþÿÿH‹=Y'H5„0èw˜ÿÿéÄþÿÿ轖ÿÿH…À…„üÿÿH‹=åX'H5FRèQ˜ÿÿélüÿÿ藖ÿÿH…À…þÿÿH‹=¿X'H5pRè+˜ÿÿéxþÿÿfDAVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH"þH
šk&HìˆH‹¼ý$H‰D$@H‰D$PHD$HÇD$0ÇD$ÇD$H‰\$8H‰\$HÇD$H‰\$XÇD$H‰\$`ÇD$ H‰\$hÇD$$H‰\$pÇD$(H‰\$xÇD$,H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$p莖ÿÿHƒÄ@1҅À„šLd$H‹t$0HQL‰çèw ÿÿ‰D$‹D$…Àtk‹L$…ɈH‹t$hH9ÞtuH|$H™QèD ÿÿ‰D$‹D$…Àt8‹L$ƒùv_Hœ$€H0,H5áüH‰ß1Àè_”ÿÿH‹=W'H‰Þ耖ÿÿH‹D$(H‹T$(HĀH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$pH9Þ„’H|$ HFQ豟ÿÿ‰D$‹D$…Àt¥H‹t$xH9Þt{H|$$H_Q芟ÿÿ‰D$‹D$…À„zÿÿÿ‹L$$ƒùveHœ$€H*,H56üé=ÿÿÿfDHœ$€Hé*H5óûéÿÿÿDÇD$ évÿÿÿ‹D$ÇD$$…À„ÿÿÿH‹t$XH9Þ„VH|$HQèížÿÿ‰D$‹D$…À„Ýþÿÿ‹t$…ö„BH‹t$`H9Þ„QH|$HQ貞ÿÿ‰D$‹D$…À„¢þÿÿL‹D$@Ht$8¹º¿ètÛH…ÀH‰Ã„ã‹T$¹B¯™÷ùH˜H9D$8Œô1|$L‹D$PHt$Hº¿L‹k”ÀÁàƒÈ‰ÁèÛH…ÀI‰Æ„¯‹L$‹t$‹D$HcT$H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽA…Òx	H9׏”H‹=âT'H5“,èN”ÿÿH;\$@„ÃýÿÿHƒ+…¹ýÿÿH‰ßèq‘ÿÿé¬ýÿÿ@‹D$ÇD$…À…ÃþÿÿéýÿÿHœ$€1ÉH¾*H5dúéYýÿÿÇD$é·þÿÿH‹=fT'H5W+èғÿÿéÿÿÿI‹Fƒ|$$H5žòLЋD$ H¦òHDօÀtƒøH5˜òHòHEðƒ|$H}òH=|òL‰áM‰èHDøHƒìHD$PÿÕ賑ÿÿH…ÀZYtÇD$‹D$…À„úþÿÿH="òL‰ö1Àèç’ÿÿH‰D$(éßþÿÿH‹=®S'H5'+è“ÿÿéÇþÿÿè`‘ÿÿH…À…‡üÿÿH‹=ˆS'H5	Oèô’ÿÿéoüÿÿè:‘ÿÿH…À…“þÿÿH‹=bS'H53OèΒÿÿé{þÿÿf„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH ùH
Úe&HìˆH‹\ø$H‰D$@H‰D$PHD$HÇD$0ÇD$ÇD$H‰\$8H‰\$HÇD$H‰\$XÇD$H‰\$`ÇD$ H‰\$hÇD$$H‰\$pÇD$(H‰\$xÇD$,H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$pè.‘ÿÿHƒÄ@1҅À„šLd$H‹t$0HONL‰çè›ÿÿ‰D$‹D$…Àtk‹L$…ɈH‹t$hH9ÞtuH|$HYNèäšÿÿ‰D$‹D$…Àt8‹L$ƒùv_Hœ$€HÐ&H5ß÷H‰ß1ÀèÿŽÿÿH‹=°Q'H‰Þè ‘ÿÿH‹D$(H‹T$(HĀH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$pH9Þ„’H|$ HNèQšÿÿ‰D$‹D$…Àt¥H‹t$xH9Þt{H|$$HNè*šÿÿ‰D$‹D$…À„zÿÿÿ‹L$$ƒùveHœ$€HÊ&H54÷é=ÿÿÿfDHœ$€H‰%H5ñöéÿÿÿDÇD$ évÿÿÿ‹D$ÇD$$…À„ÿÿÿH‹t$XH9Þ„VH|$HÂM荙ÿÿ‰D$‹D$…À„Ýþÿÿ‹t$…ö„BH‹t$`H9Þ„QH|$HÇMèR™ÿÿ‰D$‹D$…À„¢þÿÿL‹D$@Ht$8¹º¿èÖH…ÀH‰Ã„ã‹T$¹B¯™÷ùH˜H9D$8Œô1|$L‹D$PHt$Hº¿L‹k”ÀÁàƒÈ‰ÁèºÕH…ÀI‰Æ„¯‹L$‹t$‹D$HcT$H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽA…Òx	H9׏”H‹=‚O'H53'èîŽÿÿH;\$@„ÃýÿÿHƒ+…¹ýÿÿH‰ßèŒÿÿé¬ýÿÿ@‹D$ÇD$…À…ÃþÿÿéýÿÿHœ$€1ÉH^%H5bõéYýÿÿÇD$é·þÿÿH‹=O'H5÷%èrŽÿÿéÿÿÿI‹Fƒ|$$H5>íLЋD$ HFíHDօÀtƒøH58íH/íHEðƒ|$HíH=íL‰áM‰èHDøHƒìHD$PÿÕèSŒÿÿH…ÀZYtÇD$‹D$…À„úþÿÿH=ÂìL‰ö1À臍ÿÿH‰D$(éßþÿÿH‹=NN'H5Ç%躍ÿÿéÇþÿÿèŒÿÿH…À…‡üÿÿH‹=(N'H5ÉK蔍ÿÿéoüÿÿèڋÿÿH…À…“þÿÿH‹=N'H5óKènÿÿé{þÿÿf„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHôH
`&HìˆH‹üò$H‰D$@H‰D$PHD$HÇD$0ÇD$ÇD$H‰\$8H‰\$HÇD$H‰\$XÇD$H‰\$`ÇD$ H‰\$hÇD$$H‰\$pÇD$(H‰\$xÇD$,H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$pè΋ÿÿHƒÄ@1҅À„šLd$H‹t$0HKL‰ç跕ÿÿ‰D$‹D$…Àtk‹L$…ɈH‹t$hH9ÞtuH|$HK脕ÿÿ‰D$‹D$…Àt8‹L$ƒùv_Hœ$€Hp!H5ÝòH‰ß1À蟉ÿÿH‹=PL'H‰ÞèÿÿH‹D$(H‹T$(HĀH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$pH9Þ„’H|$ HÆJèñ”ÿÿ‰D$‹D$…Àt¥H‹t$xH9Þt{H|$$HßJèʔÿÿ‰D$‹D$…À„zÿÿÿ‹L$$ƒùveHœ$€Hj!H52òé=ÿÿÿfDHœ$€H) H5ïñéÿÿÿDÇD$ évÿÿÿ‹D$ÇD$$…À„ÿÿÿH‹t$XH9Þ„VH|$H‚Jè-”ÿÿ‰D$‹D$…À„Ýþÿÿ‹t$…ö„BH‹t$`H9Þ„QH|$H‡Jèò“ÿÿ‰D$‹D$…À„¢þÿÿL‹D$@Ht$8¹º¿è´ÐH…ÀH‰Ã„ã‹T$¹B¯™÷ùH˜H9D$8Œô1|$L‹D$PHt$Hº¿L‹k”ÀÁàƒÈ‰ÁèZÐH…ÀI‰Æ„¯‹L$‹t$‹D$HcT$H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽA…Òx	H9׏”H‹="J'H5Ó!莉ÿÿH;\$@„ÃýÿÿHƒ+…¹ýÿÿH‰ß豆ÿÿé¬ýÿÿ@‹D$ÇD$…À…ÃþÿÿéýÿÿHœ$€1ÉHþH5`ðéYýÿÿÇD$é·þÿÿH‹=¦I'H5— è‰ÿÿéÿÿÿI‹Fƒ|$$H5ÞçL‹D$ HæçHDօÀtƒøH5ØçHÏçHEðƒ|$H½çH=¼çL‰áM‰èHDøHƒìHD$PÿÕèó†ÿÿH…ÀZYtÇD$‹D$…À„úþÿÿH=bçL‰ö1Àè'ˆÿÿH‰D$(éßþÿÿH‹=îH'H5g èZˆÿÿéÇþÿÿ蠆ÿÿH…À…‡üÿÿH‹=ÈH'H5‰Hè4ˆÿÿéoüÿÿèz†ÿÿH…À…“þÿÿH‹=¢H'H5³Hèˆÿÿé{þÿÿf„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHïH
ZZ&Hì˜H‹œí$H‰„$ˆH‰„$H‰D$PHD$ HÇD$8ÇD$ÇD$ÇD$H‰\$@H‰\$HÇD$ÇD$ H‰\$XÇD$$H‰\$`ÇD$(H‰\$hÇD$,H‰\$pÇD$0H‰\$xÇD$4H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$xèS†ÿÿHƒÄ@…À„H‹t$hH9ÞtuH|$$H±Gè<ÿÿ‰D$‹D$…Àt8‹L$$ƒùv_Hœ$H(H5äíH‰ß1ÀèW„ÿÿH‹=G'H‰Þèx†ÿÿH‹D$0H‹D$0HĐ[]A\A]A^ÃfD‹D$ÇD$$…ÀtÐH‹t$pH9ÞtnH|$(HbG譏ÿÿ‰D$‹D$…Àt©H‹t$xH9ÞtoH|$,H{G膏ÿÿ‰D$‹D$…Àt‚‹L$,ƒùv]Hœ$H*H5AíéEÿÿÿfDÇD$(ëfDHĐ1À[]A\A]A^ÃfD‹D$ÇD$,…À„ÿÿÿH‹t$XH9Þ„¦H|$H*GèõŽÿÿ‰D$‹D$…À„íþÿÿ‹D$…À„’H‹t$`H9Þ„¡H|$ H/G躎ÿÿ‰D$‹D$…À„²þÿÿL‹D$@H´$€¹º¿èyËH…ÀH‰Ã„¬H‹Œ$ˆL‹h…ɉL$ˆHHƒ¼$€¸Ld$HO„$€H‹t$8H=GL‰ç‰D$è1Žÿÿ‰D$‹D$…À„‹L$…Ɉ,;L$"1|$L‹D$PHt$Hº¿”ÀÁàƒÈ‰ÁèÐÊH…ÀI‰Æ„ó‹L$‹t$‹D$HcT$ H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽ«…Òx	H9׏ìH‹=˜D'H5Iè„ÿÿH;\$@„ýÿÿHƒ+…wýÿÿH‰ßè'ÿÿéjýÿÿf‹D$ÇD$…À„TýÿÿénþÿÿHœ$1ÉHvH5'ëéýÿÿÇD$ égþÿÿH¬$HUäH5ëH‰ï1ÀèMÿÿH‹=þC'H‰îènƒÿÿéeÿÿÿH¬$H$H5ìêëÊ蜁ÿÿH…À…ËüÿÿH‹=ÄC'H5eEè0ƒÿÿé³üÿÿHÁâ‹L$(H5ýáH‰ÐIFƒ|$,HâHDօÉtƒùH5óáH
êáHEñƒ|$$H
ØáH=×áM‰éHDùHL$HƒìLD$$APPM‰àHD$,PÿÕHƒÄ èý€ÿÿH…ÀtÇD$‹D$…À„þÿÿH=náL‰ö1Àè3‚ÿÿH‰D$0éuþÿÿH‹=úB'H5sèf‚ÿÿé]þÿÿ謀ÿÿH…À…OþÿÿH‹=ÔB'H5Eè@‚ÿÿé7þÿÿf.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH¹éH
*T&Hì˜H‹Ìç$H‰„$ˆH‰„$H‰D$PHD$ HÇD$8ÇD$ÇD$ÇD$H‰\$@H‰\$HÇD$ÇD$ H‰\$XÇD$$H‰\$`ÇD$(H‰\$hÇD$,H‰\$pÇD$0H‰\$xÇD$4H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$x胀ÿÿHƒÄ@…À„H‹t$hH9ÞtuH|$$HDèlŠÿÿ‰D$‹D$…Àt8‹L$$ƒùv_Hœ$HXH5èH‰ß1Àè‡~ÿÿH‹=8A'H‰Þ言ÿÿH‹D$0H‹D$0HĐ[]A\A]A^ÃfD‹D$ÇD$$…ÀtÐH‹t$pH9ÞtnH|$(H²Cè݉ÿÿ‰D$‹D$…Àt©H‹t$xH9ÞtoH|$,HËC趉ÿÿ‰D$‹D$…Àt‚‹L$,ƒùv]Hœ$HZH5ÞçéEÿÿÿfDÇD$(ëfDHĐ1À[]A\A]A^ÃfD‹D$ÇD$,…À„ÿÿÿH‹t$XH9Þ„¦H|$HzCè%‰ÿÿ‰D$‹D$…À„íþÿÿ‹D$…À„’H‹t$`H9Þ„¡H|$ HCèêˆÿÿ‰D$‹D$…À„²þÿÿL‹D$@H´$€¹º¿è©ÅH…ÀH‰Ã„¬H‹Œ$ˆL‹h…ɉL$ˆHHƒ¼$€¸Ld$HO„$€H‹t$8HCL‰ç‰D$èaˆÿÿ‰D$‹D$…À„‹L$…Ɉ,;L$"1|$L‹D$PHt$Hº¿”ÀÁàƒÈ‰ÁèÅH…ÀI‰Æ„ð‹L$‹t$‹D$HcT$ H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽ¨…Òx	H9׏ìH‹=È>'H5yè4~ÿÿH;\$@„ýÿÿHƒ+…wýÿÿH‰ßèW{ÿÿéjýÿÿf‹D$ÇD$…À„TýÿÿénþÿÿHœ$1ÉH¦H5ÄåéýÿÿÇD$ égþÿÿH¬$H…ÞH5®åH‰ï1Àè}{ÿÿH‹=.>'H‰îèž}ÿÿéeÿÿÿH¬$H2H5‰åëÊèÌ{ÿÿH…À…ËüÿÿH‹=ô='H5µAè`}ÿÿé³üÿÿI‹Fƒ|$,H5,ÜLЋD$(H4ÜHDօÀtƒøH5&ÜHÜHEðƒ|$$HÜH=
ÜHL$M‰éHDøHƒìHD$$PAPM‰àHD$,PÿÕHƒÄ è0{ÿÿH…ÀtÇD$‹D$…À„“þÿÿH=¡ÛL‰ö1Àèf|ÿÿH‰D$0éxþÿÿH‹=-='H5¦è™|ÿÿé`þÿÿèßzÿÿH…À…RþÿÿH‹=='H5XAès|ÿÿé:þÿÿ@f.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHVäH
úM&Hì˜H‹üá$H‰„$ˆH‰„$H‰D$PHD$ HÇD$8ÇD$ÇD$ÇD$H‰\$@H‰\$HÇD$ÇD$ H‰\$XÇD$$H‰\$`ÇD$(H‰\$hÇD$,H‰\$pÇD$0H‰\$xÇD$4H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$xè³zÿÿHƒÄ@…À„H‹t$hH9ÞtuH|$$HQ@蜄ÿÿ‰D$‹D$…Àt8‹L$$ƒùv_Hœ$HˆH5ãH‰ß1Àè·xÿÿH‹=h;'H‰ÞèØzÿÿH‹D$0H‹D$0HĐ[]A\A]A^ÃfD‹D$ÇD$$…ÀtÐH‹t$pH9ÞtnH|$(H@è
„ÿÿ‰D$‹D$…Àt©H‹t$xH9ÞtoH|$,H@èæƒÿÿ‰D$‹D$…Àt‚‹L$,ƒùv]Hœ$HŠH5{âéEÿÿÿfDÇD$(ëfDHĐ1À[]A\A]A^ÃfD‹D$ÇD$,…À„ÿÿÿH‹t$XH9Þ„¦H|$HÊ?èUƒÿÿ‰D$‹D$…À„íþÿÿ‹D$…À„’H‹t$`H9Þ„¡H|$ HÏ?èƒÿÿ‰D$‹D$…À„²þÿÿL‹D$@H´$€¹º¿èٿH…ÀH‰Ã„¬H‹Œ$ˆL‹h…ɉL$ˆHHƒ¼$€¸Ld$HO„$€H‹t$8HÝ?L‰ç‰D$葂ÿÿ‰D$‹D$…À„‹L$…Ɉ,;L$"1|$L‹D$PHt$Hº¿”ÀÁàƒÈ‰Áè0¿H…ÀI‰Æ„ð‹L$‹t$‹D$HcT$ H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽ¨…Òx	H9׏ìH‹=ø8'H5©èdxÿÿH;\$@„ýÿÿHƒ+…wýÿÿH‰ßè‡uÿÿéjýÿÿf‹D$ÇD$…À„TýÿÿénþÿÿHœ$1ÉHÖH5aàéýÿÿÇD$ égþÿÿH¬$HµØH5KàH‰ï1Àè­uÿÿH‹=^8'H‰îèÎwÿÿéeÿÿÿH¬$HbH5&àëÊèüuÿÿH…À…ËüÿÿH‹=$8'H5>èwÿÿé³üÿÿI‹Fƒ|$,H5\ÖLЋD$(HdÖHDօÀtƒøH5VÖHMÖHEðƒ|$$H;ÖH=:ÖHL$M‰éHDøHƒìHD$$PAPM‰àHD$,PÿÕHƒÄ è`uÿÿH…ÀtÇD$‹D$…À„“þÿÿH=ÑÕL‰ö1Àè–vÿÿH‰D$0éxþÿÿH‹=]7'H5ÖèÉvÿÿé`þÿÿèuÿÿH…À…RþÿÿH‹=77'H5¨=è£vÿÿé:þÿÿ@f.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHóÞH
ÊG&Hì˜H‹,Ü$H‰„$ˆH‰„$H‰D$PHD$ HÇD$8ÇD$ÇD$ÇD$H‰\$@H‰\$HÇD$ÇD$ H‰\$XÇD$$H‰\$`ÇD$(H‰\$hÇD$,H‰\$pÇD$0H‰\$xÇD$4H‰œ$€PH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆPH„$ˆP1ÀLŒ$€LD$xèãtÿÿHƒÄ@…À„H‹t$hH9ÞtuH|$$H¡<èÌ~ÿÿ‰D$‹D$…Àt8‹L$$ƒùv_Hœ$H¸
H5»ÝH‰ß1ÀèçrÿÿH‹=˜5'H‰ÞèuÿÿH‹D$0H‹D$0HĐ[]A\A]A^ÃfD‹D$ÇD$$…ÀtÐH‹t$pH9ÞtnH|$(HR<è=~ÿÿ‰D$‹D$…Àt©H‹t$xH9ÞtoH|$,Hk<è~ÿÿ‰D$‹D$…Àt‚‹L$,ƒùv]Hœ$Hº
H5ÝéEÿÿÿfDÇD$(ëfDHĐ1À[]A\A]A^ÃfD‹D$ÇD$,…À„ÿÿÿH‹t$XH9Þ„¦H|$H<è…}ÿÿ‰D$‹D$…À„íþÿÿ‹D$…À„’H‹t$`H9Þ„¡H|$ H<èJ}ÿÿ‰D$‹D$…À„²þÿÿL‹D$@H´$€¹º¿è	ºH…ÀH‰Ã„¬H‹Œ$ˆL‹h…ɉL$ˆHHƒ¼$€¸Ld$HO„$€H‹t$8H-<L‰ç‰D$èÁ|ÿÿ‰D$‹D$…À„‹L$…Ɉ,;L$"1|$L‹D$PHt$Hº¿”ÀÁàƒÈ‰Áè`¹H…ÀI‰Æ„ð‹L$‹t$‹D$HcT$ H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽ¨…Òx	H9׏ìH‹=(3'H5Ù
è”rÿÿH;\$@„ýÿÿHƒ+…wýÿÿH‰ßè·oÿÿéjýÿÿf‹D$ÇD$…À„TýÿÿénþÿÿHœ$1ÉH	H5þÚéýÿÿÇD$ égþÿÿH¬$HåÒH5èÚH‰ï1ÀèÝoÿÿH‹=Ž2'H‰îèþqÿÿéeÿÿÿH¬$H’H5ÃÚëÊè,pÿÿH…À…ËüÿÿH‹=T2'H5U:èÀqÿÿé³üÿÿI‹Fƒ|$,H5ŒÐL‹D$(H”ÐHDօÀtƒøH5†ÐH}ÐHEðƒ|$$HkÐH=jÐHL$M‰éHDøHƒìHD$$PAPM‰àHD$,PÿÕHƒÄ èoÿÿH…ÀtÇD$‹D$…À„“þÿÿH=ÐL‰ö1ÀèÆpÿÿH‰D$0éxþÿÿH‹=1'H5	èùpÿÿé`þÿÿè?oÿÿH…À…RþÿÿH‹=g1'H5ø9èÓpÿÿé:þÿÿ@f.„AUATH‰÷USH‰ÖI‰ÌH™ÙH
.&HìHH‹eÖ$HD$8HÇD$ÇD$Ç$HÇD$ ÿÿÿÿH‰\$H‰\$(ÇD$H‰\$0ÇD$H‰\$8PHD$8P1ÀLL$(LD$8è£oÿÿZ1҅ÀYtsL‹D$(Ht$ ¹º¿è}¶H…ÀH‰Å„ÑH‹t$8L‹hH9Þ„H|$H£9è^yÿÿ‰$‹$…Àu4H;l$(tHƒm„H‹D$H‹T$HÄHH‰Ð[]A\A]À‹D$…À„ôH‹t$0H9Þ„H|$Hª9èõxÿÿ‰$‹$…Àt—‹L$…ɈHcÑH‹D$ H9ÐŽH‹t$H9Þ„@H|$HÜ9è¯xÿÿ‰$‹$…À„Mÿÿÿ‹T$‹D$‹L$Hct$H‹|$ Áú1Ð)ЍQÿH)÷¯ÂH˜H9ǏH\$@HÌ9H5ØëP‹$ÇD$…À„ñþÿÿH‹t$0H9Þ…1ÿÿÿëMDH‰ïèèkÿÿéáþÿÿH\$@H”8H5×1ÉH‰ß1ÀèQlÿÿH‹=/'H‰Þèrnÿÿé™þÿÿD‹$ÇD$…À„þÿÿ1Ò1Ééðþÿÿ@H\$@H¬8H5K×ë¨è{lÿÿH…À…`þÿÿH‹=£.'H5„7ènÿÿéHþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é±þÿÿDHÁæHT$H|$LîAÿԉÃè
lÿÿH…ÀtÇ$‹$…À„ÒýÿÿsÿH=ÕÖ1ÀèEmÿÿH‰D$é·ýÿÿf.„AUATH‰÷USH‰ÖI‰ÌH¥ÖH
ƒ*&HìHH‹%Ó$HD$8HÇD$ÇD$Ç$HÇD$ ÿÿÿÿH‰\$H‰\$(ÇD$H‰\$0ÇD$H‰\$8PHD$8P1ÀLL$(LD$8èclÿÿZ1҅ÀYtsL‹D$(Ht$ ¹º¿è=³H…ÀH‰Å„ÑH‹t$8L‹hH9Þ„H|$H8èvÿÿ‰$‹$…Àu4H;l$(tHƒm„H‹D$H‹T$HÄHH‰Ð[]A\A]À‹D$…À„ôH‹t$0H9Þ„H|$Hê7èµuÿÿ‰$‹$…Àt—‹L$…ɈHcÑH‹D$ H9ÐŽH‹t$H9Þ„@H|$Hä7èouÿÿ‰$‹$…À„Mÿÿÿ‹T$‹D$‹L$Hc|$H‹t$ Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏH\$@HŒ6H5ÕëP‹$ÇD$…À„ñþÿÿH‹t$0H9Þ…1ÿÿÿëMDH‰ïè¨hÿÿéáþÿÿH\$@HT5H5œÔ1ÉH‰ß1ÀèiÿÿH‹=Â+'H‰Þè2kÿÿé™þÿÿD‹$ÇD$…À„þÿÿ1Ò1Ééðþÿÿ@H\$@Hl5H5WÔë¨è;iÿÿH…À…`þÿÿH‹=c+'H5ô5èÏjÿÿéHþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é±þÿÿDItýHT$H|$AÿԉÃèÏhÿÿH…ÀtÇ$‹$…À„ÔýÿÿsÿH=—Ó1ÀèjÿÿH‰D$é¹ýÿÿf.„AUATH‰÷USH‰ÖI‰ÌH¯ÓH
'&HìHH‹åÏ$HD$8HÇD$ÇD$Ç$HÇD$ ÿÿÿÿH‰\$H‰\$(ÇD$H‰\$0ÇD$H‰\$8PHD$8P1ÀLL$(LD$8è#iÿÿZ1҅ÀYtsL‹D$(Ht$ ¹º¿èý¯H…ÀH‰Å„ÑH‹t$8L‹hH9Þ„H|$Hã5èÞrÿÿ‰$‹$…Àu4H;l$(tHƒm„H‹D$H‹T$HÄHH‰Ð[]A\A]À‹D$…À„ôH‹t$0H9Þ„H|$Hº5èurÿÿ‰$‹$…Àt—‹L$…ɈHcÑH‹D$ H9ÐŽH‹t$H9Þ„@H|$H´5è/rÿÿ‰$‹$…À„Mÿÿÿ‹T$‹D$‹L$Hc|$H‹t$ Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏH\$@HL3H5ÒëP‹$ÇD$…À„ñþÿÿH‹t$0H9Þ…1ÿÿÿëMDH‰ïèheÿÿéáþÿÿH\$@H2H5¦Ñ1ÉH‰ß1ÀèÑeÿÿH‹=‚('H‰Þèògÿÿé™þÿÿD‹$ÇD$…À„þÿÿ1Ò1Ééðþÿÿ@H\$@H,2H5aÑë¨èûeÿÿH…À…`þÿÿH‹=#('H5Ä3ègÿÿéHþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é±þÿÿDItýHT$H|$AÿԉÃèeÿÿH…ÀtÇ$‹$…À„ÔýÿÿsÿH=WÐ1ÀèÇfÿÿH‰D$é¹ýÿÿf.„AUATH‰÷USH‰ÖI‰ÌH¹ÐH
ƒ#&HìHH‹¥Ì$HD$8HÇD$ÇD$Ç$HÇD$ ÿÿÿÿH‰\$H‰\$(ÇD$H‰\$0ÇD$H‰\$8PHD$8P1ÀLL$(LD$8èãeÿÿZ1҅ÀYtsL‹D$(Ht$ ¹º¿转H…ÀH‰Å„ÑH‹t$8L‹hH9Þ„H|$H³3èžoÿÿ‰$‹$…Àu4H;l$(tHƒm„H‹D$H‹T$HÄHH‰Ð[]A\A]À‹D$…À„ôH‹t$0H9Þ„H|$HŠ3è5oÿÿ‰$‹$…Àt—‹L$…ɈHcÑH‹D$ H9ÐŽH‹t$H9Þ„@H|$H„3èïnÿÿ‰$‹$…À„Mÿÿÿ‹T$‹D$‹L$Hc|$H‹t$ Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏH\$@H0H5&ÏëP‹$ÇD$…À„ñþÿÿH‹t$0H9Þ…1ÿÿÿëMDH‰ïè(bÿÿéáþÿÿH\$@HÔ.H5°Î1ÉH‰ß1Àè‘bÿÿH‹=B%'H‰Þè²dÿÿé™þÿÿD‹$ÇD$…À„þÿÿ1Ò1Ééðþÿÿ@H\$@Hì.H5kÎë¨è»bÿÿH…À…`þÿÿH‹=ã$'H5”1èOdÿÿéHþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é±þÿÿDIt½HT$H|$AÿԉÃèObÿÿH…ÀtÇ$‹$…À„ÔýÿÿsÿH=Í1Àè‡cÿÿH‰D$é¹ýÿÿf.„AUATH‰÷USH‰ÖI‰ÌHÃÍH
 &HìXH‹eÉ$HD$HHÇD$HÇD$ ÇD$ÇD$H‰\$(HÇD$0ÿÿÿÿH‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$HP1ÀLL$8LD$Hè™bÿÿZ1҅ÀYtuL‹D$8Ht$0¹º¿ès©H…ÀH‰Å„×H‹t$HL‹hH9Þ„H|$Hy1èTlÿÿ‰D$‹D$…Àu0H;l$8tHƒm„H‹D$H‹T$HÄXH‰Ð[]A\A]ËD$…À„üH‹t$@H9Þ„&H|$HR1èíkÿÿ‰D$‹D$…Àt™‹L$…ɈHcÑH‹D$0H9ÐŽH‹t$(H9Þ„FH|$HJ1è¥kÿÿ‰D$‹D$…À„Mÿÿÿ‹t$‹D$‹L$HcT$H‹|$0Áþ1ð)ðqÿH)ׯÆH˜H9ǏH\$PHÀ,H5$ÌëT€‹D$ÇD$…À„ìþÿÿH‹t$@H9Þ…(ÿÿÿëL@H‰ïèØ^ÿÿéÝþÿÿH\$PH„+H5ªË1ÉH‰ß1ÀèA_ÿÿH‹=ò!'H‰Þèbaÿÿé•þÿÿD‹D$ÇD$…À„|þÿÿ1Ò1ÉééþÿÿH\$PHœ+H5eËë¨èk_ÿÿH…À…\þÿÿH‹=“!'H5T/èÿ`ÿÿéDþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é¬þÿÿDHÁâHL$Ht$LêH|$ AÿÔèú^ÿÿH…ÀtÇD$‹D$…À„ÉýÿÿòD$ H=öÔ¸è*`ÿÿH‰D$é¨ýÿÿAUATH‰÷USH‰ÖI‰ÌH½ÊH
s&HìXH‹Æ$HD$HHÇD$HÇD$ ÇD$ÇD$H‰\$(HÇD$0ÿÿÿÿH‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$HP1ÀLL$8LD$HèI_ÿÿZ1҅ÀYtuL‹D$8Ht$0¹º¿è#¦H…ÀH‰Å„×H‹t$HL‹hH9Þ„H|$H9/èiÿÿ‰D$‹D$…Àu0H;l$8tHƒm„H‹D$H‹T$HÄXH‰Ð[]A\A]ËD$…À„üH‹t$@H9Þ„&H|$H/èhÿÿ‰D$‹D$…Àt™‹L$…ɈHcÑH‹D$0H9ÐŽH‹t$(H9Þ„FH|$H
/èUhÿÿ‰D$‹D$…À„Mÿÿÿ‹T$‹D$‹L$Hc|$H‹t$0Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏH\$PHp)H5ÉëT€‹D$ÇD$…À„ìþÿÿH‹t$@H9Þ…(ÿÿÿëL@H‰ïèˆ[ÿÿéÝþÿÿH\$PH4(H5£È1ÉH‰ß1Àèñ[ÿÿH‹=¢'H‰Þè^ÿÿé•þÿÿD‹D$ÇD$…À„|þÿÿ1Ò1ÉééþÿÿH\$PHL(H5]Èë¨è\ÿÿH…À…\þÿÿH‹=C'H5-è¯]ÿÿéDþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é¬þÿÿDITýHL$Ht$H|$ AÿÔè¬[ÿÿH…ÀtÇD$‹D$…À„ËýÿÿòD$ H=¨Ñ¸èÜ\ÿÿH‰D$éªýÿÿfAUATH‰÷USH‰ÖI‰ÌH³ÇH
ã&HìXH‹ÅÂ$HD$HHÇD$ ÇD$ÇD$ÇD$H‰\$(HÇD$0ÿÿÿÿH‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$HP1ÀLL$8LD$Hèú[ÿÿZ1҅ÀYtuL‹D$8Ht$0¹º¿èԢH…ÀH‰Å„ØH‹t$HL‹hH9Þ„H|$Hú,èµeÿÿ‰D$‹D$…Àu1H;l$8tHƒm„H‹D$ H‹T$ HÄXH‰Ð[]A\A]Ã@‹D$…À„üH‹t$@H9Þ„&H|$HÒ,èMeÿÿ‰D$‹D$…Àt˜‹L$…ɈHcÑH‹D$0H9ÐŽH‹t$(H9Þ„FH|$HÊ,èeÿÿ‰D$‹D$…À„Lÿÿÿ‹T$‹D$‹L$Hc|$H‹t$0Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏH\$PH &H5ÆëT€‹D$ÇD$…À„ëþÿÿH‹t$@H9Þ…(ÿÿÿëL@H‰ïè8XÿÿéÜþÿÿH\$PHä$H5šÅ1ÉH‰ß1Àè¡XÿÿH‹=R'H‰ÞèÂZÿÿé”þÿÿD‹D$ÇD$…À„{þÿÿ1Ò1ÉééþÿÿH\$PHü$H5UÅë¨èËXÿÿH…À…[þÿÿH‹=ó'H5Ô*è_ZÿÿéCþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é¬þÿÿDITýHL$Ht$H|$AÿÔè\XÿÿH…ÀtÇD$‹D$…À„ÊýÿÿfïÀH=ãã¸óZD$èˆYÿÿH‰D$ é¥ýÿÿ@f.„AUATH‰÷USH‰ÖI‰ÌHÄH
C&HìXH‹e¿$HD$HHÇD$ ÇD$ÇD$ÇD$H‰\$(HÇD$0ÿÿÿÿH‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$HP1ÀLL$8LD$HèšXÿÿZ1҅ÀYtuL‹D$8Ht$0¹º¿ètŸH…ÀH‰Å„ØH‹t$HL‹hH9Þ„H|$Hª*èUbÿÿ‰D$‹D$…Àu1H;l$8tHƒm„H‹D$ H‹T$ HÄXH‰Ð[]A\A]Ã@‹D$…À„üH‹t$@H9Þ„&H|$H‚*èíaÿÿ‰D$‹D$…Àt˜‹L$…ɈHcÑH‹D$0H9ÐŽH‹t$(H9Þ„FH|$Hz*è¥aÿÿ‰D$‹D$…À„Lÿÿÿ‹T$‹D$‹L$Hc|$H‹t$0Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏH\$PHÀ"H5ûÂëT€‹D$ÇD$…À„ëþÿÿH‹t$@H9Þ…(ÿÿÿëL@H‰ïèØTÿÿéÜþÿÿH\$PH„!H5ƒÂ1ÉH‰ß1ÀèAUÿÿH‹=ò'H‰ÞèbWÿÿé”þÿÿD‹D$ÇD$…À„{þÿÿ1Ò1ÉééþÿÿH\$PHœ!H5=Âë¨èkUÿÿH…À…[þÿÿH‹=“'H5„(èÿVÿÿéCþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é¬þÿÿDIT½HL$Ht$H|$AÿÔèüTÿÿH…ÀtÇD$‹D$…À„ÊýÿÿfïÀH=ƒà¸óZD$è(VÿÿH‰D$ é¥ýÿÿ@f.„AUATH‰÷USH‰ÖI‰ÌHƒÁH
£&HìXH‹¼$HD$HHÇD$HÇD$ ÇD$ÇD$H‰\$(HÇD$0ÿÿÿÿH‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$HP1ÀLL$8LD$Hè9UÿÿZ1҅ÀYtuL‹D$8Ht$0¹º¿èœH…ÀH‰Å„×H‹t$HL‹hH9Þ„H|$HY(èô^ÿÿ‰D$‹D$…Àu0H;l$8tHƒm„H‹D$H‹T$HÄXH‰Ð[]A\A]ËD$…À„üH‹t$@H9Þ„&H|$H2(è^ÿÿ‰D$‹D$…Àt™‹L$…ɈHcÑH‹D$0H9ÐŽH‹t$(H9Þ„FH|$H*(èE^ÿÿ‰D$‹D$…À„Mÿÿÿ‹t$‹D$‹L$HcT$H‹|$0Áþ1ð)ðqÿH)ׯÆH˜H9ǏH\$PH`H5ä¿ëT€‹D$ÇD$…À„ìþÿÿH‹t$@H9Þ…(ÿÿÿëL@H‰ïèxQÿÿéÝþÿÿH\$PH$H5j¿1ÉH‰ß1ÀèáQÿÿH‹=’'H‰ÞèTÿÿé•þÿÿD‹D$ÇD$…À„|þÿÿ1Ò1ÉééþÿÿH\$PH<H5%¿ë¨èRÿÿH…À…\þÿÿH‹=3'H54&èŸSÿÿéDþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é¬þÿÿDHÁâHL$Ht$LêH|$ AÿÔèšQÿÿH…ÀtÇD$‹D$…À„ÉýÿÿòD$ H=–ǸèÊRÿÿH‰D$é¨ýÿÿAUATH‰÷USH‰ÖI‰ÌH}¾H
&HìXH‹µ¸$HD$HHÇD$HÇD$ ÇD$ÇD$H‰\$(HÇD$0ÿÿÿÿH‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$HP1ÀLL$8LD$HèéQÿÿZ1҅ÀYtuL‹D$8Ht$0¹º¿èØH…ÀH‰Å„×H‹t$HL‹hH9Þ„H|$H&è¤[ÿÿ‰D$‹D$…Àu0H;l$8tHƒm„H‹D$H‹T$HÄXH‰Ð[]A\A]ËD$…À„üH‹t$@H9Þ„&H|$Hò%è=[ÿÿ‰D$‹D$…Àt™‹L$…ɈHcÑH‹D$0H9ÐŽH‹t$(H9Þ„FH|$Hê%èõZÿÿ‰D$‹D$…À„Mÿÿÿ‹T$‹D$‹L$Hc|$H‹t$0Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏH\$PHH5ۼëT€‹D$ÇD$…À„ìþÿÿH‹t$@H9Þ…(ÿÿÿëL@H‰ïè(NÿÿéÝþÿÿH\$PHÔH5c¼1ÉH‰ß1Àè‘NÿÿH‹=B'H‰Þè²Pÿÿé•þÿÿD‹D$ÇD$…À„|þÿÿ1Ò1ÉééþÿÿH\$PHìH5¼ë¨è»NÿÿH…À…\þÿÿH‹=ã'H5ô#èOPÿÿéDþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é¬þÿÿDITýHL$Ht$H|$ AÿÔèLNÿÿH…ÀtÇD$‹D$…À„ËýÿÿòD$ H=Hĸè|OÿÿH‰D$éªýÿÿfAUATH‰÷USH‰ÖI‰ÌHs»H
ƒ
&HìXH‹eµ$HD$HHÇD$ ÇD$ÇD$ÇD$H‰\$(HÇD$0ÿÿÿÿH‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$HP1ÀLL$8LD$HèšNÿÿZ1҅ÀYtuL‹D$8Ht$0¹º¿èt•H…ÀH‰Å„ØH‹t$HL‹hH9Þ„H|$HÚ#èUXÿÿ‰D$‹D$…Àu1H;l$8tHƒm„H‹D$ H‹T$ HÄXH‰Ð[]A\A]Ã@‹D$…À„üH‹t$@H9Þ„&H|$H²#èíWÿÿ‰D$‹D$…Àt˜‹L$…ɈHcÑH‹D$0H9ÐŽH‹t$(H9Þ„FH|$Hª#è¥Wÿÿ‰D$‹D$…À„Lÿÿÿ‹T$‹D$‹L$Hc|$H‹t$0Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏH\$PHÀH5ԹëT€‹D$ÇD$…À„ëþÿÿH‹t$@H9Þ…(ÿÿÿëL@H‰ïèØJÿÿéÜþÿÿH\$PH„H5Z¹1ÉH‰ß1ÀèAKÿÿH‹=ò
'H‰ÞèbMÿÿé”þÿÿD‹D$ÇD$…À„{þÿÿ1Ò1ÉééþÿÿH\$PHœH5¹ë¨èkKÿÿH…À…[þÿÿH‹=“
'H5´!èÿLÿÿéCþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é¬þÿÿDITýHL$Ht$H|$AÿÔèüJÿÿH…ÀtÇD$‹D$…À„ÊýÿÿfïÀH=ƒÖ¸óZD$è(LÿÿH‰D$ é¥ýÿÿ@f.„AUATH‰÷USH‰ÖI‰ÌH]¸H
ã&HìXH‹²$HD$HHÇD$ ÇD$ÇD$ÇD$H‰\$(HÇD$0ÿÿÿÿH‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$HP1ÀLL$8LD$Hè:KÿÿZ1҅ÀYtuL‹D$8Ht$0¹º¿è’H…ÀH‰Å„ØH‹t$HL‹hH9Þ„H|$HŠ!èõTÿÿ‰D$‹D$…Àu1H;l$8tHƒm„H‹D$ H‹T$ HÄXH‰Ð[]A\A]Ã@‹D$…À„üH‹t$@H9Þ„&H|$Hb!èTÿÿ‰D$‹D$…Àt˜‹L$…ɈHcÑH‹D$0H9ÐŽH‹t$(H9Þ„FH|$HZ!èETÿÿ‰D$‹D$…À„Lÿÿÿ‹T$‹D$‹L$Hc|$H‹t$0Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏH\$PH`H5»¶ëT€‹D$ÇD$…À„ëþÿÿH‹t$@H9Þ…(ÿÿÿëL@H‰ïèxGÿÿéÜþÿÿH\$PH$H5C¶1ÉH‰ß1ÀèáGÿÿH‹=’
'H‰ÞèJÿÿé”þÿÿD‹D$ÇD$…À„{þÿÿ1Ò1ÉééþÿÿH\$PH<H5ýµë¨èHÿÿH…À…[þÿÿH‹=3
'H5dèŸIÿÿéCþÿÿf.„H)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é¬þÿÿDIT½HL$Ht$H|$AÿÔèœGÿÿH…ÀtÇD$‹D$…À„ÊýÿÿfïÀH=#Ó¸óZD$èÈHÿÿH‰D$ é¥ýÿÿ@f.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍH8µH
8&Hì€H‹š®$H‰D$8H‰D$XHD$pHÇD$ HÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$H‰\$hÇD$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hè™GÿÿHƒÄ01҅À„yL‹D$8Ht$0¹º¿èmŽH…ÀH‰Å„ñL‹D$XHt$P¹º¿L‹pè?ŽH…ÀI‰Ä„H‹t$HL‹xH9Þ„)H|$Hè Qÿÿ‰$‹$…À„‹T$…Ò„H‹t$hH9Þ„@H|$HèçPÿÿ‰$‹$…À„‰‹D$…À„}H‹t$@H9Þ„¿H|$HCè®Pÿÿ‰$‹$…À„P‹L$…Ɉ´HcÁH9D$0Ž¦H‹t$`H9Þ„°H|$H<ègPÿÿ‰$‹$…À„	‹L$…Ɉ¡HcÁH;D$P“H‹t$(H9Þ„µH|$Hmè Pÿÿ‰$‹$…À„‹T$‹L$‹D$LcD$H‹|$PÁúqÿ1Ð)ÐL)ǯÆH˜H9ÇŽM‹T$‹D$H\$pLcL$H‹|$0Áú1Ð)ÐL)ÏH!¯ÆH˜H9ÇŽ#KÎHL$Ht$H|$ LL$OÇAÿÕèWDÿÿH…ÀtÇ$‹$…Àt$òD$ H=Yº¸èEÿÿH‰D$„L;d$XtIƒ,$„®H;l$8tHƒm„ŒH‹D$H‹T$HÄxH‰Ð[]A\A]A^A_ÃD‹$ÇD$…À…ïýÿÿë£H\$pHdH5˱1ÉH‰ß1Àè!CÿÿH‹=Ò'H‰ÞèBEÿÿémÿÿÿD‹$ÇD$…À…ØýÿÿéPÿÿÿH‰ïèXBÿÿégÿÿÿL‰çèHBÿÿéEÿÿÿèKCÿÿH…À…FÿÿÿH‹=s'H5´èßDÿÿé.ÿÿÿf.„H\$p1ÉH¢H5:±é[ÿÿÿfDèûBÿÿH…À…äþÿÿH‹=#'H5¬èDÿÿéÌþÿÿf.„‹$ÇD$…À„þÿÿ1À1ÉéSýÿÿ@H\$pHÄH5ݰéíþÿÿ‹$ÇD$…À„eþÿÿ1À1ÉébýÿÿH\$pH°H5º°é¹þÿÿH\$pHH5³°é¡þÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$é/ýÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍH_°H
¸ü%Hì€H‹Z©$H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hèZBÿÿHƒÄ01҅À„ŠL‹D$8Ht$0¹º¿è.‰H…ÀH‰Å„
L‹D$XHt$P¹º¿L‹pè‰H…ÀI‰Ä„$H‹t$HL‹xH9Þ„:H|$H.èáKÿÿ‰D$‹D$…À„Ñ‹T$…Ò„%H‹t$hH9Þ„OH|$H3è¦Kÿÿ‰D$‹D$…À„–‹D$…À„ŠH‹t$@H9Þ„ÌH|$H8èkKÿÿ‰D$‹D$…À„[‹L$…Ɉ¿HcÁH9D$0Ž±H‹t$`H9Þ„»H|$H/è"Kÿÿ‰D$‹D$…À„‹L$…Ɉ«HcÁH;D$PH‹t$(H9Þ„¿H|$H&èÙJÿÿ‰D$‹D$…À„É‹T$‹L$‹D$LcD$H‹|$PÁúqÿ1Ð)ÐL)ǯÆH˜H9ÇŽU‹T$‹D$H\$pLcL$H‹|$0Áú1Ð)ÐL)ÏHØ¯ÆH˜H9ÇŽ+KŽHL$Ht$H|$LL$O‡AÿÕè?ÿÿH…ÀtÇD$‹D$…Àt)fïÀH=™Ê¸óZD$è>@ÿÿH‰D$ f„L;d$XtIƒ,$„¶H;l$8tHƒm„”H‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ÃD‹D$ÇD$…À…ßýÿÿë¢fH\$pH
H5â¬1ÉH‰ß1ÀèÑ=ÿÿH‹=‚'H‰Þèò?ÿÿémÿÿÿD‹D$ÇD$…À…ÊýÿÿéOÿÿÿ€H‰ïè=ÿÿé_ÿÿÿL‰çèð<ÿÿé=ÿÿÿèó=ÿÿH…À…>ÿÿÿH‹='H5Äè‡?ÿÿé&ÿÿÿfH\$p1ÉHRH5Q¬é[ÿÿÿfDè«=ÿÿH…À…äþÿÿH‹=Óÿ&H5Äè??ÿÿéÌþÿÿf.„‹D$ÇD$…À„œþÿÿ1À1ÉéGýÿÿH\$pHt	H5ô«éíþÿÿ‹D$ÇD$…À„dþÿÿ1À1ÉéXýÿÿH\$pH_H5Ыé¸þÿÿH\$pH·H5ɫé þÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$é&ýÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌHv«H
¨õ%Hì€H‹
¤$H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hè=ÿÿHƒÄ01҅À„xL‹D$8Ht$0¹º¿èæƒH…ÀH‰Å„òL‹D$XHt$P¹º¿L‹p踃H…ÀI‰Å„H‹t$HL‹xH9Þ„*H|$H¾è™Fÿÿ‰D$‹D$…À„Ñ‹T$…Ò„H‹t$hH9Þ„GH|$HÃè^Fÿÿ‰D$‹D$…À„–‹D$…À„rH‹t$@H9Þ„´H|$HÈè#Fÿÿ‰D$‹D$…À„[‹L$…Ɉ§HcÁH9D$0Ž™H‹t$`H9Þ„£H|$H¿èÚEÿÿ‰D$‹D$…À„‹L$…Ɉ“HcÁH;D$P…H‹t$(H9Þ„H|$H¶è‘Eÿÿ‰D$‹D$…À„É‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽmD‹D$‹D$Hct$L‹L$0AÁøD1ÀD)ÀI)ñ¯ÇH˜I9ÁH\$pH‚H5©éÃHÁâHÁæH|$ILöHT$LD$AÿÔè¸9ÿÿH…ÀtÇD$‹D$…ÀtH=-šL‰î1Àèò:ÿÿH‰D$ DH;l$8tHƒm„žH‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_À‹D$ÇD$…À…ïýÿÿë²f.„H\$pHÔH5
¨1ÉH‰ß1Àè‘8ÿÿH‹=Bû&H‰Þè²:ÿÿéuÿÿÿD‹D$ÇD$…À…ÒýÿÿéWÿÿÿ€H‰ïèÀ7ÿÿéUÿÿÿèÃ8ÿÿH…À…DÿÿÿH‹=ëú&H5\èW:ÿÿé,ÿÿÿfH\$p1ÉH"H5Š§ékÿÿÿfDè{8ÿÿH…À…êþÿÿH‹=£ú&H5dè:ÿÿéÒþÿÿf.„‹D$ÇD$…À„´þÿÿ1À1Éé_ýÿÿH\$pHDH5.§éýþÿÿ‹D$ÇD$…À„|þÿÿ1À1ÉépýÿÿH\$pH/H5§éÈþÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$éVýÿÿH\$pHWé¸ýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌHæH
Hð%Hì€H‹êž$H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hèò7ÿÿHƒÄ01҅À„pL‹D$8Ht$0¹º¿èÆ~H…ÀH‰Å„ÚL‹D$XHt$P¹º¿L‹pè˜~H…ÀI‰Å„üH‹t$HL‹xH9Þ„"H|$H~èyAÿÿ‰D$‹D$…À„É‹T$…Ò„
H‹t$hH9Þ„/H|$Hƒè>Aÿÿ‰D$‹D$…À„Ž‹D$…À„bH‹t$@H9Þ„¤H|$HˆèAÿÿ‰D$‹D$…À„S‹L$…Ɉ—HcÁH9D$0Ž‰H‹t$`H9Þ„“H|$Hèº@ÿÿ‰D$‹D$…À„
‹L$…ɈƒHcÁH;D$PuH‹t$(H9Þ„H|$Hvèq@ÿÿ‰D$‹D$…À„Á‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽ]‹t$‹D$LcL$L‹D$0Áþ1ð)ðM)ȯÇH˜I9ÀH\$pHfH5i¤é·I×K4ÎHT$H|$LD$AÿÔè£4ÿÿH…ÀtÇD$‹D$…ÀtH=•L‰î1ÀèÝ5ÿÿH‰D$ „H;l$8tHƒm„ŽH‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_À‹D$ÇD$…À…÷ýÿÿë²fH\$pHÄÿH5g£1ÉH‰ß1Àè3ÿÿH‹=2ö&H‰Þè¢5ÿÿ뀋D$ÇD$…À…êýÿÿégÿÿÿ€H‰ïè¸2ÿÿéeÿÿÿè»3ÿÿH…À…TÿÿÿH‹=ãõ&H54èO5ÿÿé<ÿÿÿf.„H\$p1ÉH
H5ç¢ékÿÿÿfDèk3ÿÿH…À…òþÿÿH‹=“õ&H54èÿ4ÿÿéÚþÿÿf.„‹D$ÇD$…À„¼þÿÿ1À1ÉéoýÿÿH\$pH4ÿH5‹¢éýþÿÿ‹D$ÇD$…À„„þÿÿ1À1Éé€ýÿÿH\$pH
H5h¢éÈþÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$éfýÿÿH\$pHG
éÄýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌH ¢H
øê%Hì€H‹ڙ$H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hèâ2ÿÿHƒÄ01҅À„pL‹D$8Ht$0¹º¿è¶yH…ÀH‰Å„ÚL‹D$XHt$P¹º¿L‹pèˆyH…ÀI‰Å„üH‹t$HL‹xH9Þ„"H|$HNèi<ÿÿ‰D$‹D$…À„É‹T$…Ò„
H‹t$hH9Þ„/H|$HSè.<ÿÿ‰D$‹D$…À„Ž‹D$…À„bH‹t$@H9Þ„¤H|$HXèó;ÿÿ‰D$‹D$…À„S‹L$…Ɉ—HcÁH9D$0Ž‰H‹t$`H9Þ„“H|$HOèª;ÿÿ‰D$‹D$…À„
‹L$…ɈƒHcÁH;D$PuH‹t$(H9Þ„H|$HFèa;ÿÿ‰D$‹D$…À„Á‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽ]‹t$‹D$LcL$L‹D$0Áþ1ð)ðM)ȯÇH˜I9ÀH\$pHVüH5Ɵé·I×K4ÎHT$H|$LD$AÿÔè“/ÿÿH…ÀtÇD$‹D$…ÀtH=L‰î1ÀèÍ0ÿÿH‰D$ „H;l$8tHƒm„ŽH‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_À‹D$ÇD$…À…÷ýÿÿë²fH\$pH´úH5Ğ1ÉH‰ß1Àèq.ÿÿH‹="ñ&H‰Þè’0ÿÿ뀋D$ÇD$…À…êýÿÿégÿÿÿ€H‰ïè¨-ÿÿéeÿÿÿè«.ÿÿH…À…TÿÿÿH‹=Óð&H5è?0ÿÿé<ÿÿÿf.„H\$p1ÉHH5DžékÿÿÿfDè[.ÿÿH…À…òþÿÿH‹=ƒð&H5èï/ÿÿéÚþÿÿf.„‹D$ÇD$…À„¼þÿÿ1À1ÉéoýÿÿH\$pH$úH5èéýþÿÿ‹D$ÇD$…À„„þÿÿ1À1Éé€ýÿÿH\$pHH5ŝéÈþÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$éfýÿÿH\$pH7éÄýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌH}H
¨å%Hì€H‹ʔ$H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hèÒ-ÿÿHƒÄ01҅À„pL‹D$8Ht$0¹º¿è¦tH…ÀH‰Å„ÚL‹D$XHt$P¹º¿L‹pèxtH…ÀI‰Å„üH‹t$HL‹xH9Þ„"H|$HèY7ÿÿ‰D$‹D$…À„É‹T$…Ò„
H‹t$hH9Þ„/H|$H#è7ÿÿ‰D$‹D$…À„Ž‹D$…À„bH‹t$@H9Þ„¤H|$H(èã6ÿÿ‰D$‹D$…À„S‹L$…Ɉ—HcÁH9D$0Ž‰H‹t$`H9Þ„“H|$Hèš6ÿÿ‰D$‹D$…À„
‹L$…ɈƒHcÁH;D$PuH‹t$(H9Þ„H|$HèQ6ÿÿ‰D$‹D$…À„Á‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽ]‹t$‹D$LcL$L‹D$0Áþ1ð)ðM)ȯÇH˜I9ÀH\$pHF÷H5#›é·I—K4ŽHT$H|$LD$AÿÔèƒ*ÿÿH…ÀtÇD$‹D$…ÀtH=øŠL‰î1Àè½+ÿÿH‰D$ „H;l$8tHƒm„ŽH‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_À‹D$ÇD$…À…÷ýÿÿë²fH\$pH¤õH5!š1ÉH‰ß1Àèa)ÿÿH‹=ì&H‰Þè‚+ÿÿ뀋D$ÇD$…À…êýÿÿégÿÿÿ€H‰ïè˜(ÿÿéeÿÿÿè›)ÿÿH…À…TÿÿÿH‹=Ãë&H5Ôè/+ÿÿé<ÿÿÿf.„H\$p1ÉHòH5¡™ékÿÿÿfDèK)ÿÿH…À…òþÿÿH‹=së&H5Ôèß*ÿÿéÚþÿÿf.„‹D$ÇD$…À„¼þÿÿ1À1ÉéoýÿÿH\$pHõH5E™éýþÿÿ‹D$ÇD$…À„„þÿÿ1À1Éé€ýÿÿH\$pHÿH5"™éÈþÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$éfýÿÿH\$pH'éÄýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌHژH
ØÞ%Hì€H‹º$H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hèÂ(ÿÿHƒÄ01҅À„nL‹D$8Ht$0¹º¿è–oH…ÀH‰Å„ÚL‹D$XHt$P¹º¿L‹pèhoH…ÀI‰Å„üH‹t$HL‹xH9Þ„H|$HîèI2ÿÿ‰D$‹D$…À„Ù‹T$…Ò„
H‹t$hH9Þ„?H|$Hóè2ÿÿ‰D$‹D$…À„ž‹D$…À„bH‹t$@H9Þ„¤H|$HøèÓ1ÿÿ‰D$‹D$…À„c‹L$…Ɉ—HcÁH9D$0Ž‰H‹t$`H9Þ„“H|$HïèŠ1ÿÿ‰D$‹D$…À„‹L$…ɈƒHcÁH;D$PuH‹t$(H9Þ„H|$HæèA1ÿÿ‰D$‹D$…À„Ñ‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽ]D‹D$‹D$Hct$L‹L$0AÁøD1ÀD)ÀI)ñ¯ÇH˜I9ÁH\$pH2òH5|–é³HÁâHÁæH|$ILöHT$LD$AÿÔèh%ÿÿH…ÀtÇD$‹D$…Àt#H=܅L‰êH‰î1ÀèŸ&ÿÿH‰D$ f.„H‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ЋD$ÇD$…À…ÿýÿÿëÊf.„H\$pH”ðH5~•1ÉH‰ß1ÀèQ$ÿÿH‹=ç&H‰Þèr&ÿÿH‹D$ H‹T$ ëfD‹D$ÇD$…À…Úýÿÿégÿÿÿ€è‹$ÿÿH…À…RÿÿÿH‹=³æ&H5¤è&ÿÿé:ÿÿÿf.„H\$p1ÉHâýH5þ”ékÿÿÿfDè;$ÿÿH…À…ÿÿÿH‹=cæ&H5¤èÏ%ÿÿéêþÿÿf.„‹D$ÇD$…À„Ìþÿÿ1À1ÉéoýÿÿH\$pHðH5¢”éýþÿÿ‹D$ÇD$…À„”þÿÿ1À1Éé€ýÿÿH\$pHïýH5”éÈþÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$éfýÿÿH\$pHþéÈýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌH7”H
ˆÙ%Hì€H‹ªŠ$H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hè²#ÿÿHƒÄ01҅À„^L‹D$8Ht$0¹º¿è†jH…ÀH‰Å„ÊL‹D$XHt$P¹º¿L‹pèXjH…ÀI‰Å„ìH‹t$HL‹xH9Þ„
H|$H¾è9-ÿÿ‰D$‹D$…À„É‹T$…Ò„ýH‹t$hH9Þ„/H|$HÃèþ,ÿÿ‰D$‹D$…À„Ž‹D$…À„RH‹t$@H9Þ„”H|$HÈèÃ,ÿÿ‰D$‹D$…À„S‹L$…Ɉ‡HcÁH9D$0ŽyH‹t$`H9Þ„ƒH|$H¿èz,ÿÿ‰D$‹D$…À„
‹L$…ɈsHcÁH;D$PeH‹t$(H9Þ„oH|$H¶è1,ÿÿ‰D$‹D$…À„Á‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽM‹t$‹D$LcL$L‹D$0Áþ1ð)ðM)ȯÇH˜I9ÀH\$pH&íH5ݑé§I×K4ÎHT$H|$LD$AÿÔèc ÿÿH…ÀtÇD$‹D$…ÀtH=׀L‰êH‰î1Àèš!ÿÿH‰D$ DH‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ЋD$ÇD$…À…þÿÿëÊf.„H\$pH”ëH5ë1ÉH‰ß1ÀèQÿÿH‹=â&H‰Þèr!ÿÿH‹D$ H‹T$ ëfD‹D$ÇD$…À…êýÿÿégÿÿÿ€è‹ÿÿH…À…RÿÿÿH‹=³á&H5„è!ÿÿé:ÿÿÿf.„H\$p1ÉHâøH5kékÿÿÿfDè;ÿÿH…À…ÿÿÿH‹=cá&H5„èÏ ÿÿéêþÿÿf.„‹D$ÇD$…À„Ìþÿÿ1À1ÉéýÿÿH\$pHëH5éýþÿÿ‹D$ÇD$…À„”þÿÿ1À1ÉéýÿÿH\$pHïøH5ìéÈþÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$évýÿÿH\$pHùéÔýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌH¤H
HÔ%Hì€H‹ª…$H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hè²ÿÿHƒÄ01҅À„^L‹D$8Ht$0¹º¿è†eH…ÀH‰Å„ÊL‹D$XHt$P¹º¿L‹pèXeH…ÀI‰Å„ìH‹t$HL‹xH9Þ„
H|$Hžè9(ÿÿ‰D$‹D$…À„É‹T$…Ò„ýH‹t$hH9Þ„/H|$H£èþ'ÿÿ‰D$‹D$…À„Ž‹D$…À„RH‹t$@H9Þ„”H|$H¨èÃ'ÿÿ‰D$‹D$…À„S‹L$…Ɉ‡HcÁH9D$0ŽyH‹t$`H9Þ„ƒH|$HŸèz'ÿÿ‰D$‹D$…À„
‹L$…ɈsHcÁH;D$PeH‹t$(H9Þ„oH|$H–è1'ÿÿ‰D$‹D$…À„Á‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽM‹t$‹D$LcL$L‹D$0Áþ1ð)ðM)ȯÇH˜I9ÀH\$pH&èH5Jé§I×K4ÎHT$H|$LD$AÿÔècÿÿH…ÀtÇD$‹D$…ÀtH=×{L‰êH‰î1ÀèšÿÿH‰D$ DH‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ЋD$ÇD$…À…þÿÿëÊf.„H\$pH”æH5XŒ1ÉH‰ß1ÀèQÿÿH‹=Ý&H‰ÞèrÿÿH‹D$ H‹T$ ëfD‹D$ÇD$…À…êýÿÿégÿÿÿ€è‹ÿÿH…À…RÿÿÿH‹=³Ü&H5dèÿÿé:ÿÿÿf.„H\$p1ÉHâóH5؋ékÿÿÿfDè;ÿÿH…À…ÿÿÿH‹=cÜ&H5dèÏÿÿéêþÿÿf.„‹D$ÇD$…À„Ìþÿÿ1À1ÉéýÿÿH\$pHæH5|‹éýþÿÿ‹D$ÇD$…À„”þÿÿ1À1ÉéýÿÿH\$pHïóH5Y‹éÈþÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$évýÿÿH\$pHôéÔýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌH‹H
Ï%Hì€H‹ª€$H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hè²ÿÿHƒÄ01҅À„^L‹D$8Ht$0¹º¿è†`H…ÀH‰Å„ÊL‹D$XHt$P¹º¿L‹pèX`H…ÀI‰Å„ìH‹t$HL‹xH9Þ„
H|$H~è9#ÿÿ‰D$‹D$…À„É‹T$…Ò„ýH‹t$hH9Þ„/H|$Hƒèþ"ÿÿ‰D$‹D$…À„Ž‹D$…À„RH‹t$@H9Þ„”H|$HˆèÃ"ÿÿ‰D$‹D$…À„S‹L$…Ɉ‡HcÁH9D$0ŽyH‹t$`H9Þ„ƒH|$Hèz"ÿÿ‰D$‹D$…À„
‹L$…ɈsHcÁH;D$PeH‹t$(H9Þ„oH|$Hvè1"ÿÿ‰D$‹D$…À„Á‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽM‹t$‹D$LcL$L‹D$0Áþ1ð)ðM)ȯÇH˜I9ÀH\$pH&ãH5·ˆé§I—K4ŽHT$H|$LD$AÿÔècÿÿH…ÀtÇD$‹D$…ÀtH=×vL‰êH‰î1ÀèšÿÿH‰D$ DH‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ЋD$ÇD$…À…þÿÿëÊf.„H\$pH”áH5Ň1ÉH‰ß1ÀèQÿÿH‹=Ø&H‰ÞèrÿÿH‹D$ H‹T$ ëfD‹D$ÇD$…À…êýÿÿégÿÿÿ€è‹ÿÿH…À…RÿÿÿH‹=³×&H5Dÿèÿÿé:ÿÿÿf.„H\$p1ÉHâîH5E‡ékÿÿÿfDè;ÿÿH…À…ÿÿÿH‹=c×&H5DÿèÏÿÿéêþÿÿf.„‹D$ÇD$…À„Ìþÿÿ1À1ÉéýÿÿH\$pHáH5é†éýþÿÿ‹D$ÇD$…À„”þÿÿ1À1ÉéýÿÿH\$pHïîH5ƆéÈþÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$évýÿÿH\$pHïéÔýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍH~†H
¨É%Hì˜H‹ª{$H‰D$@H‰D$`H‰„$€HD$$HÇD$0ÇD$ÇD$H‰\$8ÇD$H‰\$HÇD$H‰\$PÇD$ H‰\$XÇD$$H‰\$hÇD$(H‰\$pÇD$,H‰\$xH‰œ$ˆPHD$ PH„$ˆPH„$ˆPHD$xPHD$xPHD$hPH„$ÀP1ÀLŒ$¨L„$ˆètÿÿHƒÄ@…À„8ƒ|$L‹D$HHt$@º¿Ƀá ƒÁèB[H…ÀH‰Å„ƒ|$$L‹D$hHt$`º¿L‹pɃá ƒÁè[H…ÀI‰Ä„¨H‹@L‹„$ˆH´$€¹º¿HDŽ$€H‰$èÈZH…ÀI‰Ç„ìH‹t$XH‹@H9ÞH‰D$„¥H|$ Hÿè¤ÿÿ‰D$‹D$…À„œ‹T$ …Ò„ÀH‹t$xH9Þ„êH|$,Hÿèiÿÿ‰D$‹D$…À„a‹D$,…À„MH‹t$PH9Þ„H|$H#ÿè.ÿÿ‰D$‹D$…À„&‹L$…Ɉ‚HcÁH;D$@tH‹t$pH9Þ„H|$(Hÿèåÿÿ‰D$‹D$…À„Ý‹L$(…ɈqHcÁH;D$`cH‹t$8H9Þ„pH|$Hÿèœÿÿ‰D$‹D$…À„”D‹D$,‹L$‹D$,Hct$(H‹T$`AÁøyÿD1ÀD)ÀH)ò¯ÇH˜H9ÂŽ©D‹L$ ‹D$ LcD$H‹T$@AÁùD1ÈD)ÈL)¯ÇH˜H9Hœ$H‚ÝH5ƒƒëa‹D$ÇD$ …À…tþÿÿ@L;¼$ˆtIƒ/tpH‹D$0H‹D$0HĘ[]A\A]A^A_Ã@Hœ$H9ÜH5ڂ1ÉH‰ß1ÀèöÿÿH‹=§Ò&H‰ÞèÿÿëD‹D$ÇD$,…Àtˆé.þÿÿL‰ÿè0ÿÿë†fDè3ÿÿH…À…rÿÿÿH‹=[Ò&H5üèÇÿÿéZÿÿÿf1Àé[ÿÿÿf„èûÿÿH…À…:ÿÿÿH‹=#Ò&H5”ûèÿÿé"ÿÿÿf.„Hœ$1ÉHOéH5"‚é3ÿÿÿè«ÿÿH…À…êþÿÿH‹=ÓÑ&H5äûè?ÿÿéÒþÿÿf.„‹D$ÇD$…À„¤þÿÿ1À1Éé„ýÿÿHœ$HqÛH5ƁéÅþÿÿ‹D$ÇD$(…À„iþÿÿ1À1Éé’ýÿÿHœ$HYéH5 éþÿÿHcD$H‹T$@‹L$ H)ÂH‰ЋT$ Áú1Ñ)ÑH™HcÉH÷ù‰D$éuýÿÿH‹$HT$ H|$L‹L$HðK4ÆLD$,AÿÕèµÿÿH…ÀtÇD$‹D$…À„ÔýÿÿH=%oL‰âH‰î1ÀèèÿÿH‰D$0é¶ýÿÿHœ$Héé€ýÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍHî€H
HÃ%Hì˜H‹ªu$H‰D$@H‰D$`H‰„$€HD$$HÇD$0ÇD$ÇD$H‰\$8ÇD$H‰\$HÇD$H‰\$PÇD$ H‰\$XÇD$$H‰\$hÇD$(H‰\$pÇD$,H‰\$xH‰œ$ˆPHD$ PH„$ˆPH„$ˆPHD$xPHD$xPHD$hPH„$ÀP1ÀLŒ$¨L„$ˆètÿÿHƒÄ@…À„8ƒ|$L‹D$HHt$@º¿Ƀá ƒÁèBUH…ÀH‰Å„ƒ|$$L‹D$hHt$`º¿L‹pɃá ƒÁèUH…ÀI‰Ä„¨H‹@L‹„$ˆH´$€¹º¿HDŽ$€H‰$èÈTH…ÀI‰Ç„ìH‹t$XH‹@H9ÞH‰D$„¥H|$ HIûè¤ÿÿ‰D$‹D$…À„œ‹T$ …Ò„ÀH‹t$xH9Þ„êH|$,HNûèiÿÿ‰D$‹D$…À„a‹D$,…À„MH‹t$PH9Þ„H|$HSûè.ÿÿ‰D$‹D$…À„&‹L$…Ɉ‚HcÁH;D$@tH‹t$pH9Þ„H|$(HJûèåÿÿ‰D$‹D$…À„Ý‹L$(…ɈqHcÁH;D$`cH‹t$8H9Þ„pH|$HAûèœÿÿ‰D$‹D$…À„”D‹D$,‹L$‹D$,Hct$(H‹T$`AÁøyÿD1ÀD)ÀH)ò¯ÇH˜H9ÂŽ©D‹L$ ‹D$ LcD$H‹T$@AÁùD1ÈD)ÈL)¯ÇH˜H9Hœ$H‚×H5ó}ëa‹D$ÇD$ …À…tþÿÿ@L;¼$ˆtIƒ/tpH‹D$0H‹D$0HĘ[]A\A]A^A_Ã@Hœ$H9ÖH5J}1ÉH‰ß1Àèö	ÿÿH‹=§Ì&H‰ÞèÿÿëD‹D$ÇD$,…Àtˆé.þÿÿL‰ÿè0	ÿÿë†fDè3
ÿÿH…À…rÿÿÿH‹=[Ì&H5LøèÇÿÿéZÿÿÿf1Àé[ÿÿÿf„èû	ÿÿH…À…:ÿÿÿH‹=#Ì&H5Ä÷èÿÿé"ÿÿÿf.„Hœ$1ÉHOãH5’|é3ÿÿÿè«	ÿÿH…À…êþÿÿH‹=ÓË&H5øè?ÿÿéÒþÿÿf.„‹D$ÇD$…À„¤þÿÿ1À1Éé„ýÿÿHœ$HqÕH56|éÅþÿÿ‹D$ÇD$(…À„iþÿÿ1À1Éé’ýÿÿHœ$HYãH5|éþÿÿHcD$H‹T$@‹L$ H)ÂH‰ЋT$ Áú1Ñ)ÑH™HcÉH÷ù‰D$éuýÿÿH‹$HT$ H|$L‹L$H°K4†LD$,AÿÕèµÿÿH…ÀtÇD$‹D$…À„ÔýÿÿH=%iL‰âH‰î1Àèè	ÿÿH‰D$0é¶ýÿÿHœ$Hãé€ýÿÿf.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHb{H
jî%HìH‹¬o$H‰D$pH‰D$xH‰„$€H‰„$ˆHD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@ÇD$H‰\$HÇD$ÇD$ÇD$ H‰\$PÇD$$H‰\$XÇD$(H‰\$`ÇD$,H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèÿÿHƒÄ0…À„…H‹t$PH9ÞtsH|$ HO÷èjÿÿ‰D$‹D$…Àt8‹L$ ƒùv]Hœ$Hf÷H5GzH‰ß1Àè…ÿÿH‹=6É&H‰Þè¦ÿÿH‹D$0H‹D$0HĐ[]A\A]A^Ã@‹D$ÇD$ …ÀtÒH‹t$XH9ÞtFH|$$H:÷èÝÿÿ‰D$‹D$…Àt«‹L$$ƒùv4Hœ$HQ÷H5ÌyénÿÿÿD‹D$ÇD$$…À„nÿÿÿH‹t$`H9Þ„žH|$(HJ÷èuÿÿ‰D$‹D$…À„?ÿÿÿ‹L$(ƒù‡‰H‹t$hH9Þ„–H|$,HŽ÷è9ÿÿ‰D$‹D$…À„ÿÿÿ‹L$,ƒù†|Hœ$H÷H5HyéÂþÿÿHĐ1À[]A\A]A^ÃfD‹D$ÇD$(…À…|ÿÿÿé©þÿÿHœ$HÐöH5æxéuþÿÿ‹D$ÇD$,…À„zþÿÿL¤$H‹t$8HT÷L‰çè¤ÿÿ‰D$‹D$…À„Nþÿÿ‹T$1ÀL‹D$HH´$€¿…Һ”ÀÁàƒÈ‰Áè5MH…ÀI‰Å„ÅL‹pH‹„$€ºL‹D$@Ht$p¹¿H…	D$HOЉT$H‹”$ˆ‰T$ºèßLH…ÀH‰Ã„`‹|$ H‹T$p…ÿt?HcD$H9Ðt<H‹=ÍÆ&H5v÷è9ÿÿH;\$@„ˆýÿÿHƒ+…~ýÿÿH‰ßè\ÿÿéqýÿÿHcD$ë¿H;D$xt;H‹=ŠÆ&H5k÷èöÿÿë»è?ÿÿH…À…@ýÿÿH‹=gÆ&H5pöèÓÿÿé(ýÿÿH…:H
·dHNƒ|$,Hd‰D$‹D$(L‹CHDʅÀtƒøHdH„dHEЃ|$$HxdH5kdHEð…ÿH=ÕvHDøHƒìHD$$PAVHD$0PAPATLL$@LD$<ÿÕHƒÄ0è‡ÿÿH…ÀtÇD$‹D$…À„åþÿÿH=øcL‰î1Àè½ÿÿH‰D$0éÊþÿÿèNÿÿH…À…OüÿÿH‹=vÅ&H5Ïõèâÿÿé7üÿÿf.„AUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
Óè%Hì˜H‹uj$HrvH‰D$pH‰D$xH‰„$€H‰„$ˆHD$HÇD$(ÇD$Ç$ÇD$H‰\$0H‰\$8ÇD$H‰\$@ÇD$ÇD$ÇD$H‰\$HÇD$H‰\$PÇD$ H‰\$XÇD$$H‰\$`PHD$hPHD$hPHD$hPHD$hPHD$hP1ÀLL$hLD$`èDÿÿHƒÄ0…À„xH‹t$HH9ÞtnH|$HZõè-
ÿÿ‰$‹$…Àt8‹L$ƒùvYHœ$H+òH5ouH‰ß1ÀèJÿÿH‹=ûÃ&H‰ÞèkÿÿH‹D$(H‹D$(HĘ[]A\A]Ë$ÇD$…ÀtÖH‹t$PH9ÞtGH|$Hõè¦ÿÿ‰$‹$…Àt±‹L$ƒùv6Hœ$HòH5útétÿÿÿ„‹$ÇD$…À„rÿÿÿH‹t$XH9Þ„H|$ Hëôè>ÿÿ‰$‹$…À„Eÿÿÿ‹L$ ƒùw{H‹t$`H9Þ„ˆH|$$Hõôèÿÿ‰$‹$…À„ÿÿÿ‹L$$ƒùvsHœ$HròH5€téÒþÿÿfDHĘ1À[]A\A]Ë$ÇD$ …ÀuŠéÁþÿÿHœ$H­ñH5&téþÿÿ‹$ÇD$$…À„“þÿÿfïÀH‹t$0H¼$HŽôò„$ò„$˜èoÿÿ…Àt+fïɸfïÒòZŒ$óL$hòZ”$˜óT$l‰$‹$…À„'þÿÿ‹T$1ÀL‹D$@H´$€¿…Һ”ÀÁàƒÈ‰ÁèÓGH…ÀI‰Ä„ÅL‹hH‹„$€ºL‹D$8Ht$p¹¿H…	D$HOЉT$H‹”$ˆ‰T$ºè}GH…ÀH‰Ã„e‹|$H‹T$p…ÿt?HcD$H9Ðt<H‹=kÁ&H5òè×ÿÿH;\$8„aýÿÿHƒ+…WýÿÿH‰ßèúýþÿéJýÿÿHcD$ë¿H;D$xt;H‹=(Á&H5	òè”ÿÿë»èÝþþÿH…À…ýÿÿH‹=Á&H5fóèqÿÿéýÿÿH…:H
U_HNƒ|$$H._‰D$‹D$ L‹CHDʅÀtƒøH+_H"_HEЃ|$H_H5	_HEð…ÿH=sqHDøHƒìHD$PAUHD$(PAPH„$PLL$8LD$4ÿÕHƒÄ0èþþÿH…ÀtÇ$‹$…À„àþÿÿH=‘^L‰æ1ÀèVÿþÿH‰D$(éÅþÿÿèçýþÿH…À…#üÿÿH‹=À&H5Àòè{ÿþÿéüÿÿfDAUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
óá%Hì˜H‹e$HuqH‰D$pH‰D$xH‰„$€H‰„$ˆHD$HÇD$(ÇD$Ç$ÇD$H‰\$0H‰\$8ÇD$H‰\$@ÇD$ÇD$ÇD$H‰\$HÇD$H‰\$PÇD$ H‰\$XÇD$$H‰\$`PHD$hPHD$hPHD$hPHD$hPHD$hP1ÀLL$hLD$`èäýþÿHƒÄ0…À„xH‹t$HH9ÞtnH|$HâñèÍÿÿ‰$‹$…Àt8‹L$ƒùvYHœ$HËìH5rpH‰ß1ÀèêûþÿH‹=›¾&H‰ÞèþþÿH‹D$(H‹D$(HĘ[]A\A]Ë$ÇD$…ÀtÖH‹t$PH9ÞtGH|$H›ñèFÿÿ‰$‹$…Àt±‹L$ƒùv6Hœ$H¼ìH5ýoétÿÿÿ„‹$ÇD$…À„rÿÿÿH‹t$XH9Þ„H|$ HsñèÞÿÿ‰$‹$…À„Eÿÿÿ‹L$ ƒùw{H‹t$`H9Þ„ˆH|$$H}ñè¨ÿÿ‰$‹$…À„ÿÿÿ‹L$$ƒùvsHœ$HíH5ƒoéÒþÿÿfDHĘ1À[]A\A]Ë$ÇD$ …ÀuŠéÁþÿÿHœ$HMìH5)oéþÿÿ‹$ÇD$$…À„“þÿÿfïÀH‹t$0H¼$Hñò„$ò„$˜èþþÿ…Àt+fïɸfïÒòZŒ$óL$hòZ”$˜óT$l‰$‹$…À„'þÿÿL‹D$8Ht$p¹º¿è„BH…ÀH‰Ã„fL‹h1|$L‹D$@H´$€º¿”ÀÁàƒÈ‰ÁèFBH…ÀI‰Ä„	L‹@H‹D$pH›Z‹|$H
§Z‰D$H‹„$€…ÿ‰D$H‹„$ˆ‰D$DD$xƒ|$$‰D$‹D$ HDʅÀtƒøHiZH`ZHEЃ|$HTZH5GZHEð…ÿH=±lHDøHƒìHD$PAPHD$(PAUH„$PLL$8LD$4ÿÕHƒÄ0è\ùþÿH…ÀtÇ$‹$…ÀtH=ÓYL‰æ1Àè˜úþÿH‰D$(H;\$8„ÍüÿÿHƒ+…ÃüÿÿH‰ßèøþÿé¶üÿÿèùþÿH…ÀuÔH‹=8»&H5Ñïè¤úþÿë¿èíøþÿH…À…‰üÿÿH‹=»&H5^ïèúþÿéqüÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHélH
hÛ%Hì¸H‹
`$H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$ H‰„$¨HD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HH‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèÙøþÿHƒÄ0…À„=H‹t$hH9ÞtsH|$$H¿îèÂÿÿ‰D$‹D$…Àt8‹L$$ƒùv]Hœ$°HÖîH5ÉkH‰ß1ÀèÝöþÿH‹=Ž¹&H‰ÞèþøþÿH‹D$0H‹D$0Hĸ[]A\A]A^A_Ãf‹D$ÇD$$…ÀtÒH‹t$`H9ÞtFH|$ Hªîè5ÿÿ‰D$‹D$…Àt«‹L$ ƒùv4Hœ$°HÁîH5PkénÿÿÿD‹D$ÇD$ …À„nÿÿÿfïÀL¤$°H‹t$8H¼îL‰çò„$°ò„$¸òD$èÔùþÿ…ÀòD$t+fïɸfïÒòZŒ$°óL$pòZ”$¸óT$t‰D$‹D$…À„ñþÿÿH‹t$PH9Þ„ÈH’îL‰çò„$°ò„$¸è`ùþÿ…Àt+fï۸fïäòZœ$°ó\$xòZ¤$¸ód$|‰D$‹D$…À„ƒþÿÿL‹D$@H´$€¹º¿èÐ=H…ÀH‰Ã„¦L‹D$HH´$¹º¿L‹pèŸ=H…ÀI‰Å„GD‹D$ L‹xH‹´$ˆH‹„$€H‹¼$E…	ID$(Hc։|$,„è9ø‰t$‰D$@•Ç@„ÿ…îƒ|$L‹D$XH´$ H‰”$ H‰”$¨¿ºɃá Eè	=H…ÀI‰Ä„×HcT$H‹„$ H9ÐuH;„$¨„åH‹=î¶&H5îèZöþÿL;l$HtIƒm„H;\$@„?ýÿÿHƒ+…5ýÿÿH‰ßèkóþÿé(ýÿÿfD1Àé%ýÿÿfïÀóD$xóD$|éwþÿÿ;´$˜‰D$HcЉt$‰ñ@•Çé	ÿÿÿH€íH5³hL‰ç1ÀèŸóþÿH‹=P¶&L‰æèÀõþÿéaÿÿÿL‰ïèóòþÿéfÿÿÿèùóþÿH…À…¢üÿÿH‹=!¶&H5’ìèõþÿéŠüÿÿ‹D$ H5^T…ÀtƒøH5iTHdTHDðƒ|$$HT$HL$HLTH=?TM‰ñRAÿt$HEøH„$ˆPHD$DPAWHD$PPL„$ ÿÕHƒÄ0è`óþÿH…ÀtÇD$‹D$…À„þÿÿH=ÑSL‰æ1Àè–ôþÿH‰D$0é‚þÿÿè'óþÿH…À…†þÿÿH‹=Oµ&H5ìè»ôþÿénþÿÿèóþÿH…À…NþÿÿH‹=)µ&H5jìè•ôþÿé6þÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHYgH
ÈÔ%Hì¸H‹*Z$H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$ H‰„$¨HD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HH‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèùòþÿHƒÄ0…À„=H‹t$hH9ÞtsH|$$HÇëèâüþÿ‰D$‹D$…Àt8‹L$$ƒùv]Hœ$°HöèH59fH‰ß1ÀèýðþÿH‹=®³&H‰ÞèóþÿH‹D$0H‹D$0Hĸ[]A\A]A^A_Ãf‹D$ÇD$$…ÀtÒH‹t$`H9ÞtFH|$ HzëèUüþÿ‰D$‹D$…Àt«‹L$ ƒùv4Hœ$°HáèH5ÀeénÿÿÿD‹D$ÇD$ …À„nÿÿÿfïÀL¤$°H‹t$8HTëL‰çò„$°ò„$¸òD$èôóþÿ…ÀòD$t+fïɸfïÒòZŒ$°óL$pòZ”$¸óT$t‰D$‹D$…À„ñþÿÿH‹t$PH9Þ„ÈH*ëL‰çò„$°ò„$¸è€óþÿ…Àt+fï۸fïäòZœ$°ó\$xòZ¤$¸ód$|‰D$‹D$…À„ƒþÿÿL‹D$@H´$€¹º¿èð7H…ÀH‰Ã„¦L‹D$HH´$¹º¿L‹pè¿7H…ÀI‰Å„GD‹D$ L‹xH‹´$ˆH‹„$€H‹¼$E…	ID$(Hc։|$,„è9ø‰t$‰D$@•Ç@„ÿ…îƒ|$L‹D$XH´$ H‰”$ H‰”$¨¿ºɃá Eè)7H…ÀI‰Ä„×HcT$H‹„$ H9ÐuH;„$¨„åH‹=±&H5ŸèèzðþÿL;l$HtIƒm„H;\$@„?ýÿÿHƒ+…5ýÿÿH‰ßè‹íþÿé(ýÿÿfD1Àé%ýÿÿfïÀóD$xóD$|éwþÿÿ;´$˜‰D$HcЉt$‰ñ@•Çé	ÿÿÿH çH5#cL‰ç1Àè¿íþÿH‹=p°&L‰æèàïþÿéaÿÿÿL‰ïèíþÿéfÿÿÿèîþÿH…À…¢üÿÿH‹=A°&H5*éè­ïþÿéŠüÿÿ‹D$ H5~N…ÀtƒøH5‰NH„NHDðƒ|$$HT$HL$HlNH=_NM‰ñRAÿt$HEøH„$ˆPHD$DPAWHD$PPL„$ ÿÕHƒÄ0è€íþÿH…ÀtÇD$‹D$…À„þÿÿH=ñML‰æ1Àè¶îþÿH‰D$0é‚þÿÿèGíþÿH…À…†þÿÿH‹=o¯&H5¨èèÛîþÿénþÿÿè!íþÿH…À…NþÿÿH‹=I¯&H5Òèèµîþÿé6þÿÿAUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
³Í%Hì°H‹UT$H¸aH‰„$ˆH‰„$H‰„$˜H‰„$ HD$0HÇD$@ÇD$(ÇD$$ÇD$,H‰\$HH‰\$PH‰\$XÇD$0H‰\$`ÇD$4H‰\$hÇD$8H‰\$pÇD$<PHD$xPHD$xPHD$xPHD$xP1ÀLL$xLD$pè@íþÿHƒÄ0…À„ÔH‹t$hH9ÞtrH|$0Hèè)÷þÿ‰D$‹D$…Àt8‹L$0ƒùv\Hœ$ H=ãH5Î`H‰ß1ÀèDëþÿH‹=õ­&H‰ÞèeíþÿH‹D$8H‹D$8HĨ[]A\A]ÃD‹D$ÇD$0…ÀtÓH‹t$`H9ÞtFH|$,HÊçèöþÿ‰D$‹D$…Àt¬‹L$,ƒùv4Hœ$ H)ãH5U`éoÿÿÿD‹D$ÇD$,…À„oÿÿÿfïÀL¤$ H‹t$@H¤çL‰çò„$ ò„$¨òD$è<îþÿ…ÀòD$t+fïɸfïÒòZŒ$ óL$pòZ”$¨óT$t‰D$‹D$…À„òþÿÿH‹t$PH9Þ„iHrçL‰çò„$ ò„$¨èÈíþÿ…Àt+fï۸fïäòZœ$ ó\$xòZ¤$¨ód$|‰D$‹D$…À„„þÿÿL‹D$HH´$€¹º¿è82H…ÀH‰Ã„È‹|$,H‹”$€H‹Œ$ˆL‹`…ÿ‰։T$4HcÁ„ȉL$ ƒ|$(L‹D$Xº‰t$$H´$¿H‰„$H‰„$˜Ƀá Eè¿1H…ÀI‰Å„)HcT$ H‹„$H9Ðu
H;„$˜tjH‹=¨«&H59ãèëþÿH;\$H„¤ýÿÿHƒ+…šýÿÿH‰ßè7èþÿéýÿÿfHĨ1À[]A\A]ÃfïÀóD$xóD$|éÖþÿÿ‰T$ ‰ÎHcÂé.ÿÿÿ‹D$,H5“I…ÀtƒøH5žIH™IHDðƒ|$0HT$ HL$$HIH=tIM‰áRAÿuHEøH„$ˆPHD$LPL„$ÿÕHƒÄ èžèþÿH…ÀtÇD$‹D$…À„!ÿÿÿH=IL‰î1ÀèÔéþÿH‰D$8éÿÿÿèeèþÿH…À…øþÿÿH‹=ª&H5Æåèùéþÿéàþÿÿè?èþÿH…À…üÿÿH‹=gª&H5PåèÓéþÿéiüÿÿ@f.„AUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
CÈ%Hì°H‹eO$H]H‰„$ˆH‰„$H‰„$˜H‰„$ HD$0HÇD$@ÇD$(ÇD$$ÇD$,H‰\$HH‰\$PH‰\$XÇD$0H‰\$`ÇD$4H‰\$hÇD$8H‰\$pÇD$<PHD$xPHD$xPHD$xPHD$xP1ÀLL$xLD$pèPèþÿHƒÄ0…À„ÔH‹t$hH9ÞtrH|$0HÎäè9òþÿ‰D$‹D$…Àt8‹L$0ƒùv\Hœ$ HMÞH5\H‰ß1ÀèTæþÿH‹=©&H‰ÞèuèþÿH‹D$8H‹D$8HĨ[]A\A]ÃD‹D$ÇD$0…ÀtÓH‹t$`H9ÞtFH|$,H‚äè­ñþÿ‰D$‹D$…Àt¬‹L$,ƒùv4Hœ$ H9ÞH5¡[éoÿÿÿD‹D$ÇD$,…À„oÿÿÿfïÀL¤$ H‹t$@H\äL‰çò„$ ò„$¨òD$èLéþÿ…ÀòD$t+fïɸfïÒòZŒ$ óL$pòZ”$¨óT$t‰D$‹D$…À„òþÿÿH‹t$PH9Þ„iH*äL‰çò„$ ò„$¨èØèþÿ…Àt+fï۸fïäòZœ$ ó\$xòZ¤$¨ód$|‰D$‹D$…À„„þÿÿL‹D$HH´$€¹º¿èH-H…ÀH‰Ã„È‹|$,H‹”$€H‹Œ$ˆL‹`…ÿ‰։T$4HcÁ„ȉL$ ƒ|$(L‹D$Xº‰t$$H´$¿H‰„$H‰„$˜Ƀá EèÏ,H…ÀI‰Å„)HcT$ H‹„$H9Ðu
H;„$˜tjH‹=¸¦&H5IÞè$æþÿH;\$H„¤ýÿÿHƒ+…šýÿÿH‰ßèGãþÿéýÿÿfHĨ1À[]A\A]ÃfïÀóD$xóD$|éÖþÿÿ‰T$ ‰ÎHcÂé.ÿÿÿ‹D$,H5£D…ÀtƒøH5®DH©DHDðƒ|$0HT$ HL$$H‘DH=„DM‰áRAÿuHEøH„$ˆPHD$LPL„$ÿÕHƒÄ è®ãþÿH…ÀtÇD$‹D$…À„!ÿÿÿH=DL‰î1ÀèääþÿH‰D$8éÿÿÿèuãþÿH…À…øþÿÿH‹=¥&H5~âè	åþÿéàþÿÿèOãþÿH…À…üÿÿH‹=w¥&H5âèãäþÿéiüÿÿ@f.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHaXH
Â%Hì¸H‹jJ$H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$ H‰„$¨HD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HH‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hè9ãþÿHƒÄ0…À„EH‹t$`H9ÞtsH|$ H_áè"íþÿ‰D$‹D$…Àt8‹L$ ƒùv]Hœ$°HváH5@WH‰ß1Àè=áþÿH‹=î£&H‰Þè^ãþÿH‹D$0H‹D$0Hĸ[]A\A]A^A_Ãf‹D$ÇD$ …ÀtÒH‹t$hH9ÞtFH|$$HBáè•ìþÿ‰D$‹D$…Àt«‹L$$ƒùv4Hœ$°H©ØH5ÅVénÿÿÿD‹D$ÇD$$…À„nÿÿÿfïÀL¤$°H‹t$8HáL‰çò„$°ò„$¸òD$è4äþÿ…ÀòD$t+fïɸfïÒòZŒ$°óL$pòZ”$¸óT$t‰D$‹D$…À„ñþÿÿH‹t$PH9Þ„ÐHêàL‰çò„$°ò„$¸èÀãþÿ…Àt+fï۸fïäòZœ$°ó\$xòZ¤$¸ód$|‰D$‹D$…À„ƒþÿÿL‹D$@H´$€¹º¿è0(H…ÀH‰Ã„¬L‹D$HH´$¹º¿L‹pèÿ'H…ÀI‰Å„9D‹L$ H‹”$H‹Œ$€H‹¼$ˆL‹xL‹„$˜E…ÉHcò‰T$,‰L$(HcÇ„çD9IT$‰|$•„Ò…êƒ|$L‹D$XºH‰´$ H´$ ¿H‰„$¨Ƀá Eèa'H…ÀI‰Ä„ÁHcD$H9„$ uHcD$H9„$¨„áH‹=D¡&H5Åàè°àþÿL;l$HtIƒm„‰H;\$@„5ýÿÿHƒ+…+ýÿÿH‰ßèÁÝþÿéýÿÿ@1ÀéýÿÿfïÀóD$xóD$|éoþÿÿ9׉L$D‰D$•ÂIcÀHcñéÿÿÿHÔßH5#T‰ÁL‰ç1ÀèùÝþÿH‹=ª &L‰æèàþÿéeÿÿÿL‰ïèMÝþÿéjÿÿÿèSÞþÿH…À…œüÿÿH‹={ &H5äÞèçßþÿé„üÿÿƒ|$$HÔ>H5Ç>HT$HL$H=-QM‰ñHEðƒ|$ RAÿt$HDøH„$ˆPHD$DPAWHD$PPL„$ ÿÕHƒÄ0èÎÝþÿH…ÀtÇD$‹D$…À„µþÿÿH=?>L‰æ1ÀèßþÿH‰D$0éšþÿÿè•ÝþÿH…À…žþÿÿH‹=½Ÿ&H5vÞè)ßþÿé†þÿÿèoÝþÿH…À…fþÿÿH‹=—Ÿ&H5ÐÞèßþÿéNþÿÿ@f.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHÌRH
h»%Hì¸H‹ŠD$H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$ H‰„$¨HD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HH‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèYÝþÿHƒÄ0…À„EH‹t$`H9ÞtsH|$ HÞèBçþÿ‰D$‹D$…Àt8‹L$ ƒùv]Hœ$°H–ÛH5«QH‰ß1Àè]ÛþÿH‹=ž&H‰Þè~ÝþÿH‹D$0H‹D$0Hĸ[]A\A]A^A_Ãf‹D$ÇD$ …ÀtÒH‹t$hH9ÞtFH|$$HÊÝèµæþÿ‰D$‹D$…Àt«‹L$$ƒùv4Hœ$°HÉÒH50QénÿÿÿD‹D$ÇD$$…À„nÿÿÿfïÀL¤$°H‹t$8H¤ÝL‰çò„$°ò„$¸òD$èTÞþÿ…ÀòD$t+fïɸfïÒòZŒ$°óL$pòZ”$¸óT$t‰D$‹D$…À„ñþÿÿH‹t$PH9Þ„ÐHrÝL‰çò„$°ò„$¸èàÝþÿ…Àt+fï۸fïäòZœ$°ó\$xòZ¤$¸ód$|‰D$‹D$…À„ƒþÿÿL‹D$@H´$€¹º¿èP"H…ÀH‰Ã„¬L‹D$HH´$¹º¿L‹pè"H…ÀI‰Å„9D‹L$ H‹”$H‹Œ$€H‹¼$ˆL‹xL‹„$˜E…ÉHcò‰T$,‰L$(HcÇ„çD9IT$‰|$•„Ò…êƒ|$L‹D$XºH‰´$ H´$ ¿H‰„$¨Ƀá Eè!H…ÀI‰Ä„ÁHcD$H9„$ uHcD$H9„$¨„áH‹=d›&H5åÚèÐÚþÿL;l$HtIƒm„‰H;\$@„5ýÿÿHƒ+…+ýÿÿH‰ßèá×þÿéýÿÿ@1ÀéýÿÿfïÀóD$xóD$|éoþÿÿ9׉L$D‰D$•ÂIcÀHcñéÿÿÿHôÙH5ŽN‰ÁL‰ç1ÀèØþÿH‹=ʚ&L‰æè:ÚþÿéeÿÿÿL‰ïèm×þÿéjÿÿÿèsØþÿH…À…œüÿÿH‹=›š&H5lÛèÚþÿé„üÿÿƒ|$$Hô8H5ç8HT$HL$H=MKM‰ñHEðƒ|$ RAÿt$HDøH„$ˆPHD$DPAWHD$PPL„$ ÿÕHƒÄ0èî×þÿH…ÀtÇD$‹D$…À„µþÿÿH=_8L‰æ1Àè$ÙþÿH‰D$0éšþÿÿèµ×þÿH…À…žþÿÿH‹=ݙ&H5þÚèIÙþÿé†þÿÿè×þÿH…À…fþÿÿH‹=·™&H5(Ûè#ÙþÿéNþÿÿ@f.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH7MH
´%HìÈH‹ª>$H‰„$H‰„$˜H‰„$ H‰„$¨H‰„$°H‰„$¸HD$,HÇD$@ÇD$ ÇD$ÇD$$ÇD$(H‰\$HH‰\$PH‰\$XH‰\$`ÇD$,H‰\$hÇD$0H‰\$pÇD$4H‰\$xÇD$8ÇD$<PH„$€PH„$€PH„$€PH„$€PH„$€P1ÀLŒ$€LD$xè_×þÿHƒÄ0…À„ûH‹t$pH9Þ„H|$0HÚèDáþÿ‰D$‹D$…Àu H‹D$@H‹D$@HÄÈ[]A\A]A^A_Ã@‹L$0ƒùwoH‹t$xH9Þ„¡H|$4HýÙèðàþÿ‰D$‹D$…Àt¬‹L$4ƒù†‹Hœ$ÀHÚH5µKë5€‹D$ÇD$0…Àu™ékÿÿÿHœ$ÀH¡ÆH5iKH‰ß1ÀèÐÔþÿH‹=—&H‰ÞèñÖþÿé4ÿÿÿ@1Àé3ÿÿÿ‹D$ÇD$4…À„ÿÿÿfïÀL¤$ÀH‹t$HH¼ÙL‰çò„$Àò„$ÈòD$è4Øþÿ…ÀòD$t1fïɸfïÒòZŒ$ÀóŒ$€òZ”$Èó”$„‰D$‹D$…À„‘þÿÿH‹t$`H9Þ„ëH„ÙL‰çò„$Àò„$Èèº×þÿ…Àt1fï۸fïäòZœ$Àóœ$ˆòZ¤$Èó¤$Œ‰D$‹D$…À„þÿÿL‹D$PH´$¹º¿è$H…ÀH‰Ã„ÉL‹D$XH´$ ¹º¿L‹pèóH…ÀI‰Å„D‹T$0H‹”$L‹xL‹„$˜H‹„$ L‹Œ$¨E…ÒHcú‰T$8D‰ÁHcð‰D$<„D‰D$ ‰ÑIcø‹T$4‰L$(…Ò„åD9ɉD$$•À…îƒ|$,L‹D$hºH‰´$¸H´$°H‰¼$°¿Ƀá Eè<H…ÀI‰Ä„îHcD$ H9„$°uHcD$$H9„$¸„åH‹=•&H5 Ôè‹ÔþÿL;l$XtIƒm„H;\$P„¶üÿÿHƒ+…¬üÿÿH‰ßèœÑþÿéŸüÿÿ€fïÀó„$ˆó„$ŒéTþÿÿ9ÁD‰L$$Icñ•Àéÿÿÿ‰T$ éðþÿÿ‰ñHIØH5“HL‰ç1ÀèÐÑþÿH‹=”&L‰æèñÓþÿéaÿÿÿL‰ïè$Ñþÿéfÿÿÿè*ÒþÿH…À…üÿÿH‹=R”&H5[×è¾Óþÿéüÿÿ‹D$4H52…ÀtƒøH5š2H•2HDð‹D$0H=k2…ÀtƒøH=v2Hq2HDøHT$ HL$$HƒìRAÿt$H„$ PHD$\PAWHD$hPAVLŒ$ÀLD$hÿÕHƒÄ@è|ÑþÿH…ÀtÇD$‹D$…À„ˆþÿÿH=í1L‰æ1Àè²ÒþÿH‰D$@émþÿÿèCÑþÿH…À…qþÿÿH‹=k“&H5ÄÖè×ÒþÿéYþÿÿèÑþÿH…À…9þÿÿH‹=E“&H5×è±Òþÿé!þÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHGH
£%HìÀH‹:8$H‰D$XH‰D$xH‰„$˜HD$8HÇD$@ÇD$$ÇD$ H‰\$HH‰\$PH‰\$`ÇD$(H‰\$hÇD$,H‰\$pH‰œ$€ÇD$0H‰œ$ˆÇD$4H‰œ$ÇD$8H‰œ$ ÇD$<H‰œ$¨PH„$°PH„$ PH„$ PH„$PH„$PH„$ÐPH„$¸PH„$ P1ÀLŒ$˜L„$èÙÐþÿHƒÄP1҅À„¥Ld$H‹t$@HúÕL‰çèÂÚþÿ‰D$‹D$…Àtv‹L$…ɈŠH‹´$ H9Þt}H|$4HÖèŒÚþÿ‰D$‹D$…Àt@‹L$4ƒùvgHœ$°HÖH5¢EH‰ß1Àè§ÎþÿH‹=X‘&H‰ÞèÈÐþÿ„H‹D$8H‹T$8HĸH‰Ð[]A\A]A^A_ЋD$ÇD$4…ÀtÐH‹t$`H9Þ„H|$ HÞÕèñÙþÿ‰D$‹D$…Àt¥‹|$ …ÿ„ùH‹´$€H9Þ„H|$(HäÕè·Ùþÿ‰D$‹D$…À„gÿÿÿ‹t$(…ö„ñH‹t$hH9Þ„H|$$HÖè|Ùþÿ‰D$‹D$…À„,ÿÿÿH‹´$ˆH9Þ„ÛH|$,H'ÖèJÙþÿ‰D$‹D$…À„úþÿÿfïÀH‹t$HH¼$°H:Öò„$°ò„$¸è+Ñþÿ…Àt1fïɸfïÒòZŒ$°óŒ$¨òZ”$¸ó”$¬‰D$‹D$…À„†þÿÿL‹D$XHt$P¹º¿è˜H…ÀH‰Ã„‹L$ ‹t$ ‹D$HcT$$H‹|$PÁù1΃è)ίÆÐH˜H9ÇŽù…Òx	H9׏H‹=`&H5gèÌÎþÿH;\$X„þÿÿHƒ+…÷ýÿÿH‰ßèïËþÿéêýÿÿf.„Hœ$°H¹cH5<Cé¤ýÿÿD‹D$ÇD$ …À…þÿÿé§ýÿÿ€Hœ$°1ÉHeH5Cébýÿÿ‹D$ÇD$(…À…þÿÿéjýÿÿHœ$°1ÉHÔH5øBé,ýÿÿÇD$$éþÿÿÇD$,é-þÿÿH‹=tŽ&H5íeèàÍþÿéÿÿÿL‹D$xHt$p¹º¿L‹sè)H…ÀI‰Å„„‹L$(‹t$(‹D$HcT$,H‹|$pÁù1΃è)ίÆÐH˜H9Ç~C…Òx	H9׏—H‹=õ&H5ÕèaÍþÿL;l$x„ŠþÿÿIƒm…þÿÿL‰ïèƒÊþÿérþÿÿH‹=¿&H5°Ôè+ÍþÿëÈètËþÿH…À…OþÿÿH‹=œ&H5=ÔèÍþÿé7þÿÿèNËþÿH…À…5üÿÿH‹=v&H5ÇÓèâÌþÿéüÿÿ1|$0M‹ML‹„$˜H´$º¿L‰L$”ÀÁàƒÈ‰ÁèH…ÀI‰ÇL‹L$„·‹T$H‹p¹B¯™÷ùH˜H9„$|}HcT$$ƒ|$4H=]+HcD$,IÖHG+MÁHDúH”$¨VHt$0VL‰æLD$0ÿÕèyÊþÿH…ÀZYtÇD$‹D$…À„­þÿÿH=è*L‰þ1Àè­ËþÿH‰D$8é’þÿÿH‹=tŒ&H5%ÔèàËþÿézþÿÿè&ÊþÿH…À…lþÿÿH‹=NŒ&H5¯ÓèºËþÿéTþÿÿDAVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH‰@H
ê™%HìpH‹L1$H‰D$0H‰D$PHD$HÇD$ÇD$Ç$H‰\$ H‰\$(H‰\$8ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$XÇD$H‰\$`PHD$hPHD$XPHD$XPHD$xPHD$`P1ÀLL$XLD$PèRÊþÿHƒÄ01҅À„–Ld$H‹t$ H;ÓL‰çè;Ôþÿ‰$‹$…Àti‹L$…Ɉ…H‹t$`H9ÞtsH|$HGÓè
Ôþÿ‰$‹$…Àt8‹L$ƒùv^H\$pHû_H5€?H‰ß1Àè*ÈþÿH‹=ۊ&H‰ÞèKÊþÿH‹D$H‹T$HÄpH‰Ð[]A\A]A^Ë$ÇD$…ÀtÑH‹t$@H9Þ„H|$H÷ÒèzÓþÿ‰$‹$…Àt¨‹D$…À„H‹t$HH9Þ„H|$HÓèEÓþÿ‰$‹$…À„oÿÿÿfïÀH‹t$(H|$pHÓòD$pòD$xè1Ëþÿ…Àt%fïɸfïÒòZL$póL$hòZT$xóT$l‰$‹$…À„ÿÿÿL‹D$8Ht$0¹º¿è¬H…ÀH‰Ã„§‹T$‹t$‹D$HcL$H‹|$0Áú1փè)Ö¯ÆÈH˜H9ÇŽ_…Ɉ?H9ÏŽ61|$L‹D$XHt$Pº¿L‹s”ÀÁàƒÈ‰Áè0H…ÀI‰Å„„‹T$¹B¯™÷ùH˜H9D$PŒ2HcD$ƒ|$H=‚'HT$hM‹MLD$L‰æIÆH`'HDøÿÕè­ÆþÿH…ÀtÇ$‹$…À…ûH;\$8„óýÿÿHƒ+…éýÿÿH‰ßèiÅþÿéÜýÿÿ@H\$pH<]H5=é¤ýÿÿ„‹$ÇD$…À…	þÿÿé ýÿÿ„H\$p1ÉH’^H5ù<ébýÿÿÇD$é÷ýÿÿH‹=:ˆ&H5ë_è¦Çþÿé[ÿÿÿH‹="ˆ&H5›_èŽÇþÿéCÿÿÿèÔÅþÿH…À…3ýÿÿH‹=ü‡&H5-ÑèhÇþÿéýÿÿH‹=ä‡&H5­ÑèPÇþÿéÿÿÿH=%&L‰î1ÀèêÆþÿH‰D$éêþÿÿè{ÅþÿH…À…ÜþÿÿH‹=£‡&H5ÑèÇþÿéÄþÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËH<H
¸“%HìÀL‹5š,$H‰D$HH‰D$XH‰„$¨H‰„$°HD$4HÇD$8L‰t$@ÇD$L‰t$PL‰t$`ÇD$L‰t$hÇD$ L‰t$pÇD$$L‰t$xÇD$(L‰´$€ÇD$,L‰´$ˆÇD$0L‰´$ÇD$4L‰´$˜PH„$ PH„$ PH„$ PH„$ PH„$ PH„$ PH„$ PH„$ P1ÀLŒ$˜L„$ˆè4ÅþÿHƒÄP…À„XH‹t$`L9ötvH|$H2ÐèÏþÿ‰D$‹D$…Àt8‹L$ƒùv`Hœ$°H5Ò:HBÐ1ÀH‰ßè8ÃþÿH‹=é…&H‰ÞèYÅþÿH‹D$0H‹D$0Hĸ[]A\A]A^A_ÃD‹D$ÇD$…ÀtÏfïÀH¬$°H‹t$8HÐH‰ïò„$°ò„$¸è–Æþÿ…Àt1fïɸfïÒòZŒ$°óŒ$˜òZ”$¸ó”$œ‰D$‹D$…À„XÿÿÿH‹t$hL9ö„SH|$HçÏèÎþÿ‰D$‹D$…À„)ÿÿÿ‹T$…Ò„?H‹t$pL9ö„_H|$HìÏè×Íþÿ‰D$‹D$…À„îþÿÿH‹t$xL9ö„=H|$ HýÏè¨Íþÿ‰D$‹D$…À„¿þÿÿ‹D$ …À„)H‹´$€L9ö„*H|$$H/ÐèjÍþÿ‰D$‹D$…À„þÿÿL‹D$HHt$@¹º¿è,
H…ÀI‰Ä„dHcD$…ÀxH;D$@ŒØH‹=„&H5^Ðè‰ÃþÿL;d$H„%þÿÿIƒ,$…þÿÿL‰çè«Àþÿé
þÿÿfD1Àé
þÿÿf„‹D$ÇD$…À…ÆþÿÿéÞýÿÿH€tH5•81ÉH‰ï1ÀèíÀþÿH‹=žƒ&H‰îèÃþÿé°ýÿÿÇD$é©þÿÿ‹D$ÇD$ …À…ÜþÿÿéŠýÿÿ1ÉHêÎH5Q8ëªÇD$$éÞþÿÿL‹D$XHt$P¹º¿M‹|$è	H…ÀI‰Å„ºHcT$$…Òx
H‹D$PH9Â|\H‹=ƒ&H5ÌÏèoÂþÿL;l$X„ÛþÿÿIƒm…ÐþÿÿL‰ï葿þÿéÃþÿÿè—ÀþÿH…À…åüÿÿH‹=¿‚&H5°Îè+ÂþÿéÍüÿÿH‹´$ˆI‹ML9öH‰L$„ÑH|$(HÏè{Ëþÿ‰D$‹D$…Àt€HcT$$H‹D$P‹|$ Hct$(HƒèH)ЋT$ H‰ñÁú1×)×H™HcÿH÷ÿHˆÏHƒÀH9ƏKHcT$H‹D$@‹|$HƒèH)ЋT$Áú1×)×H™HcÿH÷ÿHƒÀH9Ə…öH½Ïˆ1|$,L‹„$H‰´$ H‰´$¨H´$ º¿”ÀÁà…‰Áè—H…ÀH‰Å„ŽHcT$ƒ|$H= Ht$(HcD$$I×HíHDúH”$˜HƒìVÿuLD$8APL‹T$(LD$8MÂÿÓHƒÄ è¿þÿH…ÀtÇD$‹D$…À„9þÿÿH=‚H‰î1ÀèGÀþÿH‰D$0éþÿÿèؾþÿH…À…þÿÿH‹=&H5áÎèlÀþÿéøýÿÿHpÎH5é5H‰ï1Àè¾þÿH‹=Ѐ&H‰îè@ÀþÿéÌýÿÿHƒè‹L$ H)ЋT$ Áú1Ñ)ÑH™HcÉH÷ùHcT$‹L$H‰ÆH‹D$@HƒèH)ЋT$Áú1Ñ)ÑH™HcÉH÷ùVHH9ƉÈL‰D$(éäýÿÿè&¾þÿH…À…DüÿÿH‹=N€&H5ÇÌ躿þÿé,üÿÿDAVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH05H
êŠ%Hì€H‹L%$H‰D$0H‰D$pH‰D$xHD$HÇD$ H‰\$(ÇD$H‰\$8ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$H‰\$`PHD$hPHD$hPHD$hPHD$hPHD$hP1ÀLL$hLD$XèL¾þÿHƒÄ0…À„˜H‹t$@H9ÞtvH|$HrÍè5Èþÿ‰D$‹D$…Àt8‹L$ƒùv`Hœ$€H5F4HZÉ1ÀH‰ßèP¼þÿH‹=&H‰Þèq¾þÿH‹D$ H‹D$ HĀ[]A\A]A^À‹D$ÇD$…ÀtÏfïÀL¤$€H‹t$(H ÍL‰çò„$€ò„$ˆ访þÿ…Àt+fïɸfïÒòZŒ$€óL$hòZ”$ˆóT$l‰D$‹D$…À„^ÿÿÿH‹t$PH9Þ„¡H|$HõÌè0Çþÿ‰D$‹D$…À„/ÿÿÿH‹t$HH9Þ„H|$HÍèÇþÿ‰D$‹D$…À„ÿÿÿ‹t$…öujH²nH5"3L‰ç1É1Àè»þÿH‹=Ð}&L‰æè@½þÿéÊþÿÿHĀ1À[]A\A]A^ÃfDÇD$égÿÿÿ‹D$ÇD$…À„ŽþÿÿL‹D$8Ht$0¹º¿èQH…ÀI‰Å„«HcD$…Àˆ\H‹T$0H9ЍNH‹t$XM‹uH9Þ„QH|$H¤ÌèÆþÿ‰D$‹D$…À„øHcT$H‹D$0‹t$Hc|$HƒèH)ЋT$H‰ùÁú1Ö)ÖH™HcöH÷þHÌHƒÀH9ǏF…ÿˆ71|$L‹D$`Ht$pH‰|$pH‰|$xº¿”ÀÁà…‰ÁèwH…ÀH‰Ã„#HcD$ƒ|$H=èHt$HT$hL‹KIÆHÉHDøHƒìVLD$ ÿÕèºþÿH…ÀZYtÇD$‹D$…ÀtH=H‰Þ1ÀèD»þÿH‰D$ L;l$8„ýÿÿIƒm…ýÿÿL‰ï豸þÿéûüÿÿH‹=í{&H5.ÈèY»þÿëÈHƒê‹L$H)ÂH‰ЋT$Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$é—þÿÿèu¹þÿH…À…«üÿÿH‹={&H5ÎÊè	»þÿé“üÿÿH}ËH5Î0L‰ç1À輸þÿH‹=m{&L‰æèݺþÿéIÿÿÿè#¹þÿH…À…;ÿÿÿH‹=K{&H5dË跺þÿé#ÿÿÿfAVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHw0H
*…%Hì€H‹L $H‰D$0H‰D$pH‰D$xHD$HÇD$ H‰\$(ÇD$H‰\$8ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$H‰\$`PHD$hPHD$hPHD$hPHD$hPHD$hP1ÀLL$hLD$XèL¹þÿHƒÄ0…À„˜H‹t$@H9ÞtvH|$HªÊè5Ãþÿ‰D$‹D$…Àt8‹L$ƒùv`Hœ$€H5/HZÄ1ÀH‰ßèP·þÿH‹=z&H‰Þèq¹þÿH‹D$ H‹D$ HĀ[]A\A]A^À‹D$ÇD$…ÀtÏfïÀL¤$€H‹t$(HXÊL‰çò„$€ò„$ˆ论þÿ…Àt+fïɸfïÒòZŒ$€óL$hòZ”$ˆóT$l‰D$‹D$…À„^ÿÿÿH‹t$PH9Þ„¡H|$H-Êè0Âþÿ‰D$‹D$…À„/ÿÿÿH‹t$HH9Þ„H|$H>ÊèÂþÿ‰D$‹D$…À„ÿÿÿ‹t$…öujH²iH5i.L‰ç1É1Àè¶þÿH‹=Ðx&L‰æè@¸þÿéÊþÿÿHĀ1À[]A\A]A^ÃfDÇD$égÿÿÿ‹D$ÇD$…À„ŽþÿÿL‹D$8Ht$0¹º¿èQþH…ÀI‰Å„«HcD$…Àˆ\H‹T$0H9ЍNH‹t$XM‹uH9Þ„QH|$HÜÉèÁþÿ‰D$‹D$…À„øHcT$H‹D$0‹t$Hc|$HƒèH)ЋT$H‰ùÁú1Ö)ÖH™HcöH÷þHÇHƒÀH9ǏF…ÿˆ71|$L‹D$`Ht$pH‰|$pH‰|$xº¿”ÀÁà…‰ÁèwýH…ÀH‰Ã„#HcD$ƒ|$H=èHt$HT$hL‹KIÆHÉHDøHƒìVLD$ ÿÕèµþÿH…ÀZYtÇD$‹D$…ÀtH=H‰Þ1ÀèD¶þÿH‰D$ L;l$8„ýÿÿIƒm…ýÿÿL‰ï豳þÿéûüÿÿH‹=ív&H5.ÃèY¶þÿëÈHƒê‹L$H)ÂH‰ЋT$Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$é—þÿÿèu´þÿH…À…«üÿÿH‹=v&H5Èè	¶þÿé“üÿÿH}ÆH5,L‰ç1À輳þÿH‹=mv&L‰æèݵþÿéIÿÿÿè#´þÿH…À…;ÿÿÿH‹=Kv&H54È践þÿé#ÿÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH¼+H
h|%HìÐH‹J$H‰„$¸H‰„$ÀH‰D$XH‰D$pHD$(HÇD$@ÇD$$ÇD$ H‰\$HH‰\$PH‰\$`H‰\$hÇD$(H‰\$xÇD$,H‰œ$€ÇD$0H‰œ$ˆÇD$4H‰œ$ÇD$8H‰œ$˜ÇD$<H‰œ$ PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$ PH„$ P1ÀLŒ$˜L„$èá³þÿHƒÄP…À„=H‹´$˜H9ÞtxH|$4HÇèǽþÿ‰D$‹D$…Àt8‹L$4ƒùvbHœ$ÀH#ÇH5c*H‰ß1Àèâ±þÿH‹=“t&H‰Þè´þÿH‹D$8H‹D$8HÄÈ[]A\A]A^A_À‹D$ÇD$4…ÀtÍH‹´$€H9Þ„H|$(HëÆè.½þÿ‰D$‹D$…ÀtŸ‹T$(…ÒtzH‹´$H9Þ„‰H|$0H%Çèø¼þÿ‰D$‹D$…À„eÿÿÿ‹D$0…ÀutHœ$À1ÉH7ÇH5´)é'ÿÿÿ‹D$ÇD$(…Àu–é(ÿÿÿ1Àé(ÿÿÿHœ$À1ÉH‡ÆH5b)éçþÿÿ‹D$ÇD$0…À„éþÿÿfïÀL¤$ÀH‹t$@HìÆL‰çò„$Àò„$ÈòD$èT´þÿ…ÀòD$t1fïɸfïÒòZŒ$ÀóŒ$ òZ”$Èó”$¤‰D$‹D$…À„fþÿÿH‹t$`H9Þ„ÛH´ÆL‰çò„$Àò„$Èèڳþÿ…Àt1fï۸fïäòZœ$Àóœ$¨òZ¤$Èó¤$¬‰D$‹D$…À„òýÿÿL‹D$HH´$°¹º¿èDøH…ÀI‰Ä„„H‹„$¸H9„$°tQH‹=7r&H5£裱þÿL;d$H„•ýÿÿIƒ,$…ŠýÿÿL‰çèŮþÿé}ýÿÿfïÀó„$¨ó„$¬édÿÿÿH‹t$xM‹t$H9Þ„ôH|$$H>Æèzþÿ‰D$‹D$…Àt’H‹´$ˆH9Þ„ÓH|$,HPÆ蓺þÿ‰D$‹D$…À„`ÿÿÿH‹„$°L‹D$XHt$P¹º¿‰D$èI÷H…ÀI‰Å„P‹D$‹t$(HcT$$H‹|$PHÿ‹D$(Áþ1ð)ð¯ÁÐH˜H9ÇŽ…ÒxH9×vH‹=q&H5ÆH聰þÿL;l$X„ÓþÿÿIƒm…ÈþÿÿL‰ï裭þÿé»þÿÿÇD$$éÿÿÿÇD$,é5ÿÿÿ菮þÿH…À…3üÿÿH‹=·p&H5ÐÄè#°þÿéüÿÿL‹D$pƒÊÿI9Ø„Ì1|$ HcÒHt$hH‰T$h¿ºM‹}”ÀÁà…‰ÁèLöH…ÀH‰Ãtm‹L$0D‹D$0H‹x‹D$HcT$,H‹t$hÁùA1ȃèA)ÈA¯ÀÐH˜H9Æ~!…ÒxH9ÖuH‹=p&H5ÑÅ脯þÿéþþÿÿH‹=p&H5Åèl¯þÿéæþÿÿ貭þÿH…À…ØþÿÿH‹=Úo&H5ÅèF¯þÿéÀþÿÿ‹T$0‹D$0Áú1Ð)ЋT$,¯MTéÿÿÿƒ|$4LD$0H×HH=HcD$$Ht$HDúH”$ APQMÇI‰ðHŒ$¸QHL$@QL‰ñÿÕHƒÄ è­þÿH…ÀtÇD$‹D$…À„/þÿÿH=Š
H‰Þ1ÀèO®þÿH‰D$8éþÿÿH‹=o&H5F肮þÿéüýÿÿèȬþÿH…À…ÌüÿÿH‹=ðn&H5ÙÃè\®þÿé´üÿÿ€AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH­$H
Hs%HìÈH‹ê$H‰D$PH‰D$`H‰„$ˆHD$(HÇD$8ÇD$ÇD$H‰\$@H‰\$HH‰\$XH‰\$hÇD$ H‰\$pÇD$$H‰\$xH‰œ$€ÇD$(H‰œ$ÇD$,H‰œ$˜ÇD$0H‰œ$ ÇD$4H‰œ$¨PH„$°PH„$°PH„$°PH„$°PH„$¨PH„$¨PH„$¨PH„$¨PH„$ P1ÀLŒ$˜L„$è{¬þÿHƒÄP…À„·H‹´$¨H9ÞtrH|$4HfÃèa¶þÿ‰D$‹D$…Àt8‹L$4ƒùv\Hœ$ÀH½¿H5O#H‰ß1Àè|ªþÿH‹=-m&H‰Þ蝬þÿH‹D$8H‹D$8HÄÈ[]A\A]A^A_ЋD$ÇD$4…ÀtÓLd$H‹t$@HÃL‰çè׵þÿ‰D$‹D$…Àt®‹L$…ɈH‹t$pH9Þ„ñH|$ H%Ã蠵þÿ‰D$‹D$…À„sÿÿÿ‹T$ …Ò„øH‹´$˜H9Þ„H|$,H'Ãèbµþÿ‰D$‹D$…À„5ÿÿÿ‹D$,…À„ðH‹t$xH9Þ„ÿH|$$H,Ãè'µþÿ‰D$‹D$…À„úþÿÿH‹´$ H9Þ„ÚH|$0H:Ãèõ´þÿ‰D$‹D$…À„ÈþÿÿfïÀL¬$ÀH‹t$HHMÃL‰ïò„$Àò„$ÈòD$èͬþÿ…ÀòD$t1fïɸfïÒòZŒ$ÀóŒ$°òZ”$Èó”$´‰D$‹D$…À„EþÿÿH‹´$€H9Þ„2HÃL‰ïò„$Àò„$ÈèP¬þÿ…Àt1fï۸fïäòZœ$Àóœ$¸òZ¤$Èó¤$¼‰D$‹D$…À„ÎýÿÿAƒÍÿH9œ$„QL‹D$XHt$P¹º¿è«ðH…ÀH‰Ã„ËT$H‹@¹H‰D$B¯™÷ùH˜H9D$PŒƒ1|$(L‹„$H´$ˆMcíº¿L‰¬$ˆ”ÀÁà…‰Áè<ðH…ÀI‰Æ„’‹L$,‹t$,‹D$HcT$0H‹¼$ˆÁù1΃è)ίÆÐH˜H9ÇŽG…Òx	H9׏ŸH‹=j&H5
Ãèm©þÿH;\$X„ÅüÿÿHƒ+…»üÿÿH‰ß萦þÿé®üÿÿ1Àé®üÿÿ‹D$ÇD$ …À„üÿÿé#ýÿÿHœ$ÀH@>H5½éVüÿÿHœ$À1ÉH»?H5¯é9üÿÿ‹D$ÇD$,…À…ýÿÿé9üÿÿHœ$À1ÉH¥€H5‹éüÿÿÇD$$é	ýÿÿÇD$0é.ýÿÿfïÀó„$¸ó„$¼é
þÿÿH‹=i&H5VÁèq¨þÿéÿþÿÿ跦þÿH…À…ÁûÿÿH‹=ßh&H5àÀèK¨þÿé©ûÿÿH‹=Çh&H5˜Áè3¨þÿéÁþÿÿèy¦þÿH…À…³þÿÿH‹=¡h&H5*Áè
¨þÿé›þÿÿ‹T$,‹L$,‹D$Áú1ÑDè)ыT$0¯ÁDléˆýÿÿL‹D$hHt$`¹º¿M‹~è/îH…ÀI‰Å„Š‹L$ D‹D$ H‹p‹D$‹T$$H‹|$`ÁùA1ȃèA)ÈA¯ÀÐH˜H9Ç~B…ÒxHcÂH9ÇqH‹=õg&H5¾Áèa§þÿL;l$h„éýÿÿIƒm…ÞýÿÿL‰ï胤þÿéÑýÿÿH‹=¿g&H5PÁè+§þÿëÈèt¥þÿH…À…®ýÿÿH‹=œg&H5ÝÀè§þÿé–ýÿÿHcT$0ƒ|$4H=ðI×HßHDúH”$°HƒìLD$4APQLÆL‰æHŒ$ÐQH‹L$(LL$@ÿÕHƒÄ èú¤þÿH…ÀtÇD$‹D$…À„0ÿÿÿH=kL‰ö1Àè0¦þÿH‰D$8éÿÿÿfDAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH.H
hj%HìÈH‹
$H‰D$PH‰D$`H‰„$ˆHD$(HÇD$8ÇD$ÇD$H‰\$@H‰\$HH‰\$XH‰\$hÇD$ H‰\$pÇD$$H‰\$xH‰œ$€ÇD$(H‰œ$ÇD$,H‰œ$˜ÇD$0H‰œ$ ÇD$4H‰œ$¨PH„$°PH„$°PH„$°PH„$°PH„$¨PH„$¨PH„$¨PH„$¨PH„$ P1ÀLŒ$˜L„$蛤þÿHƒÄP…À„·H‹´$¨H9ÞtrH|$4H–¿聮þÿ‰D$‹D$…Àt8‹L$4ƒùv\Hœ$ÀHݷH5ÐH‰ß1À蜢þÿH‹=Me&H‰Þ轤þÿH‹D$8H‹D$8HÄÈ[]A\A]A^A_ЋD$ÇD$4…ÀtÓLd$H‹t$@HO¿L‰çè÷­þÿ‰D$‹D$…Àt®‹L$…ɈH‹t$pH9Þ„ñH|$ HU¿è-þÿ‰D$‹D$…À„sÿÿÿ‹T$ …Ò„øH‹´$˜H9Þ„H|$,HW¿肭þÿ‰D$‹D$…À„5ÿÿÿ‹D$,…À„ðH‹t$xH9Þ„ÿH|$$H\¿èG­þÿ‰D$‹D$…À„úþÿÿH‹´$ H9Þ„ÚH|$0Hj¿è­þÿ‰D$‹D$…À„ÈþÿÿfïÀL¬$ÀH‹t$HH}¿L‰ïò„$Àò„$ÈòD$èí¤þÿ…ÀòD$t1fïɸfïÒòZŒ$ÀóŒ$°òZ”$Èó”$´‰D$‹D$…À„EþÿÿH‹´$€H9Þ„2HB¿L‰ïò„$Àò„$Èèp¤þÿ…Àt1fï۸fïäòZœ$Àóœ$¸òZ¤$Èó¤$¼‰D$‹D$…À„ÎýÿÿAƒÍÿH9œ$„QL‹D$XHt$P¹º¿èËèH…ÀH‰Ã„ËT$H‹@¹H‰D$B¯™÷ùH˜H9D$PŒƒ1|$(L‹„$H´$ˆMcíº¿L‰¬$ˆ”ÀÁà…‰Áè\èH…ÀI‰Æ„’‹L$,‹t$,‹D$HcT$0H‹¼$ˆÁù1΃è)ίÆÐH˜H9ÇŽG…Òx	H9׏ŸH‹=!b&H5*»荡þÿH;\$X„ÅüÿÿHƒ+…»üÿÿH‰ß谞þÿé®üÿÿ1Àé®üÿÿ‹D$ÇD$ …À„üÿÿé#ýÿÿHœ$ÀH`6H5>éVüÿÿHœ$À1ÉHÛ7H50é9üÿÿ‹D$ÇD$,…À…ýÿÿé9üÿÿHœ$À1ÉHÅxH5éüÿÿÇD$$é	ýÿÿÇD$0é.ýÿÿfïÀó„$¸ó„$¼é
þÿÿH‹=%a&H5v¹葠þÿéÿþÿÿèמþÿH…À…ÁûÿÿH‹=ÿ`&H5½èk þÿé©ûÿÿH‹=ç`&H5¸¹èS þÿéÁþÿÿ虞þÿH…À…³þÿÿH‹=Á`&H5"½è- þÿé›þÿÿ‹T$,‹L$,‹D$Áú1ÑDè)ыT$0¯ÁDléˆýÿÿL‹D$hHt$`¹º¿M‹~èOæH…ÀI‰Å„Š‹L$ D‹D$ H‹p‹D$‹T$$H‹|$`ÁùA1ȃèA)ÈA¯ÀÐH˜H9Ç~B…ÒxHcÂH9ÇqH‹=`&H5޹聟þÿL;l$h„éýÿÿIƒm…ÞýÿÿL‰ï補þÿéÑýÿÿH‹=ß_&H5p¹èKŸþÿëÈ蔝þÿH…À…®ýÿÿH‹=¼_&H5e¼è(Ÿþÿé–ýÿÿHcT$0ƒ|$4H=þI×HÿýHDúH”$°HƒìLD$4APQLÆL‰æHŒ$ÐQH‹L$(LL$@ÿÕHƒÄ èþÿH…ÀtÇD$‹D$…À„0ÿÿÿH=‹ýL‰ö1ÀèPžþÿH‰D$8éÿÿÿfDAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH¯H
ˆ`%HìØH‹*$H‰„$ÀH‰„$ÈH‰D$`H‰„$ˆHD$0HÇD$@ÇD$ÇD$ÇD$ H‰\$HH‰\$PH‰\$XÇD$$H‰\$hÇD$(H‰\$pÇD$,H‰\$xH‰œ$€ÇD$0H‰œ$ÇD$4H‰œ$˜ÇD$8H‰œ$ ÇD$<H‰œ$¨PH„$°PH„$°PH„$°PH„$°PH„$¨PH„$¨PH„$¨PH„$¨PH„$ P1ÀLŒ$ L„$˜蠜þÿHƒÄP…À„tH‹´$¨H9ÞtwH|$<H“º膦þÿ‰D$‹D$…Àt8‹L$<ƒùvaHœ$ÐHâ¯H56H‰ß1À衚þÿH‹=R]&H‰ÞèœþÿH‹D$@H‹D$@HÄØ[]A\A]A^A_ÃfD‹D$ÇD$<…ÀtÎH‹t$pH9Þ„²H|$(H>ºèñ¥þÿ‰D$‹D$…Àt£‹T$(…Ò„¹H‹´$˜H9Þ„ÈH|$4HDº跥þÿ‰D$‹D$…À„eÿÿÿ‹D$4…À„»H‹t$xH9Þ„ÊH|$,HIºè|¥þÿ‰D$‹D$…À„*ÿÿÿH‹´$ H9Þ„¥H|$8HWºèJ¥þÿ‰D$‹D$…À„øþÿÿfïÀL¤$ÐH‹t$PHjºL‰çò„$Ðò„$ØòD$è"þÿ…ÀòD$t1fïɸfïÒòZŒ$ÐóŒ$°òZ”$Øó”$´‰D$‹D$…À„uþÿÿH‹´$€H9Þ„ýH/ºL‰çò„$Ðò„$Ø襜þÿ…Àt1fï۸fïäòZœ$Ðóœ$¸òZ¤$Øó¤$¼‰D$‹D$…À„þýÿÿL‹D$XH´$À¹º¿èáH…ÀI‰Å„‹H‹Œ$ÈH‹@HGûH5…ÉH‰D$‰L$x`Hƒ¼$À¸Lt$ HO„$ÀH‹t$HHì¹L‰÷‰D$$踣þÿ‰D$‹D$…Àt9‹L$ …Éx
;L$$ŒH»:H5­L‰ç1ÀèҗþÿH‹=ƒZ&L‰æèó™þÿL;l$X„&ýÿÿIƒm…ýÿÿL‰ïè—þÿéýÿÿ‹D$ÇD$(…À…cýÿÿéõüÿÿ€1Àéñüÿÿf„Hœ$Ð1ÉHO0H5öé¨üÿÿ‹D$ÇD$4…À…Qýÿÿé¥üÿÿ€Hœ$Ð1ÉH/qH5ÈéhüÿÿÇD$,é>ýÿÿÇD$8écýÿÿfïÀó„$¸ó„$¼éBþÿÿL‹„$ƒÊÿI9Ø„Í1|$0HcÒH´$ˆH‰”$ˆ¿º”ÀÁà…‰Áè7ßH…ÀI‰Ätl‹L$4‹t$4‹D$HcT$8H‹¼$ˆÁù1΃è)ίÆÐH˜H9Ç~%…Òx	H9׏¡H‹=Y&H5
²èp˜þÿéxþÿÿH‹=ìX&H5½±èX˜þÿé`þÿÿ螖þÿH…À…RþÿÿH‹=ÆX&H5¸è2˜þÿé:þÿÿ‹D$‹L$4ЋT$4Áú1Ñ)ыT$8¯MTéÿÿÿèS–þÿH…À…8ûÿÿH‹={X&H5D·èç—þÿé ûÿÿL‹D$hHt$`¹º¿M‹|$è/ÞH…ÀH‰Ã„‡‹|$(D‹D$(H‹p‹D$HcT$,H‹L$`ÁÿA1øƒèA)øA¯ÀÐH˜H9Á~>…ÒxH9ÑpH‹=÷W&H51èc—þÿH;\$h„eýÿÿHƒ+…[ýÿÿH‰ß膔þÿéNýÿÿH‹=ÂW&H5S±è.—þÿëÉèw•þÿH…À…+ýÿÿH‹=ŸW&H5@·è—þÿéýÿÿHcD$8ƒ|$<H=óõHŒ$°MÇHÖHÖõHt$HDúHƒìHT$<RAPH”$ÐRHT$HRPL‰òL‹D$8LL$TÿÕHƒÄ0èñ”þÿH…ÀtÇD$‹D$…À„%ÿÿÿH=bõL‰æ1Àè'–þÿH‰D$@é
ÿÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËHï
H
XV%HìL‹=úû#H‰„$øH‰„$H‰„$˜H‰„$ÀHD$PHÇD$`ÇD$4ÇD$0L‰|$hÇD$8L‰|$pÇD$<L‰|$xÇD$@L‰¼$€L‰¼$ˆL‰¼$ÇD$DL‰¼$ ÇD$HL‰¼$¨ÇD$LL‰¼$°L‰¼$¸ÇD$PL‰¼$ÈÇD$TL‰¼$ÐÇD$XL‰¼$ØÇD$\L‰¼$àPH„$èPH„$èPH„$èPH„$èPH„$àPH„$àPH„$àPH„$àPH„$ØPH„$ØPH„$ØPH„$ØP1ÀLŒ$ØL„$Ðè!”þÿHƒÄp…À„H‹´$ØL9þtxH|$THµèžþÿ‰D$(‹D$(…Àt8‹L$TƒùvbHœ$H#µH5*H‰ß1Àè"’þÿH‹=ÓT&H‰ÞèC”þÿH‹D$XH‹D$XHÄ[]A\A]A^A_À‹D$(ÇD$T…ÀtÍHl$4H‹t$pH÷´H‰ïèwþÿ‰D$(‹D$(…Àt¨‹L$4…ɈßLd$8H‹t$xH.µL‰çèFþÿ‰D$(‹D$(…À„sÿÿÿ‹L$8…ɈãH‹´$ L9þ„¹H|$@HUµèþÿ‰D$(‹D$(…À„5ÿÿÿ‹T$@…Ò„ÀH‹´$ÈL9þ„ÌH|$LHWµèʜþÿ‰D$(‹D$(…À„÷þÿÿ‹D$L…À„¸H‹´$¨L9þ„ÄH|$DHYµ茜þÿ‰D$(‹D$(…À„¹þÿÿH‹´$ÐL9þ„ŸH|$PHgµèZœþÿ‰D$(‹D$(…À„‡þÿÿfïÀL´$H‹´$€HwµL‰÷ò„$ò„$ò$è0”þÿ…Àò$t1fïɸfïÒòZŒ$óŒ$àòZ”$ó”$ä‰D$(‹D$(…À„þÿÿH‹´$°L9þ„öH>µL‰÷ò„$ò„$贓þÿ…Àt1fï۸fïäòZœ$óœ$èòZ¤$ó¤$ì‰D$(‹D$(…À„ŒýÿÿL‹„$ˆH´$𹺿èØH…ÀI‰Å„{H‹@H‹t$`H7µH‰$HD$,H‰ÇH‰D$èùšþÿ‰D$(‹D$(…Àt;‹D$4D$8‹L$,9ÈŒ[H:µH5p	L‰÷1ÀèþÿH‹=ÂQ&L‰öè2‘þÿL;¬$ˆ„áüÿÿIƒm…ÖüÿÿL‰ïèQŽþÿéÉüÿÿ@1ÀéÈüÿÿHœ$H)²H5Ëé‰üÿÿD‹D$(ÇD$@…À…`ýÿÿé„üÿÿHœ$HX²H5¢éPüÿÿHœ$1ÉH['H5•é3üÿÿ‹D$(ÇD$L…À…Mýÿÿé3üÿÿHœ$1ÉHEhH5qéýûÿÿÇD$DéDýÿÿÇD$PéiýÿÿfïÀó„$èó„$ìéIþÿÿèoŽþÿH…À…ÓûÿÿH‹=—P&H5`³èþÿé»ûÿÿHD$0H‹t$hHý³H‰ÇH‰D$è`™þÿ‰D$(‹D$(…À„žþÿÿ‹L$0…Éx
HcÁH;„$øtH´H5áé]þÿÿHƒ¼$ð¸L‹„$ÀHO„$ð‰D$<ƒÈÿM9ø„å1҃|$HH´$¸H˜¿H‰„$¸”ÂÁâ€ʅ‰Ѻè¶ÕH…ÀI‰Ç„€ƒ|$TL‹HH‹´$¸ud‹D$,Pÿ‹|$L‹D$LHcL$PÁÿ1ø)ø¯ÂÈH˜H9Æ~%…Éx	H9Ώ‘H‹=tO&H5}¨èàŽþÿé©ýÿÿH‹=\O&H5•³èȎþÿé‘ýÿÿ‹D$0PÿëšèþÿH…À…zýÿÿH‹=-O&H5³虎þÿébýÿÿƒ|$T‹D$Pp…,‹D$,Hÿ‹T$L‹D$LÁú1Ð)ЯÁðééþÿÿL‹„$˜H´$¹º¿L‰L$è©ÔH…ÀI‰ÆL‹L$„¬‹L$TH‹xH‹´$…É…‡‹D$,D@ÿD‹T$@‹D$@HcT$DAÁúD1ÐD)ÐA¯ÀÐH˜H9Æ~E…Òx	H9֏ˆH‹=WN&H5p³èÍþÿL;´$˜„ƒüÿÿIƒ.…yüÿÿL‰÷èãŠþÿélüÿÿH‹=N&H5ð²苍þÿëƋD$0D@ÿétÿÿÿèNjþÿH…À…<üÿÿH‹=ïM&H5p²è[þÿé$üÿÿƒééÓþÿÿHcD$P…ÉI4ÁH×H=ìtH)ìH=$ìƒùHEúHƒìM‰àH‰éHT$TRVH”$RHT$`RPHD$lPÿt$8H‹T$PH‹t$HLŒ$ ÿÓHƒÄ@è)‹þÿH…ÀtÇD$(‹D$(…À„ýþÿÿH=šëL‰þ1Àè_ŒþÿH‰D$XéâþÿÿDAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHÂH
ØJ%HìÐH‹:ò#H‰„$¸H‰„$ÀH‰D$XH‰D$pHD$(HÇD$@ÇD$ ÇD$ÇD$$H‰\$HH‰\$PH‰\$`H‰\$hÇD$(H‰\$xÇD$,H‰œ$€ÇD$0H‰œ$ˆÇD$4H‰œ$ÇD$8H‰œ$˜ÇD$<H‰œ$ PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$ PH„$ P1ÀLŒ$˜L„$èɊþÿHƒÄP…À„EH‹´$˜H9Þ„ÜH|$4H±諔þÿ‰D$‹D$…ÀuH‹D$8H‹D$8HÄÈ[]A\A]A^A_ËL$4ƒù‡³H‹´$€H9Þ„âH|$(Hö°èQ”þÿ‰D$‹D$…Àt¦‹|$(…ÿ„ÙH‹´$H9Þ„èH|$0Hü°è”þÿ‰D$‹D$…À„hÿÿÿ‹t$0…ö…ÏHœ$À1ÉHRžH5åë7‹D$ÇD$4…À…Yÿÿÿé(ÿÿÿ€Hœ$ÀHñªH5‡H‰ß1Àèð‡þÿH‹=¡J&H‰ÞèŠþÿéíþÿÿ@1Àéìþÿÿ‹D$ÇD$(…À…3ÿÿÿéÈþÿÿ€Hœ$À1ÉHGH58ëœfD‹D$ÇD$0…À„þÿÿfïÀL¤$ÀH‹t$@H4°L‰çò„$Àò„$ÈòD$è‹þÿ…ÀòD$t1fïɸfïÒòZŒ$ÀóŒ$ òZ”$Èó”$¤‰D$‹D$…À„
þÿÿH‹t$`H9Þ„rHü¯L‰çò„$Àò„$È蚊þÿ…Àt1fï۸fïäòZœ$Àóœ$¨òZ¤$Èó¤$¬‰D$‹D$…À„–ýÿÿL‹D$HH´$°¹º¿èÏH…ÀI‰Ä„)H‹t$xL‹pH9Þ„èH|$$Hê¯èå‘þÿ‰D$‹D$…À„‰H‹´$ˆH9Þ„ÃH|$,Hø¯賑þÿ‰D$‹D$…À„W‹L$4H‹„$°H‹”$¸…ÉA‰ID$A‰׉T$uA‰ÑA‰ÇL‹D$XHt$P¹º¿D‰L$èDÎH…ÀI‰ÅD‹L$„¯‹t$(‹D$(AƒéHcT$$H‹L$PÁþ1ð)ðA¯ÁÐH˜H9ÁŽ\…ÒˆH9ÑŽL‹D$pƒÊÿI9Ø„F1|$ M‹MHcÒHt$h¿H‰T$hºL‰L$”ÀÁà…‰Áè­ÍH…ÀH‰ÃL‹L$„"‹t$0‹D$0AƒïHcT$,H‹L$hÁþ1ð)ðA¯ÇÐH˜H9ÁŽ¹…Òx	H9яH‹=rG&H5+èކþÿL;l$XtIƒm„«L;d$H„¢ûÿÿIƒ,$…—ûÿÿL‰çèîƒþÿéŠûÿÿfïÀó„$¨ó„$¬éÍýÿÿÇD$$é þÿÿÇD$,éEþÿÿH‹=õF&H5¦èa†þÿë誄þÿH…À…2ûÿÿH‹=ÒF&H5s­è>†þÿéûÿÿH‹=ºF&H5{®è&†þÿéCÿÿÿL‰ïèYƒþÿéHÿÿÿè_„þÿH…À…:ÿÿÿH‹=‡F&H5ø­èó…þÿé"ÿÿÿH‹CH=ÄäLÐHcD$$MKD$4…ÀtƒøH=ÀäH·äHEøHt$HŒ$ HT$HƒìHD$8I‰ñPARH„$ÀPHD$HPAPM‰ðÿÕHƒÄ0èɃþÿH…ÀtÇD$‹D$…À„‚þÿÿH=:äH‰Þ1Àèÿ„þÿH‰D$8égþÿÿH‹=ÆE&H5®è2…þÿéOþÿÿ‹T$0‹D$0Áú1Ð)ÐAWÿ¯‹T$,Té—ýÿÿèUƒþÿH…À…þÿÿH‹=}E&H5~­èé„þÿéþÿÿ@AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌHSýH
=%HìˆH‹zê#H‰D$8H‰D$XHD$pHÇD$ ÇD$ÇD$H‰\$(H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$H‰\$hÇD$H‰\$pPHD$pPHD$`PHD$`PHD$PPHD$PP1ÀLŒ$LD$pèwƒþÿHƒÄ01҅À„¹L‹D$@Ht$8¹º¿èKÊH…ÀH‰Å„ÏL‹D$`Ht$X¹º¿L‹pèÊH…ÀI‰Å„H‹t$0L‹xH9Þ„gfïÀH¼$€H4­ò„$€ò„$ˆè…þÿ…Àt+fïɸfïÒòZŒ$€óL$xòZ”$ˆóT$|‰D$‹D$…À„ÎH‹t$PH9Þ„8H|$H­臌þÿ‰D$‹D$…À„Ÿ‹T$…Ò„+H‹t$pH9Þ„mH|$H­èLŒþÿ‰D$‹D$…À„d‹D$…À„`H‹t$HH9Þ„rH|$H­èŒþÿ‰D$‹D$…À„)‹L$…ɈeHcÁH9D$8ŽWH‹t$hH9Þ„dH|$HE­èȋþÿ‰D$‹D$…À„à‹L$…ɈTHcÁH;D$XFH‹t$(H9Þ„SH|$Ht­è‹þÿ‰D$‹D$…À„—‹T$‹L$‹D$LcD$H‹|$XÁúqÿ1Ð)ÐL)ǯÆH˜H9ÇŽ‰‹T$‹D$LcL$H‹|$8Áú1Ð)ÐL)ϯÆH˜H9ǏHœ$€HmLH5qúfDH‰ß1Àè>þÿH‹=ïA&H‰Þè_þÿ€H;l$@tHƒmt:H‹D$ H‹T$ HĈH‰Ð[]A\A]A^A_ÃÇD$x€?ÇD$|éáýÿÿH‰ïèH~þÿë¼fDèKþÿH…Àu¬H‹=wA&H5ªèã€þÿ뗐‹D$ÇD$…À…áýÿÿéoÿÿÿ€Hœ$€1ÉH'”H5Sùé+ÿÿÿèë~þÿH…À…:ÿÿÿH‹=A&H5ì©è€þÿé"ÿÿÿf.„‹D$ÇD$…À…¬ýÿÿéÿþÿÿ€Hœ$€1ÉH'”H5õøé»þÿÿ‹D$ÇD$…À„Äþÿÿ1À1Éé¡ýÿÿHœ$€HjH5Éøé}þÿÿ‹D$ÇD$…À„‰þÿÿ1À1Éé¯ýÿÿHœ$€H«H5£øéEþÿÿHcD$H‹L$8‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$é’ýÿÿKÎHL$Ht$xH|$LL$OÇAÿÔè¹}þÿH…ÀtÇD$‹D$…À„øýÿÿH=*ÞL‰î1Àèï~þÿH‰D$ éÝýÿÿHœ$€H&XéœýÿÿAVAUH‰÷ATUH‰ÖSH
øH‰ÍH
¡4%HìXH‹Ãä#HD$HHÇD$ÇD$ÇD$HÇD$0ÿÿÿÿH‰\$ H‰\$(H‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$HPHD$0P1ÀLL$PLD$@èõ}þÿHƒÄ 1҅ÀtAfïÀLd$PH‹t$ HªL‰çòD$PòD$Xèòþÿ…Àu.‰$‹$…ÀuSH‹D$H‹T$HÄPH‰Ð[]A\A]A^À¸fïɉ$‹$fïÒòZL$PóL$H…ÀòZT$XóT$Lt­L‹D$0Ht$(¹º¿èCÄH…ÀI‰Å„wH‹t$@L‹pH9Þ„åH|$Hñ©è$‡þÿ‰$‹$…À„Rÿÿÿ‹D$…À„ÚH‹t$8H9Þ„üH|$Hø©èë†þÿ‰$‹$…À„ÿÿÿ‹L$…ɈñHcÑH‹D$(H9ÐŽàH‹t$H9Þ„H|$Hî©衆þÿ‰$‹$…À„Ïþÿÿ‹T$‹D$‹L$Hc|$H‹t$(Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏÛHÃGH5öë2f‹$ÇD$…À…3ÿÿÿétþÿÿ„H©FH5¸õ1ÉL‰ç1ÀèfzþÿH‹==&L‰æè‡|þÿé>þÿÿf‹$ÇD$…À„)þÿÿ1Ò1Ééÿÿÿ@HÉFH5zõë°è›zþÿH…À…þýÿÿH‹=Ã<&H5,¨è/|þÿéæýÿÿH)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$ééþÿÿIþHL$Ht$HH|$ÿÕè=zþÿH…ÀtÇ$‹$…À„’ýÿÿH=°ÚL‰î1Àèu{þÿH‰D$éwýÿÿf.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHÚôH
Š^%HìH‹Lá#H‰D$pH‰D$xH‰„$€H‰„$ˆHD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@ÇD$H‰\$HÇD$ÇD$ÇD$ H‰\$PÇD$$H‰\$XÇD$(H‰\$`ÇD$,H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hè!zþÿHƒÄ0…À„…H‹t$PH9ÞtsH|$ H—§è
„þÿ‰D$‹D$…Àt8‹L$ ƒùv]Hœ$HiH5¿óH‰ß1Àè%xþÿH‹=Ö:&H‰ÞèFzþÿH‹D$0H‹D$0HĐ[]A\A]A^Ã@‹D$ÇD$ …ÀtÒH‹t$XH9ÞtFH|$$HJ§è}ƒþÿ‰D$‹D$…Àt«‹L$$ƒùv4Hœ$HñhH5DóénÿÿÿD‹D$ÇD$$…À„nÿÿÿH‹t$`H9Þ„žH|$(H"§èƒþÿ‰D$‹D$…À„?ÿÿÿ‹L$(ƒù‡‰H‹t$hH9Þ„–H|$,H&§èقþÿ‰D$‹D$…À„ÿÿÿ‹L$,ƒù†|Hœ$H=iH5ÀòéÂþÿÿHĐ1À[]A\A]A^ÃfD‹D$ÇD$(…À…|ÿÿÿé©þÿÿHœ$HphH5^òéuþÿÿ‹D$ÇD$,…À„zþÿÿL¤$H‹t$8H´¦L‰çèDzþÿ‰D$‹D$…À„NþÿÿL‹D$@Ht$p¹º¿èæ¾H…ÀH‰Ã„aL‹h1|$L‹D$HH´$€º¿”ÀÁàƒÈ‰Á訾H…ÀI‰Æ„L‹@H‹D$pHýÖ‹|$ H
	׉D$H‹„$€…ÿ‰D$H‹„$ˆ‰D$DD$xƒ|$,‰D$‹D$(HDʅÀtƒøHËÖHÂÖHEЃ|$$H¶ÖH5©ÖHEð…ÿH=éHDøHƒìHD$$PAPHD$0PAUATLL$@LD$<ÿÕHƒÄ0èÅuþÿH…ÀtÇD$‹D$…ÀtH=:ÖL‰ö1ÀèÿvþÿH‰D$0H;\$@„ùüÿÿHƒ+…ïüÿÿH‰ßèmtþÿéâüÿÿèsuþÿH…ÀuÔH‹=Ÿ7&H5¸¥èwþÿë¿èTuþÿH…À…µüÿÿH‹=|7&H5E¥èèvþÿéüÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHkðH
8X%HìÈH‹zÜ#H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$°H‰„$¸HD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HH‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèIuþÿHƒÄ0…À„­H‹t$hH9ÞtsH|$$H¯¤è2þÿ‰D$‹D$…Àt8‹L$$ƒùv]Hœ$ÀHFkH5KïH‰ß1ÀèMsþÿH‹=þ5&H‰ÞènuþÿH‹D$0H‹D$0HÄÈ[]A\A]A^A_Ãf‹D$ÇD$$…ÀtÒH‹t$`H9ÞtFH|$ Hb¤è¥~þÿ‰D$‹D$…Àt«‹L$ ƒùv4Hœ$ÀH1kH5ÒîénÿÿÿD‹D$ÇD$ …À„nÿÿÿLd$pH‹t$8HC¤L‰çècvþÿ‰D$‹D$…À„EÿÿÿH‹t$PH9Þ„ŒH¼$ H^¤è1vþÿ‰D$‹D$…À„ÿÿÿL‹D$@H´$€¹º¿èкH…ÀH‰Ã„´L‹D$HH´$¹º¿L‹p蟺H…ÀI‰Å„YD‹D$ L‹xH‹´$ˆH‹„$€H‹¼$E…	ID$(Hc։|$,„î9ø‰t$‰D$@•Ç@„ÿ…ôƒ|$L‹D$XH´$°H‰”$°H‰”$¸¿ºɃá Eè	ºH…ÀI‰Â„éHcT$H‹„$°H9ÐuH;„$¸„óH‹=î3&H5kèZsþÿL;l$HtIƒm„›H;\$@„ÏýÿÿHƒ+…ÅýÿÿH‰ßèkpþÿé¸ýÿÿfD1ÀéµýÿÿfïÀò„$ ò„$¨éqþÿÿ;´$˜‰D$HcЉt$‰ñ@•ÇéÿÿÿH¬$ÀHrjH5·ì1ÀH‰ïè‘pþÿH‹=B3&H‰îè²rþÿéSÿÿÿL‰ïèåoþÿéXÿÿÿèëpþÿH…À…$ýÿÿH‹=3&H5”¢èrþÿéýÿÿ‹D$ H5PÑ…ÀtƒøH5[ÑHVÑHDðƒ|$$HT$HL$H>ÑH=1ÑM‰ñRAÿrM‰àHEøH„$°L‰T$PHD$DPAWHD$PPÿÕHƒÄ0èSpþÿH…ÀL‹T$tÇD$‹D$…À„‹þÿÿH=¿ÐL‰Ö1Àè„qþÿH‰D$0épþÿÿèpþÿH…À…tþÿÿH‹==2&H5¢è©qþÿé\þÿÿèïoþÿH…À…<þÿÿH‹=2&H58¢èƒqþÿé$þÿÿ@f.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHKëH
R%HìÈH‹
×#H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$°H‰„$¸HD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HH‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèÙoþÿHƒÄ0…À„­H‹t$hH9ÞtsH|$$HG¡èÂyþÿ‰D$‹D$…Àt8‹L$$ƒùv]Hœ$ÀHÖeH5+êH‰ß1ÀèÝmþÿH‹=Ž0&H‰ÞèþoþÿH‹D$0H‹D$0HÄÈ[]A\A]A^A_Ãf‹D$ÇD$$…ÀtÒH‹t$`H9ÞtFH|$ Hú è5yþÿ‰D$‹D$…Àt«‹L$ ƒùv4Hœ$ÀHÁeH5²éénÿÿÿD‹D$ÇD$ …À„nÿÿÿLd$pH‹t$8H۠L‰çèópþÿ‰D$‹D$…À„EÿÿÿH‹t$PH9Þ„ŒH¼$ Hö èÁpþÿ‰D$‹D$…À„ÿÿÿL‹D$@H´$€¹º¿è`µH…ÀH‰Ã„´L‹D$HH´$¹º¿L‹pè/µH…ÀI‰Å„YD‹D$ L‹xH‹´$ˆH‹„$€H‹¼$E…	ID$(Hc։|$,„î9ø‰t$‰D$@•Ç@„ÿ…ôƒ|$L‹D$XH´$°H‰”$°H‰”$¸¿ºɃá E虴H…ÀI‰Â„éHcT$H‹„$°H9ÐuH;„$¸„óH‹=~.&H5fèêmþÿL;l$HtIƒm„›H;\$@„ÏýÿÿHƒ+…ÅýÿÿH‰ßèûjþÿé¸ýÿÿfD1ÀéµýÿÿfïÀò„$ ò„$¨éqþÿÿ;´$˜‰D$HcЉt$‰ñ@•ÇéÿÿÿH¬$ÀHeH5—ç1ÀH‰ïè!kþÿH‹=Ò-&H‰îèBmþÿéSÿÿÿL‰ïèujþÿéXÿÿÿè{kþÿH…À…$ýÿÿH‹=£-&H5,Ÿèmþÿéýÿÿ‹D$ H5àË…ÀtƒøH5ëËHæËHDðƒ|$$HT$HL$HÎËH=ÁËM‰ñRAÿrM‰àHEøH„$°L‰T$PHD$DPAWHD$PPÿÕHƒÄ0èãjþÿH…ÀL‹T$tÇD$‹D$…À„‹þÿÿH=OËL‰Ö1ÀèlþÿH‰D$0épþÿÿè¥jþÿH…À…tþÿÿH‹=Í,&H5¦žè9lþÿé\þÿÿèjþÿH…À…<þÿÿH‹=§,&H5Оèlþÿé$þÿÿ@f.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH-æH
:K%Hì˜H‹œÑ#H‰D$xH‰„$€H‰„$ˆH‰„$HD$ HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HÇD$ H‰\$PÇD$$H‰\$XÇD$(H‰\$`ÇD$,PHD$hPHD$hPHD$hPHD$hP1ÀLL$hLD$`è‘jþÿHƒÄ0…À„EH‹t$XH9ÞtsH|$ Hžèztþÿ‰D$‹D$…Àt8‹L$ ƒùv]Hœ$HŽ`H51åH‰ß1Àè•hþÿH‹=F+&H‰Þè¶jþÿH‹D$(H‹D$(HĐ[]A\A]A^Ã@‹D$ÇD$ …ÀtÒH‹t$PH9ÞtFH|$Hºèísþÿ‰D$‹D$…Àt«‹L$ƒùv4Hœ$Hy`H5·äénÿÿÿD‹D$ÇD$…À„nÿÿÿLd$`H‹t$0H›L‰çè«kþÿ‰D$‹D$…À„EÿÿÿH‹t$@H9Þ„/H¼$H¶èykþÿ‰D$‹D$…À„ÿÿÿL‹D$8Ht$p¹º¿è°H…ÀH‰Ã„£‹|$H‹T$pH‹L$xL‹h…ÿHc‰T$$‰Î„Ù‰L$‰ÖHcC|$L‹D$Hº‰t$H´$€¿H‰„$€H‰„$ˆɃá E裯H…ÀI‰Æ„QHcT$H‹„$€H9Ðu
H;„$ˆtqH‹=Œ)&H5aèøhþÿH;\$8„7þÿÿHƒ+…-þÿÿH‰ßèfþÿé þÿÿfDHĐ1À[]A\A]A^ÃfïÀò„$ò„$˜éÎþÿÿ‰T$é'ÿÿÿ‹D$H5pÇ…ÀtƒøH5{ÇHvÇHDðƒ|$ HT$HL$H^ÇH=QÇM‰éRAÿvM‰àHEøH„$ PHD$<PÿÕHƒÄ è€fþÿH…ÀtÇD$‹D$…À„ÿÿÿH=ñÆL‰ö1Àè¶gþÿH‰D$(éÿÿÿèGfþÿH…À…8ýÿÿH‹=o(&H5œèÛgþÿé ýÿÿè!fþÿH…À…ÐþÿÿH‹=I(&H5*œèµgþÿé¸þÿÿAVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHâH
jF%Hì˜H‹LÍ#H‰D$xH‰„$€H‰„$ˆH‰„$HD$ HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HÇD$ H‰\$PÇD$$H‰\$XÇD$(H‰\$`ÇD$,PHD$hPHD$hPHD$hPHD$hP1ÀLL$hLD$`èAfþÿHƒÄ0…À„EH‹t$XH9ÞtsH|$ Hg›è*pþÿ‰D$‹D$…Àt8‹L$ ƒùv]Hœ$H>\H5áH‰ß1ÀèEdþÿH‹=ö&&H‰ÞèffþÿH‹D$(H‹D$(HĐ[]A\A]A^Ã@‹D$ÇD$ …ÀtÒH‹t$PH9ÞtFH|$H›èoþÿ‰D$‹D$…Àt«‹L$ƒùv4Hœ$H)\H5£àénÿÿÿD‹D$ÇD$…À„nÿÿÿLd$`H‹t$0HûšL‰çè[gþÿ‰D$‹D$…À„EÿÿÿH‹t$@H9Þ„/H¼$H›è)gþÿ‰D$‹D$…À„ÿÿÿL‹D$8Ht$p¹º¿è˫H…ÀH‰Ã„£‹|$H‹T$pH‹L$xL‹h…ÿHc‰T$$‰Î„Ù‰L$‰ÖHcC|$L‹D$Hº‰t$H´$€¿H‰„$€H‰„$ˆɃá EèS«H…ÀI‰Æ„QHcT$H‹„$€H9Ðu
H;„$ˆtqH‹=<%&H5Í\è¨dþÿH;\$8„7þÿÿHƒ+…-þÿÿH‰ßèËaþÿé þÿÿfDHĐ1À[]A\A]A^ÃfïÀò„$ò„$˜éÎþÿÿ‰T$é'ÿÿÿ‹D$H5 Ã…ÀtƒøH5+ÃH&ÃHDðƒ|$ HT$HL$HÃH=ÃM‰éRAÿvM‰àHEøH„$ PHD$<PÿÕHƒÄ è0bþÿH…ÀtÇD$‹D$…À„ÿÿÿH=¡ÂL‰ö1ÀèfcþÿH‰D$(éÿÿÿè÷aþÿH…À…8ýÿÿH‹=$&H5`™è‹cþÿé ýÿÿèÑaþÿH…À…ÐþÿÿH‹=ù#&H5Š™èecþÿé¸þÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHÞH
ø@%HìÈH‹úÈ#H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$°H‰„$¸HD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HH‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèÉaþÿHƒÄ0…À„µH‹t$`H9ÞtsH|$ HŸ˜è²kþÿ‰D$‹D$…Àt8‹L$ ƒùv]Hœ$ÀH`H5âÜH‰ß1ÀèÍ_þÿH‹=~"&H‰ÞèîaþÿH‹D$0H‹D$0HÄÈ[]A\A]A^A_Ãf‹D$ÇD$ …ÀtÒH‹t$hH9ÞtFH|$$HR˜è%kþÿ‰D$‹D$…Àt«‹L$$ƒùv4Hœ$ÀH9WH5gÜénÿÿÿD‹D$ÇD$$…À„nÿÿÿLd$pH‹t$8H3˜L‰çèãbþÿ‰D$‹D$…À„EÿÿÿH‹t$PH9Þ„”H¼$ HN˜è±bþÿ‰D$‹D$…À„ÿÿÿL‹D$@H´$€¹º¿èP§H…ÀH‰Ã„ºL‹D$HH´$¹º¿L‹pè§H…ÀI‰Å„KD‹L$ L‹xH‹Œ$€H‹„$H‹¼$ˆL‹„$˜E…ɉL$(Hcð‰D$,HcׄíD9ID$‰|$•À…ðƒ|$L‹D$X¿H‰´$°H´$°H‰”$¸ºɃá E聦H…ÀI‰Â„ÓHcD$H9„$°uHcD$H9„$¸„ïH‹=d &H5å_èÐ_þÿL;l$HtIƒm„—H;\$@„ÅýÿÿHƒ+…»ýÿÿH‰ßèá\þÿé®ýÿÿ@1Àé­ýÿÿfïÀò„$ ò„$¨éiþÿÿ9ljL$D‰D$•ÀIcÐHcñéÿÿÿH¬$À‰ÑH5LÚHÝ^1ÀH‰ïè]þÿH‹=¼&H‰îè,_þÿéWÿÿÿL‰ïè_\þÿé\ÿÿÿèe]þÿH…À…ýÿÿH‹=&H5~–èù^þÿéýÿÿƒ|$$Hæ½H5ٽHT$HL$H=?ÐM‰ñM‰àHEðƒ|$ RAÿrL‰T$HDøH„$°PHD$DPAWHD$PPÿÕHƒÄ0èá\þÿH…ÀL‹T$tÇD$‹D$…À„£þÿÿH=M½L‰Ö1Àè^þÿH‰D$0éˆþÿÿè£\þÿH…À…ŒþÿÿH‹=Ë&H5–è7^þÿétþÿÿè}\þÿH…À…TþÿÿH‹=¥&H56–è^þÿé<þÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHîØH
Ø:%HìÈH‹šÃ#H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$°H‰„$¸HD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HH‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèi\þÿHƒÄ0…À„µH‹t$`H9ÞtsH|$ H?•èRfþÿ‰D$‹D$…Àt8‹L$ ƒùv]Hœ$ÀH¦ZH5Í×H‰ß1ÀèmZþÿH‹=&H‰ÞèŽ\þÿH‹D$0H‹D$0HÄÈ[]A\A]A^A_Ãf‹D$ÇD$ …ÀtÒH‹t$hH9ÞtFH|$$Hò”èÅeþÿ‰D$‹D$…Àt«‹L$$ƒùv4Hœ$ÀHÙQH5R×énÿÿÿD‹D$ÇD$$…À„nÿÿÿLd$pH‹t$8HӔL‰çèƒ]þÿ‰D$‹D$…À„EÿÿÿH‹t$PH9Þ„”H¼$ Hî”èQ]þÿ‰D$‹D$…À„ÿÿÿL‹D$@H´$€¹º¿èð¡H…ÀH‰Ã„ºL‹D$HH´$¹º¿L‹p迡H…ÀI‰Å„KD‹L$ L‹xH‹Œ$€H‹„$H‹¼$ˆL‹„$˜E…ɉL$(Hcð‰D$,HcׄíD9ID$‰|$•À…ðƒ|$L‹D$X¿H‰´$°H´$°H‰”$¸ºɃá Eè!¡H…ÀI‰Â„ÓHcD$H9„$°uHcD$H9„$¸„ïH‹=&H5…ZèpZþÿL;l$HtIƒm„—H;\$@„ÅýÿÿHƒ+…»ýÿÿH‰ßèWþÿé®ýÿÿ@1Àé­ýÿÿfïÀò„$ ò„$¨éiþÿÿ9ljL$D‰D$•ÀIcÐHcñéÿÿÿH¬$À‰ÑH57ÕH}Y1ÀH‰ïè«WþÿH‹=\&H‰îèÌYþÿéWÿÿÿL‰ïèÿVþÿé\ÿÿÿèXþÿH…À…ýÿÿH‹=-&H5“è™Yþÿéýÿÿƒ|$$H†¸H5y¸HT$HL$H=ßÊM‰ñM‰àHEðƒ|$ RAÿrL‰T$HDøH„$°PHD$DPAWHD$PPÿÕHƒÄ0èWþÿH…ÀL‹T$tÇD$‹D$…À„£þÿÿH=í·L‰Ö1Àè²XþÿH‰D$0éˆþÿÿèCWþÿH…À…ŒþÿÿH‹=k&H5¬’è×XþÿétþÿÿèWþÿH…À…TþÿÿH‹=E&H5֒è±Xþÿé<þÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHÙÓH
ø3%HìØH‹:¾#H‰„$H‰„$˜H‰„$ H‰„$¨H‰„$ÀH‰„$ÈHD$,HÇD$@ÇD$ ÇD$ÇD$$ÇD$(H‰\$HH‰\$PH‰\$XH‰\$`ÇD$,H‰\$hÇD$0H‰\$pÇD$4H‰\$xÇD$8ÇD$<PH„$€PH„$€PH„$€PH„$€PH„$€P1ÀLŒ$€LD$xèïVþÿHƒÄ0…À„ûH‹t$pH9Þ„H|$0HQèÔ`þÿ‰D$‹D$…Àu H‹D$@H‹D$@HÄØ[]A\A]A^A_Ã@‹L$0ƒùwoH‹t$xH9Þ„¡H|$4H­‘è€`þÿ‰D$‹D$…Àt¬‹L$4ƒù†‹Hœ$ÐH YH5WÒë5€‹D$ÇD$0…Àu™ékÿÿÿHœ$ÐH1FH5ÒH‰ß1Àè`TþÿH‹=&H‰ÞèVþÿé4ÿÿÿ@1Àé3ÿÿÿ‹D$ÇD$4…À„ÿÿÿL¤$€H‹t$HH0‘L‰çèàWþÿ‰D$‹D$…À„èþÿÿH‹t$`H9Þ„¢H¼$°HK‘è®Wþÿ‰D$‹D$…À„¶þÿÿL‹D$PH´$¹º¿èMœH…ÀH‰Ã„ÐL‹D$XH´$ ¹º¿L‹pèœH…ÀI‰Å„ŠD‹T$0H‹”$L‹xL‹„$˜H‹„$ L‹Œ$¨E…҉щT$8IcøHcð‰D$<„D‰D$ ‹T$4‰L$(…Ò„äD9ɉD$$•À…óƒ|$,L‹D$hºH‰´$ÈH´$ÀH‰¼$À¿Ƀá Eèk›H…ÀI‰Â„ÿHcD$ H9„$ÀuHcD$$H9„$È„òH‹=N&H5ÏTèºTþÿL;l$XtIƒm„šH;\$P„UýÿÿHƒ+…KýÿÿH‰ßèËQþÿé>ýÿÿfDfïÀò„$°ò„$¸é[þÿÿ9ÁD‰L$$Icñ•Àéÿÿÿ‰T$ D‰ÁHcúéëþÿÿH¬$ЉñHkXH5ÇÏ1ÀH‰ïèòQþÿH‹=£&H‰îèTþÿéTÿÿÿL‰ïèFQþÿéYÿÿÿèLRþÿH…À…«üÿÿH‹=t&H5eèàSþÿé“üÿÿ‹D$4H5±²…ÀtƒøH5¼²H·²HDð‹D$0H=²…ÀtƒøH=˜²H“²HDøHT$ HL$$HƒìM‰áRAÿrH„$ÈL‰T$ PHD$\PAWHD$hPAVLD$hÿÕHƒÄ@èŸQþÿH…ÀL‹T$tÇD$‹D$…À„wþÿÿH=²L‰Ö1ÀèÐRþÿH‰D$@é\þÿÿèaQþÿH…À…`þÿÿH‹=‰&H5ʎèõRþÿéHþÿÿè;QþÿH…À…(þÿÿH‹=c&H5ôŽèÏRþÿéþÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHIÎH
˜#%Hì°H‹Z¸#H‰D$PH‰D$pH‰„$HD$0HÇD$8ÇD$ÇD$H‰\$@H‰\$HH‰\$XÇD$ H‰\$`ÇD$$H‰\$hH‰\$xÇD$(H‰œ$€ÇD$,H‰œ$ˆÇD$0H‰œ$˜ÇD$4H‰œ$ PH„$¨PH„$˜PH„$˜PH„$ˆPH„$ˆPH„$ÈPH„$°PH„$˜P1ÀLŒ$L„$ˆèüPþÿHƒÄP1҅À„¨Ld$H‹t$8HՍL‰çèåZþÿ‰D$‹D$…Àty‹L$…Ɉ=H‹´$˜H9Þ„|H|$,H؍è«Zþÿ‰D$‹D$…Àt?‹L$,ƒùvfHœ$ H7VH5ÓÌH‰ß1ÀèÆNþÿH‹=w&H‰ÞèçPþÿ€H‹D$0H‹T$0HĨH‰Ð[]A\A]A^A_ЋD$ÇD$,…ÀtÐH‹t$XH9Þ„²H|$H~èZþÿ‰D$‹D$…Àt¥‹|$…ÿ„©H‹t$xH9Þ„¸H|$ H‡èÚYþÿ‰D$‹D$…À„jÿÿÿ‹t$ …ö„¤H‹t$`H9Þ„³H|$HŒèŸYþÿ‰D$‹D$…À„/ÿÿÿH‹´$€H9Þ„ŽH|$$HšèmYþÿ‰D$‹D$…À„ýþÿÿL´$ H‹t$@H±L‰÷èaQþÿ‰D$‹D$…À„ÑþÿÿL‹D$PHt$H¹º¿è–H…ÀH‰Ã„‹L$‹t$‹D$HcT$H‹|$HÁù1΃è)ίÆÐH˜H9ÇŽô…Òx	H9׏ÿH‹=Ë&H5|çè7OþÿH;\$P„LþÿÿHƒ+…BþÿÿH‰ßèZLþÿé5þÿÿDHœ$ H)äH5¾ÊéõýÿÿD‹D$ÇD$…À…cþÿÿé÷ýÿÿ€Hœ$ 1ÉHåH5žÊé³ýÿÿ‹D$ÇD$ …À…aþÿÿéºýÿÿHœ$ 1ÉHqTH5zÊé}ýÿÿÇD$éUþÿÿÇD$$ézþÿÿH‹=ä&H5]æèPNþÿéÿÿÿH‹CL‹D$pHt$h¹º¿H‰$蕔H…ÀI‰Å„„‹L$ ‹|$ ‹D$HcT$$H‹t$hÁù1σè)ϯÇÐH˜H9Æ~C…Òx	H9֏—H‹=a&H5ŠUèÍMþÿL;l$p„‹þÿÿIƒm…€þÿÿL‰ïèïJþÿésþÿÿH‹=+&H5Uè—MþÿëÈèàKþÿH…À…PþÿÿH‹=&H5ŒètMþÿé8þÿÿèºKþÿH…À…üÿÿH‹=â
&H5‹‹èNMþÿéiüÿÿ1|$(M‹ML‹„$H´$ˆº¿L‰L$”ÀÁàƒÈ‰Áè“H…ÀI‰ÇL‹L$„¹‹T$H‹p¹B¯™÷ùH˜H9„$ˆ|HcD$$HcL$HëH=«HÁàHÁáH$ƒ|$,VL‰æHDúHT$(IÁRL‰òLD$(ÿÕèãJþÿH…ÀZYtÇD$‹D$…À„«þÿÿH=R«L‰þ1ÀèLþÿH‰D$0éþÿÿH‹=Þ&H5TèJLþÿéxþÿÿèJþÿH…À…jþÿÿH‹=¸&H5‹è$LþÿéRþÿÿDf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHùÇH
¨%HìxH‹ª±#H‰D$8H‰D$XHD$HÇD$ ÇD$ÇD$H‰\$(H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$`ÇD$H‰\$hPHD$pPHD$`PHD$`PH„$€PHD$hP1ÀLL$`LD$Xè¬JþÿHƒÄ01҅À„˜Ld$H‹t$(HEŠL‰çè•Tþÿ‰D$‹D$…Àti‹L$…Ɉ]H‹t$hH9ÞtsH|$HOŠèbTþÿ‰D$‹D$…Àt6‹L$ƒùv]H\$pHQàH5èÆH‰ß1Àè€HþÿH‹=1&H‰Þè¡JþÿH‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ЋD$ÇD$…ÀtÐH‹t$HH9Þ„âH|$Hþ‰èÑSþÿ‰D$‹D$…Àt¥‹D$…À„ÙH‹t$PH9Þ„åH|$HŠèšSþÿ‰D$‹D$…À„jÿÿÿH\$pH‹t$0H!ŠH‰ßè‘Kþÿ‰D$‹D$…À„AÿÿÿL‹D$@Ht$8¹º¿è3H…ÀI‰Å„®‹T$‹t$‹D$HcL$H‹|$8Áú1փè)Ö¯ÆÈH˜H9ÇŽf…ɈFH9ÏŽ=1|$L‹D$`Ht$Xº¿M‹u”ÀÁàƒÈ‰Á跏H…ÀI‰Ç„‹‹T$¹B¯™÷ùH˜H9D$XŒ9HcL$H¨H=¨M‹OLD$H‰ÚL‰æHÁáLñƒ|$HDøÿÕè3GþÿH…ÀtÇD$‹D$…À…ÿL;l$@„þÿÿIƒm…þÿÿL‰ïèìEþÿéþÿÿ€H\$pH¼ÝH5­ÄéÎýÿÿ„‹D$ÇD$…À…3þÿÿéÇýÿÿ€H\$p1ÉHßH5‹ÄéŒýÿÿÇD$é#þÿÿH‹=º&H5kàè&HþÿéWÿÿÿH‹=¢&H5àèHþÿé?ÿÿÿèTFþÿH…À…[ýÿÿH‹=|&H5]ˆèèGþÿéCýÿÿH‹=d&H5-RèÐGþÿéÿÿÿH=¥¦L‰þ1ÀèjGþÿH‰D$ éæþÿÿèûEþÿH…À…ØþÿÿH‹=#&H5LˆèGþÿéÀþÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËH°ÃH
˜%HìÐL‹5­#H‰D$PH‰D$`H‰„$¸H‰„$ÀHD$<HÇD$@L‰t$HÇD$ L‰t$XL‰t$hÇD$$L‰t$pÇD$(L‰t$xÇD$,L‰´$€ÇD$0L‰´$ˆÇD$4L‰´$ÇD$8L‰´$˜ÇD$<L‰´$ PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨P1ÀLŒ$ L„$è±EþÿHƒÄP…À„H‹t$hL9öt{H|$H'‡èšOþÿ‰D$‹D$…Àt8‹L$ƒùveHœ$ÀHÆPH5ZÂH‰ß1ÀèµCþÿH‹=f&H‰ÞèÖEþÿH‹D$8H‹D$8HÄÈ[]A\A]A^A_Ãf.„‹D$ÇD$…ÀtÊH¬$ H‹t$@HԆH‰ïè$Gþÿ‰D$‹D$…Àt¢H‹t$pL9ö„ZH|$ Hö†èÙNþÿ‰D$‹D$…À„sÿÿÿ‹T$ …Ò„FH‹t$xL9ö„UH|$$Hû†èžNþÿ‰D$‹D$…À„8ÿÿÿH‹´$€L9ö„0H|$(H	‡èlNþÿ‰D$‹D$…À„ÿÿÿ‹D$(…À„H‹´$ˆL9ö„(H|$,H‡è.Nþÿ‰D$‹D$…À„ÈþÿÿL‹D$PHt$H¹º¿èðŠH…ÀI‰Ä„gHcD$$…ÀxH;D$HŒÖH‹=á&H5"QèMDþÿL;d$P„lþÿÿIƒ,$…aþÿÿL‰çèoAþÿéTþÿÿf.„1ÀéMþÿÿf„‹D$ÇD$ …À…¿þÿÿé!þÿÿHœ$À1ÉH6õH5]ÀéëýÿÿÇD$$é³þÿÿ‹D$ÇD$(…À…éþÿÿéÞýÿÿHœ$À1ÉH³OH5,Àé¨ýÿÿÇD$,éàþÿÿI‹D$L‹D$`Ht$X¹º¿H‰D$è҉H…ÀI‰Å„ÐHcT$,…Òx
H‹D$XH9Â|\H‹=Ä&H5Pè0CþÿL;l$`„ØþÿÿIƒm…ÍþÿÿL‰ïèR@þÿéÀþÿÿèXAþÿH…À…)ýÿÿH‹=€&H5‰…èìBþÿéýÿÿH‹´$M‹}L9ö„ìH|$0Hþ…èALþÿ‰D$‹D$…Àt…HcT$,H‹D$X‹|$(Hct$0HƒèH)ЋT$(H‰ñÁú1×)×H™HcÿH÷ÿHƒÀH9ƏHcT$$H‹D$H‹|$ HƒèH)ЋT$ Áú1×)×H™HcÿH÷ÿHƒÀH9Ə;…öˆÿ1|$4L‹„$˜H‰´$°H‰´$¸H´$°º¿”ÀÁà…‰ÁèkˆH…ÀI‰Æ„HcD$,HcL$$H֠H=ՠHt$0HÁàHÁáHL$ƒ|$MHDúHƒìVAÿvHT$@RH‰êLD$@ÿÓHƒÄ èæ?þÿH…ÀtÇD$‹D$…À„MþÿÿH=W L‰ö1ÀèAþÿH‰D$8é2þÿÿè­?þÿH…À…$þÿÿH‹=Õ&H5¾„èAAþÿéþÿÿHœ$ÀH}OH5ȽH‰ß1Àèì>þÿH‹=&H‰Þè
AþÿéØýÿÿHœ$ÀH	OëÊHœ$ÀH¸Në¹Hƒè‹L$(H)ЋT$(Áú1Ñ)ÑH™HcÉH÷ùHcT$$‹L$ H‰ÆH‹D$HHƒèH)ЋT$ Áú1Ñ)ÑH™HcÉH÷ùVHH9ƉÈL‰D$0éÉýÿÿèÑ>þÿH…À…+üÿÿH‹=ù&H5Rƒèe@þÿéüÿÿAVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHò¼H
ú%Hì€H‹ü¥#H‰D$(H‰D$pH‰D$xHD$HÇD$H‰\$ Ç$H‰\$0ÇD$H‰\$8ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XPHD$`PHD$`PHD$`PHD$`PHD$`P1ÀLL$`LD$Pèý>þÿHƒÄ0…À„1H‹t$8H9ÞtwH|$H+ƒèæHþÿ‰$‹$…Àt8‹L$ƒùvbHœ$€HJH5¼H‰ß1Àè=þÿH‹=´ÿ%H‰Þè$?þÿH‹D$H‹D$HĀ[]A\A]A^Ãf.„‹$ÇD$…ÀtÍLd$`H‹t$ Hà‚L‰çèx@þÿ‰$‹$…ÀtªH‹t$HH9Þ„ˆH|$Hü‚è/Hþÿ‰$‹$…ÀtH‹t$@H9ÞtmH|$Hƒè
Hþÿ‰$‹$…À„Xÿÿÿ‹t$…öuYHœ$€1ÉH³ïH55»éÿÿÿ€HĀ1À[]A\A]A^ÃfDÇD$낋$ÇD$…À„÷þÿÿL‹D$0Ht$(¹º¿èm„H…ÀI‰Å„°HcD$…ÀˆaH‹T$(H9ЍSH‹t$PM‹uH9Þ„VH|$HȂè3Gþÿ‰$‹$…À„ÿHcT$H‹D$(Hœ$€‹t$Hc|$HƒèH)ЋT$H‰ùÁú1Ö)ÖH™HcöH÷þH¦MHƒÀH9ǏM…ÿˆ61|$L‹D$XHt$pH‰|$pH‰|$xº¿”ÀÁà…‰Á荃H…ÀH‰Ã„*HcL$Hý›H=ü›Ht$L‰âL‹KHÁáLñƒ|$HDøHƒìVLD$ÿÕè!;þÿH…ÀZYtÇ$‹$…ÀtH=–›H‰Þ1Àè[<þÿH‰D$L;l$0„wýÿÿIƒm…lýÿÿL‰ïèÈ9þÿé_ýÿÿH‹=ý%H5EIèp<þÿëÈHƒê‹L$H)ÂH‰ЋT$Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$é‘þÿÿèŒ:þÿH…À…ýÿÿH‹=´ü%H5í€è <þÿé÷üÿÿHœ$€HŒLH5ï¸H‰ß1ÀèË9þÿH‹=|ü%H‰Þèì;þÿéAÿÿÿè2:þÿH…À…3ÿÿÿH‹=Zü%H5èÆ;þÿéÿÿÿAVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH™¸H
š%Hì€H‹\¡#H‰D$(H‰D$pH‰D$xHD$HÇD$H‰\$ Ç$H‰\$0ÇD$H‰\$8ÇD$H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XPHD$`PHD$`PHD$`PHD$`PHD$`P1ÀLL$`LD$Pè]:þÿHƒÄ0…À„1H‹t$8H9ÞtwH|$H[€èFDþÿ‰$‹$…Àt8‹L$ƒùvbHœ$€HtEH5«·H‰ß1Àèc8þÿH‹=û%H‰Þè„:þÿH‹D$H‹D$HĀ[]A\A]A^Ãf.„‹$ÇD$…ÀtÍLd$`H‹t$ H€L‰çèØ;þÿ‰$‹$…ÀtªH‹t$HH9Þ„ˆH|$H,€èCþÿ‰$‹$…ÀtH‹t$@H9ÞtmH|$HG€èjCþÿ‰$‹$…À„Xÿÿÿ‹t$…öuYHœ$€1ÉHëH5ܶéÿÿÿ€HĀ1À[]A\A]A^ÃfDÇD$낋$ÇD$…À„÷þÿÿL‹D$0Ht$(¹º¿èÍH…ÀI‰Å„°HcD$…ÀˆaH‹T$(H9ЍSH‹t$PM‹uH9Þ„VH|$Høè“Bþÿ‰$‹$…À„ÿHcT$H‹D$(Hœ$€‹t$Hc|$HƒèH)ЋT$H‰ùÁú1Ö)ÖH™HcöH÷þHIHƒÀH9ǏM…ÿˆ61|$L‹D$XHt$pH‰|$pH‰|$xº¿”ÀÁà…‰Áèí~H…ÀH‰Ã„*HcL$H]—H=\—Ht$L‰âL‹KHÁáLñƒ|$HDøHƒìVLD$ÿÕè6þÿH…ÀZYtÇ$‹$…ÀtH=ö–H‰Þ1Àè»7þÿH‰D$L;l$0„wýÿÿIƒm…lýÿÿL‰ïè(5þÿé_ýÿÿH‹=dø%H5¥DèÐ7þÿëÈHƒê‹L$H)ÂH‰ЋT$Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$é‘þÿÿèì5þÿH…À…ýÿÿH‹=ø%H5~è€7þÿé÷üÿÿHœ$€HìGH5–´H‰ß1Àè+5þÿH‹=Ü÷%H‰ÞèL7þÿéAÿÿÿè’5þÿH…À…3ÿÿÿH‹=º÷%H5C~è&7þÿéÿÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH>´H
8þ$HìÐH‹ºœ#H‰„$¸H‰„$ÀH‰D$XH‰D$pHD$(HÇD$@ÇD$$ÇD$ H‰\$HH‰\$PH‰\$`H‰\$hÇD$(H‰\$xÇD$,H‰œ$€ÇD$0H‰œ$ˆÇD$4H‰œ$ÇD$8H‰œ$˜ÇD$<H‰œ$ PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$ PH„$ P1ÀLŒ$˜L„$èQ5þÿHƒÄP…À„=H‹´$˜H9ÞtxH|$4H}è7?þÿ‰D$‹D$…Àt8‹L$4ƒùvbHœ$ÀH“HH5å²H‰ß1ÀèR3þÿH‹=ö%H‰Þès5þÿH‹D$8H‹D$8HÄÈ[]A\A]A^A_À‹D$ÇD$4…ÀtÍH‹´$€H9Þ„H|$(HÃ|èž>þÿ‰D$‹D$…ÀtŸ‹T$(…ÒtzH‹´$H9Þ„‰H|$0HÍ|èh>þÿ‰D$‹D$…À„eÿÿÿ‹D$0…ÀutHœ$À1ÉH§HH56²é'ÿÿÿ‹D$ÇD$(…Àu–é(ÿÿÿ1Àé(ÿÿÿHœ$À1ÉH÷GH5ä±éçþÿÿ‹D$ÇD$0…À„éþÿÿL¤$ H‹t$@Hh|L‰çèà5þÿ‰D$‹D$…À„½þÿÿH‹t$`H9Þ„™H¼$ÀHƒ|è®5þÿ‰D$‹D$…À„‹þÿÿL‹D$HH´$°¹º¿èMzH…ÀI‰Å„‡H‹„$¸H9„$°tQH‹=@ô%H5!%è¬3þÿL;l$H„.þÿÿIƒm…#þÿÿL‰ïèÎ0þÿéþÿÿfïÀò„$Àò„$ÈédÿÿÿH‹t$xI‹EH9ÞH‰D$„óH|$$HS|èÆ<þÿ‰D$‹D$…ÀtŽH‹´$ˆH9Þ„ÒH|$,He|è˜<þÿ‰D$‹D$…À„\ÿÿÿH‹„$°L‹D$XHt$P¹º¿‰D$èNyH…ÀI‰Æ„R‹D$‹|$(HcT$$H‹t$PHÿ‹D$(Áÿ1ø)ø¯ÁÐH˜H9ÆŽ
…ÒxH9ÖuH‹=ó%H5ËÊè†2þÿL;t$X„ÏþÿÿIƒ.…ÅþÿÿL‰÷è©/þÿé¸þÿÿÇD$$éÿÿÿÇD$,é6ÿÿÿè•0þÿH…À…ÉüÿÿH‹=½ò%H5æzè)2þÿé±üÿÿL‹D$pƒÊÿI9Ø„Ì1|$ HcÒHt$hH‰T$h¿ºM‹~”ÀÁà…‰ÁèRxH…ÀH‰Ãtm‹|$0D‹D$0H‹H‹D$HcT$,H‹t$hÁÿA1øƒèA)øA¯ÀÐH˜H9Æ~!…ÒxH9ÖuH‹=ò%H5×GèŠ1þÿéÿþÿÿH‹=ò%H5‡Gèr1þÿéçþÿÿè¸/þÿH…À…ÙþÿÿH‹=àñ%H5){èL1þÿéÁþÿÿ‹T$0‹D$0Áú1Ð)ЋT$,¯MTéÿÿÿHcD$$HÁâH=HÊH
Ht$I‰ðHÁàƒ|$4MHDùHL$0QRH”$ÐRHT$@RL‰âH‹L$(ÿÕHƒÄ è/þÿH…ÀtÇD$‹D$…À„-þÿÿH=H‰Þ1ÀèR0þÿH‰D$8éþÿÿH‹=ñ%H5’Èè…0þÿéúýÿÿèË.þÿH…À…ÆüÿÿH‹=óð%H5ìyè_0þÿé®üÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËH¿­H
Èõ$HìÈL‹%ê•#H‰D$PH‰D$`H‰„$ˆHD$(HÇD$8ÇD$ÇD$L‰d$@L‰d$HL‰d$XL‰d$hÇD$ L‰d$pÇD$$L‰d$xL‰¤$€ÇD$(L‰¤$ÇD$,L‰¤$˜ÇD$0L‰¤$ ÇD$4L‰¤$¨PH„$°PH„$°PH„$°PH„$°PH„$¨PH„$¨PH„$¨PH„$¨PH„$ P1ÀLŒ$˜L„$è{.þÿHƒÄP…À„H‹´$¨L9ætrH|$4Hyèa8þÿ‰D$‹D$…Àt8‹L$4ƒùv\Hœ$ÀH½AH5a¬H‰ß1Àè|,þÿH‹=-ï%H‰Þè.þÿH‹D$8H‹D$8HÄÈ[]A\A]A^A_ЋD$ÇD$4…ÀtÓHl$H‹t$@H¿xH‰ïè×7þÿ‰D$‹D$…Àt®‹L$…ɈˆH‹t$pL9æ„aH|$ HÅxè 7þÿ‰D$‹D$…À„sÿÿÿ‹T$ …Ò„hH‹´$˜L9æ„tH|$,HÇxèb7þÿ‰D$‹D$…À„5ÿÿÿ‹D$,…À„`H‹t$xL9æ„oH|$$HÌxè'7þÿ‰D$‹D$…À„úþÿÿH‹´$ L9æ„JH|$0HÚxèõ6þÿ‰D$‹D$…À„ÈþÿÿL¼$°H‹t$HHñxL‰ÿèé.þÿ‰D$‹D$…À„œþÿÿH‹´$€L9æ„H¼$ÀH	yè´.þÿ‰D$‹D$…À„gþÿÿAƒÍÿL9¤$„öL‹D$XHt$P¹º¿èDsH…ÀI‰Ä„‹T$H‹@¹H‰$B¯™÷ùH˜H9D$PŒr1|$(L‹„$H´$ˆMcíº¿L‰¬$ˆ”ÀÁà…‰ÁèÖrH…ÀI‰Æ„‹L$,‹|$,‹D$HcT$0H‹´$ˆÁù1σè)ϯÇÐH˜H9ÆŽR…Òx	H9֏ƒH‹=›ì%H5¤Eè,þÿL;d$X„_ýÿÿIƒ,$…TýÿÿL‰çè))þÿéGýÿÿ@1ÀéFýÿÿf„‹D$ÇD$ …À„ýÿÿé³ýÿÿHœ$ÀHÐÀH5_©éæüÿÿHœ$À1ÉHKÂH5Q©éÉüÿÿ‹D$ÇD$,…À…¥ýÿÿéÉüÿÿHœ$À1ÉH5H5-©é“üÿÿÇD$$é™ýÿÿÇD$0é¾ýÿÿH‹=°ë%H5Dè+þÿéÿÿÿfïÀò„$Àò„$Èéìýÿÿ‹T$,‹L$,‹D$Áú1ÑDè)ыT$0¯ÁDléãýÿÿH‹=Vë%H5'DèÂ*þÿé¶þÿÿè)þÿH…À…¨þÿÿH‹=0ë%H5)wèœ*þÿéþÿÿI‹FL‹D$hHt$`¹º¿H‰D$èàpH…ÀI‰Å„Œ‹t$ D‹D$ H‹H‹D$HcT$$H‹|$`ÁþA1ðƒèA)ðA¯ÀÐH˜H9Ç~C…Òx	H9׏—H‹=¤ê%H5mDè*þÿL;l$h„þýÿÿIƒm…óýÿÿL‰ïè2'þÿéæýÿÿH‹=nê%H5ÿCèÚ)þÿëÈè#(þÿH…À…ÃýÿÿH‹=Kê%H5Œvè·)þÿé«ýÿÿèý'þÿH…À…ûÿÿH‹=%ê%H5Îuè‘)þÿéïúÿÿHcD$0HÁâH5tˆH=sˆLL‰úHÁàHD$ƒ|$4HDþHƒìHt$4VPH‰îH„$ØPH‹L$ LL$@ÿÓHƒÄ è€'þÿH…ÀtÇD$‹D$…À„ÿÿÿH=ñ‡L‰ö1Àè¶(þÿH‰D$8éìþÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËH&H
hí$HìÈL‹%ŠŽ#H‰D$PH‰D$`H‰„$ˆHD$(HÇD$8ÇD$ÇD$L‰d$@L‰d$HL‰d$XL‰d$hÇD$ L‰d$pÇD$$L‰d$xL‰¤$€ÇD$(L‰¤$ÇD$,L‰¤$˜ÇD$0L‰¤$ ÇD$4L‰¤$¨PH„$°PH„$°PH„$°PH„$°PH„$¨PH„$¨PH„$¨PH„$¨PH„$ P1ÀLŒ$˜L„$è'þÿHƒÄP…À„H‹´$¨L9ætrH|$4H¦tè1þÿ‰D$‹D$…Àt8‹L$4ƒùv\Hœ$ÀH]:H5b¥H‰ß1Àè%þÿH‹=Íç%H‰Þè='þÿH‹D$8H‹D$8HÄÈ[]A\A]A^A_ЋD$ÇD$4…ÀtÓHl$H‹t$@H_tH‰ïèw0þÿ‰D$‹D$…Àt®‹L$…ɈˆH‹t$pL9æ„aH|$ Hetè@0þÿ‰D$‹D$…À„sÿÿÿ‹T$ …Ò„hH‹´$˜L9æ„tH|$,Hgtè0þÿ‰D$‹D$…À„5ÿÿÿ‹D$,…À„`H‹t$xL9æ„oH|$$HltèÇ/þÿ‰D$‹D$…À„úþÿÿH‹´$ L9æ„JH|$0Hztè•/þÿ‰D$‹D$…À„ÈþÿÿL¼$°H‹t$HH‘tL‰ÿè‰'þÿ‰D$‹D$…À„œþÿÿH‹´$€L9æ„H¼$ÀH©tèT'þÿ‰D$‹D$…À„gþÿÿAƒÍÿL9¤$„öL‹D$XHt$P¹º¿èäkH…ÀI‰Ä„‹T$H‹@¹H‰$B¯™÷ùH˜H9D$PŒr1|$(L‹„$H´$ˆMcíº¿L‰¬$ˆ”ÀÁà…‰ÁèvkH…ÀI‰Æ„‹L$,‹|$,‹D$HcT$0H‹´$ˆÁù1σè)ϯÇÐH˜H9ÆŽR…Òx	H9֏ƒH‹=;å%H5D>è§$þÿL;d$X„_ýÿÿIƒ,$…TýÿÿL‰çèÉ!þÿéGýÿÿ@1ÀéFýÿÿf„‹D$ÇD$ …À„ýÿÿé³ýÿÿHœ$ÀHp¹H5`¢éæüÿÿHœ$À1ÉHëºH5R¢éÉüÿÿ‹D$ÇD$,…À…¥ýÿÿéÉüÿÿHœ$À1ÉHÕûH5.¢é“üÿÿÇD$$é™ýÿÿÇD$0é¾ýÿÿH‹=Pä%H5¡<è¼#þÿéÿÿÿfïÀò„$Àò„$Èéìýÿÿ‹T$,‹L$,‹D$Áú1ÑDè)ыT$0¯ÁDléãýÿÿH‹=öã%H5Ç<èb#þÿé¶þÿÿè¨!þÿH…À…¨þÿÿH‹=Ðã%H5Érè<#þÿéþÿÿI‹FL‹D$hHt$`¹º¿H‰D$è€iH…ÀI‰Å„Œ‹t$ D‹D$ H‹H‹D$HcT$$H‹|$`ÁþA1ðƒèA)ðA¯ÀÐH˜H9Ç~C…Òx	H9׏—H‹=Dã%H5
=è°"þÿL;l$h„þýÿÿIƒm…óýÿÿL‰ïèÒþÿéæýÿÿH‹=ã%H5Ÿ<èz"þÿëÈèà þÿH…À…ÃýÿÿH‹=ëâ%H5,rèW"þÿé«ýÿÿè þÿH…À…ûÿÿH‹=Åâ%H5nqè1"þÿéïúÿÿHcD$0HÁâH5H=LL‰úHÁàHD$ƒ|$4HDþHƒìHt$4VPH‰îH„$ØPH‹L$ LL$@ÿÓHƒÄ è  þÿH…ÀtÇD$‹D$…À„ÿÿÿH=‘€L‰ö1ÀèV!þÿH‰D$8éìþÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËH_H
ä$HìèL‹%*‡#H‰„$ÀH‰„$ÈH‰D$`H‰„$ˆHD$0HÇD$@ÇD$ÇD$ÇD$ L‰d$HL‰d$PL‰d$XÇD$$L‰d$hÇD$(L‰d$pÇD$,L‰d$xL‰¤$€ÇD$0L‰¤$ÇD$4L‰¤$˜ÇD$8L‰¤$ ÇD$<L‰¤$¨PH„$°PH„$°PH„$°PH„$°PH„$¨PH„$¨PH„$¨PH„$¨PH„$ P1ÀLŒ$ L„$˜è þÿHƒÄP…À„ÜH‹´$¨L9ætwH|$<H+pè†)þÿ‰D$‹D$…Àt8‹L$<ƒùvaHœ$àHâ2H5HžH‰ß1Àè¡þÿH‹=Rà%H‰ÞèÂþÿH‹D$@H‹D$@HÄè[]A\A]A^A_ÃfD‹D$ÇD$<…ÀtÎH‹t$pL9æ„H|$(HÖoèñ(þÿ‰D$‹D$…Àt£‹T$(…Ò„H‹´$˜L9æ„(H|$4HÜoè·(þÿ‰D$‹D$…À„eÿÿÿ‹D$4…À„H‹t$xL9æ„*H|$,Háoè|(þÿ‰D$‹D$…À„*ÿÿÿH‹´$ L9æ„H|$8HïoèJ(þÿ‰D$‹D$…À„øþÿÿL¬$°H‹t$PHpL‰ïè> þÿ‰D$‹D$…À„ÌþÿÿH‹´$€L9æ„´H¼$ÐHpè	 þÿ‰D$‹D$…À„—þÿÿL‹D$XH´$À¹º¿è¨dH…ÀH‰Å„@H‹Œ$ÈH‹@…ÉH‰$‰L$ˆ	Hƒ¼$À¸L|$ HO„$ÀH‹t$HH0pL‰ÿ‰D$$è\'þÿ‰D$‹D$…ÀtA‹L$ …Éx
;L$$ŒHœ$àHW¾H5[œH‰ß1ÀènþÿH‹=Þ%H‰ÞèþÿH;l$X„ÂýÿÿHƒm…·ýÿÿH‰ïè±þÿéªýÿÿ@‹D$ÇD$(…À…ûýÿÿéýÿÿ€1Àé‰ýÿÿHœ$à1ÉHï³H5¨›éHýÿÿ‹D$ÇD$4…À…ñýÿÿéEýÿÿ€Hœ$à1ÉHÏôH5z›éýÿÿÇD$,éÞýÿÿÇD$8éþÿÿfïÀò„$Ðò„$ØéIþÿÿL‹„$ƒÊÿM9à„1|$0HcÒH´$ˆH‰”$ˆ¿º”ÀÁà…‰Áè×bH…ÀI‰Æ„­‹L$4‹|$4‹D$HcT$8H‹´$ˆÁù1σè)ϯÇÐH˜H9Æ~f…Òx	H9֏¼H‹= Ü%H5©5èþÿéxþÿÿHœ$àH¿|H5•šéDþÿÿè7þÿH…À…üÿÿH‹=_Ü%H5ÈmèËþÿéüÿÿH‹=GÜ%H55è³þÿéþÿÿèùþÿH…À…þÿÿH‹=!Ü%H5nèþÿéùýÿÿ‹D$‹L$4ЋT$4Áú1Ñ)ыT$8¯MTéÉþÿÿI‹FL‹D$hHt$`¹º¿H‰D$è¬aH…ÀI‰Ä„ˆ‹t$(D‹D$(H‹H‹D$HcT$,H‹|$`ÁþA1ðƒèA)ðA¯ÀÐH˜H9Ç~?…ÒxH9×qH‹=tÛ%H5=5èàþÿL;d$h„FýÿÿIƒ,$…;ýÿÿL‰çèþÿé.ýÿÿH‹=>Û%H5Ï4èªþÿëÈèóþÿH…À…ýÿÿH‹=Û%H5\mè‡þÿéóüÿÿHcD$8HÁâH=pyHÊH
`yHt$HÁàHD$ƒ|$<HDùHƒìHL$<QPL‰éH„$èPHD$HPRL‰úL‹D$0LL$TÿÓHƒÄ0èkþÿH…ÀtÇD$‹D$…À„"ÿÿÿH=ÜxL‰ö1Àè¡þÿH‰D$@éÿÿÿ€AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËH˜H
XÚ$Hì0L‹5z#H‰„$H‰„$H‰„$¨H‰„$ÐHD$`HÇD$pÇD$DÇD$@L‰t$xÇD$HL‰´$€ÇD$LL‰´$ˆÇD$PL‰´$L‰´$˜L‰´$ ÇD$TL‰´$°ÇD$XL‰´$¸ÇD$\L‰´$ÀL‰´$ÈÇD$`L‰´$ØÇD$dL‰´$àÇD$hL‰´$èÇD$lL‰´$ðPH„$øPH„$øPH„$øPH„$øPH„$ðPH„$ðPH„$ðPH„$ðPH„$èPH„$èPH„$èPH„$èP1ÀLŒ$èL„$àè›þÿHƒÄp…À„H‹´$èL9ötrH|$dH&kè!þÿ‰D$8‹D$8…Àt8‹L$dƒùv\Hœ$ H8H5¶–H‰ß1ÀèœþÿH‹=MØ%H‰Þè½þÿH‹D$hH‹D$hHÄ([]A\A]A^A_ЋD$8ÇD$d…ÀtÓHl$DH‹´$€HÜjH‰ïèô þÿ‰D$8‹D$8…Àt«‹L$D…Ɉ\Ld$HH‹´$ˆHèjL‰çèÀ þÿ‰D$8‹D$8…À„sÿÿÿ‹L$H…Ɉ]H‹´$°L9ö„3H|$PHçjè‚ þÿ‰D$8‹D$8…À„5ÿÿÿ‹T$P…Ò„:H‹´$ØL9ö„FH|$\HéjèD þÿ‰D$8‹D$8…À„÷þÿÿ‹D$\…À„2H‹´$¸L9ö„>H|$THëjè þÿ‰D$8‹D$8…À„¹þÿÿH‹´$àL9ö„H|$`HùjèÔþÿ‰D$8‹D$8…À„‡þÿÿH„$ðH‹´$H
kH‰ÇH‰D$(èÀþÿ‰D$8‹D$8…À„SþÿÿH‹´$ÀL9ö„ÀH¼$H kè‹þÿ‰D$8‹D$8…À„þÿÿL‹„$˜H´$¹º¿è'\H…ÀI‰Å„‡H‹@H‹t$pHckH‰D$HD$<H‰ÇH‰D$èþÿ‰D$8‹D$8…ÀtC‹D$DD$H‹L$<9ÈŒfHœ$ H=9H5…”H‰ß1ÀèþÿH‹=ÅÕ%H‰Þè5þÿL;¬$˜„jýÿÿIƒm…_ýÿÿL‰ïèTþÿéRýÿÿ€1ÀéNýÿÿHœ$ H)6H5ݓéýÿÿD‹D$8ÇD$P…À…æýÿÿé
ýÿÿHœ$ HX6H5´“éÖüÿÿHœ$ 1ÉH[«H5§“é¹üÿÿ‹D$8ÇD$\…À…Óýÿÿé¹üÿÿHœ$ 1ÉHEìH5ƒ“éƒüÿÿÇD$TéÊýÿÿÇD$`éïýÿÿfïÀò„$ò„$é=þÿÿèoþÿH…À…YüÿÿH‹=—Ô%H5€ièþÿéAüÿÿHD$@H‹t$xHõiH‰ÇH‰D$ è`þÿ‰D$8‹D$8…À„›þÿÿ‹L$@…Éx
HcÁH;„$tHœ$ Hü7H5ë’éRþÿÿHƒ¼$¸L‹„$ÐHO„$‰D$LƒÈÿM9ð„ê1҃|$XH´$ÈH˜¿H‰„$È”ÂÁâ€ʅ‰Ѻè®YH…ÀI‰Ç„…ƒ|$dH‹@H‹´$ÈH‰D$ud‹D$<Pÿ‹|$\‹D$\HcL$`Áÿ1ø)ø¯ÂÈH˜H9Æ~%…Éx	H9Ώ‘H‹=gÓ%H5p,èÓþÿé™ýÿÿH‹=OÓ%H5ˆ7è»þÿéýÿÿ‹D$@PÿëšèøþÿH…À…jýÿÿH‹= Ó%H5ÙhèŒþÿéRýÿÿƒ|$d‹D$`p…"‹D$<Hÿ‹T$\‹D$\Áú1Ð)ЯÁðéäþÿÿL‹„$¨H´$ ¹º¿è¡XH…ÀI‰Æ„¬‹t$dH‹HH‹¼$ …ö…‡‹D$<D@ÿD‹L$P‹D$PHcT$TAÁùD1ÈD)ÈA¯ÀÐH˜H9Ç~E…Òx	H9׏ˆH‹=TÒ%H5m7èÀþÿL;´$¨„}üÿÿIƒ.…süÿÿL‰÷èàþÿéfüÿÿH‹=Ò%H5í6èˆþÿëƋD$@D@ÿétÿÿÿèÄþÿH…À…6üÿÿH‹=ìÑ%H5ígèXþÿéüÿÿƒééÝþÿÿHcD$`HÁâH=pHÊHÁàHD$…ötH
pH=pƒþHEùHƒìM‰àHL$dQPH‰éH„$(PHD$pPRHD$|Pÿt$@L‹L$hH‹T$`H‹t$XÿÓHƒÄ@è!þÿH…ÀtÇD$8‹D$8…À„øþÿÿH=’oL‰þ1ÀèWþÿH‰D$héÝþÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËHďH
(Ï$HìÐL‹=*v#H‰„$¸H‰„$ÀH‰D$XH‰D$pHD$(HÇD$@ÇD$ ÇD$ÇD$$L‰|$HL‰|$PL‰|$`L‰|$hÇD$(L‰|$xÇD$,L‰¼$€ÇD$0L‰¼$ˆÇD$4L‰¼$ÇD$8L‰¼$˜ÇD$<L‰¼$ PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$ PH„$ P1ÀLŒ$˜L„$è¹þÿHƒÄP…À„EH‹´$˜L9þ„ÜH|$4Hfè›þÿ‰D$‹D$…ÀuH‹D$8H‹D$8HÄÈ[]A\A]A^A_ËL$4ƒù‡³H‹´$€L9þ„âH|$(HæeèAþÿ‰D$‹D$…Àt¦‹|$(…ÿ„ÙH‹´$L9þ„èH|$0Hìeèþÿ‰D$‹D$…À„hÿÿÿ‹t$0…ö…ÏHœ$À1ÉHB"H5çë7‹D$ÇD$4…À…Yÿÿÿé(ÿÿÿ€Hœ$ÀHá.H5‰H‰ß1ÀèàþÿH‹=‘Î%H‰Þèþÿéíþÿÿ@1Àéìþÿÿ‹D$ÇD$(…À…3ÿÿÿéÈþÿÿ€Hœ$À1ÉH7!H5:ëœfD‹D$ÇD$0…À„þÿÿH¬$ H‹t$@H(eH‰ïè þÿ‰D$‹D$…À„aþÿÿH‹t$`L9þ„.H¼$ÀHCeèîþÿ‰D$‹D$…À„/þÿÿL‹D$HH´$°¹º¿èSH…ÀI‰Ä„'H‹t$xH‹@L9þH‰$„âH|$$Hweèjþÿ‰D$‹D$…À„ƒH‹´$ˆL9þ„½H|$,H…eè8þÿ‰D$‹D$…À„Q‹L$4H‹”$°H‹„$¸…ÉA‰։T$A‰ID$tA‰ÑA‰ÆL‹D$XHt$P¹º¿D‰L$èÉRH…ÀI‰ÅD‹L$„©‹t$(‹D$(AƒéHcT$$H‹L$PÁþ1ð)ðA¯ÁÐH˜H9ÁŽV…ÒˆH9ÑŽ
L‹D$pƒÊÿM9ø„I1|$ I‹MHcÒHt$h¿H‰T$hºI‰Ï”ÀÁà…‰Áè4RH…ÀI‰Â„,‹t$0‹T$0AƒîHcD$,H‹L$hÁþ1ò)òA¯ÖÂHcÒH9ÑŽÂ…Àx	H9ÁH‹=ýË%H5¶!èiþÿL;l$XtIƒm„«L;d$H„=üÿÿIƒ,$…2üÿÿL‰çèyþÿé%üÿÿfïÀò„$Àò„$ÈéÏýÿÿÇD$$é&þÿÿÇD$,éKþÿÿH‹=€Ë%H51£èì
þÿëè5	þÿH…À…ÍûÿÿH‹=]Ë%H5cèÉ
þÿéµûÿÿH‹=EË%H53è±
þÿéCÿÿÿL‰ïèäþÿéHÿÿÿèêþÿH…À…:ÿÿÿH‹=Ë%H5‹cè~
þÿé"ÿÿÿHcL$$‹T$4HÁàIBH=BiHÁáLù…ÒtƒúH=HiH?iHEúL‰T$Ht$HT$HƒìLD$8I‰ñAPPH„$ØPHD$HPQH‰éL‹D$0ÿÓHƒÄ0èPþÿH…ÀL‹T$tÇD$‹D$…À„yþÿÿH=¼hL‰Ö1Àè	þÿH‰D$8é^þÿÿH‹=HÊ%H5‘2è´	þÿéFþÿÿ‹T$0‹D$0Áú1Ð)ÐAVÿ¯‹T$,Té”ýÿÿè×þÿH…À…þÿÿH‹=ÿÉ%H5Èbèk	þÿéýýÿÿfDAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌHåˆH
øÁ$HìˆH‹ún#H‰D$0H‰D$PHD$hHÇD$ÇD$Ç$H‰\$ H‰\$(H‰\$8ÇD$H‰\$@ÇD$H‰\$HH‰\$XÇD$H‰\$`ÇD$H‰\$hPHD$hPHD$XPHD$XPHD$HPHD$HP1ÀLŒ$ˆLD$hèøþÿHƒÄ01҅À„jL‹D$8Ht$0¹º¿èÌNH…ÀH‰Å„ˆL‹D$XHt$P¹º¿L‹pèžNH…ÀI‰Å„ÂH‹t$(L‹xH9Þ„H|$pHDbèŸ	þÿ‰$‹$…À„ÉH‹t$HH9Þ„CH|$H_bèRþÿ‰$‹$…À„œ‹T$…Ò„8H‹t$hH9Þ„zH|$Hfbèþÿ‰$‹$…À„c‹D$…À„oH‹t$@H9Þ„H|$Hmbèàþÿ‰$‹$…À„*‹L$…ɈvHcÁH9D$0ŽhH‹t$`H9Þ„uH|$Hfbè™þÿ‰$‹$…À„ã‹L$…ɈfHcÁH;D$PXH‹t$ H9Þ„eH|$H_bèRþÿ‰$‹$…À„œ‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽ¨D‹D$‹D$Hct$L‹L$0AÁøD1ÀD)ÀI)ñ¯ÇH˜I9ÁHœ$€H>ÑH5T†€H‰ß1ÀèþÿH‹=¿Æ%H‰Þè/þÿ€H;l$8tHƒmtBH‹D$H‹T$HĈH‰Ð[]A\A]A^A_Ãò HÇD$xòD$péàýÿÿ@H‰ïèþÿë´fDèþÿH…Àu¤H‹=?Æ%H5P_è«þÿëf„‹$ÇD$…À…Õýÿÿé`ÿÿÿ„Hœ$€1ÉHçH5%…éÿÿÿè«þÿH…À…*ÿÿÿH‹=ÓÅ%H54_è?þÿéÿÿÿf.„‹$ÇD$…À…žýÿÿéðþÿÿ„Hœ$€1ÉHçH5DŽé«þÿÿ‹$ÇD$…À„µþÿÿ1À1Éé‘ýÿÿ@Hœ$€H/H5›„émþÿÿ‹$ÇD$…À„zþÿÿ1À1ÉéýÿÿHœ$€HÂ/H5v„é6þÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$éýÿÿH‰ÐH‰òHL$HÁàHÁâHt$pLòH|$LL$MAÿÔèmþÿH…ÀtÇ$‹$…À„ÞýÿÿH=àbL‰î1Àè¥þÿH‰D$éÃýÿÿHœ$€HÜÜéýÿÿ€AVAUH‰÷ATUH‰ÖSHσH‰ÍH
‘¹$HìhH‹si#HD$PHÇD$ ÇD$ÇD$HÇD$8ÿÿÿÿH‰\$(H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PPHD$PPHD$8P1ÀLL$XLD$Hè¥þÿHƒÄ 1҅Àt/Ld$PH‹t$(Hâ^L‰çè²þÿ‰D$‹D$…Àu&H‹D$H‹T$HÄ`H‰Ð[]A\A]A^Ãf„L‹D$8Ht$0¹º¿è2IH…ÀI‰Å„–H‹t$HL‹pH9Þ„ôH|$Hø^èþÿ‰D$‹D$…Àt‹D$…À„ëH‹t$@H9Þ„H|$H_èÜþÿ‰D$‹D$…À„Fÿÿÿ‹L$…ɈHcÑH‹D$0H9ÐŽ÷H‹t$ H9Þ„'H|$Hõ^èþÿ‰D$‹D$…À„úþÿÿ‹t$‹D$‹L$HcT$H‹|$0Áþ1ð)ðqÿH)ׯÆH˜H9ǏøH\$`H«ÌH5‚ë?f.„‹D$ÇD$…À…!ÿÿÿé‘þÿÿ€H\$`H„ËH5¥1ÉH‰ß1ÀèAÿýÿH‹=òÁ%H‰ÞèbþÿéWþÿÿD‹D$ÇD$…À„>þÿÿ1Ò1ÉéþþÿÿH\$`HœËH5_ë¨èkÿýÿH…À…þÿÿH‹=“Á%H5]èÿþÿéôýÿÿH)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$éËþÿÿHÁâHL$H|$LòL‰æÿÕèÿýÿH…ÀtÇD$‹D$…À„ýÿÿH=}_L‰î1ÀèBþÿH‰D$é‚ýÿÿ„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍHº€H
¸º$Hì€H‹f#H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hè"ÿýÿHƒÄ01҅À„¢L‹D$8Ht$0¹º¿èöEH…ÀH‰Å„"L‹D$XHt$P¹º¿L‹pèÈEH…ÀI‰Ä„<H‹t$HL‹xH9Þ„RH|$Hî\è©þÿ‰D$‹D$…À„é‹T$…Ò„=H‹t$hH9Þ„gH|$Hó\ènþÿ‰D$‹D$…À„®‹D$…À„¢H‹t$@H9Þ„äH|$Hø\è3þÿ‰D$‹D$…À„s‹L$…Ɉ×HcÁH9D$0ŽÉH‹t$`H9Þ„ÓH|$Hï\èêþÿ‰D$‹D$…À„*‹L$…ɈÃHcÁH;D$PµH‹t$(H9Þ„¿H|$Hæ\è¡þÿ‰D$‹D$…À„á‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽD‹D$‹D$Hct$L‹L$0AÁøD1ÀD)ÀI)ñ¯ÇH˜I9ÁH\$pH’ÈH5\~éãH‰ÐH‰òHL$HÁàHÁâHt$LòH|$pLL$MAÿÕè½ûýÿH…ÀtÇD$‹D$…Àt(òL$xòD$pè‡ûýÿH=!\H‰Æ1ÀèæüýÿH‰D$ L;d$XtIƒ,$„¶H;l$8tHƒm„”H‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ÃD‹D$ÇD$…À…Çýÿÿë¢fH\$pHÄÆH5.}1ÉH‰ß1ÀèúýÿH‹=2½%H‰Þè¢üýÿémÿÿÿD‹D$ÇD$…À…²ýÿÿéOÿÿÿ€H‰ïè°ùýÿé_ÿÿÿL‰çè ùýÿé=ÿÿÿè£úýÿH…À…>ÿÿÿH‹=˼%H5\Yè7üýÿé&ÿÿÿfH\$p1ÉHÔH5ž|é[ÿÿÿfDè[úýÿH…À…äþÿÿH‹=ƒ¼%H5dYèïûýÿéÌþÿÿf.„‹D$ÇD$…À„œþÿÿ1À1Éé/ýÿÿH\$pH$ÆH5B|éíþÿÿ‹D$ÇD$…À„dþÿÿ1À1Éé@ýÿÿH\$pHÔH5|é¸þÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$é&ýÿÿH\$pH7ÔéˆýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍH×{H
(µ$Hì€H‹Ê`#H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hèÒùýÿHƒÄ01҅À„’L‹D$8Ht$0¹º¿è¦@H…ÀH‰Å„L‹D$XHt$P¹º¿L‹pèx@H…ÀI‰Ä„,H‹t$HL‹xH9Þ„BH|$H~YèYþÿ‰D$‹D$…À„Ù‹T$…Ò„-H‹t$hH9Þ„WH|$HƒYèþÿ‰D$‹D$…À„ž‹D$…À„’H‹t$@H9Þ„ÔH|$HˆYèãþÿ‰D$‹D$…À„c‹L$…ɈÇHcÁH9D$0Ž¹H‹t$`H9Þ„ÃH|$HYèšþÿ‰D$‹D$…À„‹L$…Ɉ³HcÁH;D$P¥H‹t$(H9Þ„ÇH|$HvYèQþÿ‰D$‹D$…À„Ñ‹T$‹L$‹D$LcD$H‹|$PÁúqÿ1Ð)ÐL)ǯÆH˜H9ÇŽ]‹T$‹D$H\$pLcL$H‹|$0Áú1Ð)ÐL)ÏHPïÆH˜H9ÇŽ3KÎHL$Ht$H|$pLL$OÇAÿÕè†öýÿH…ÀtÇD$‹D$…Àt1fïÀfïÉóZD$póZL$tèHöýÿH=âVH‰Æ1Àè§÷ýÿH‰D$ fL;d$XtIƒ,$„¶H;l$8tHƒm„”H‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ÃD‹D$ÇD$…À…×ýÿÿë¢fH\$pH„ÁH5[x1ÉH‰ß1ÀèAõýÿH‹=ò·%H‰Þèb÷ýÿémÿÿÿD‹D$ÇD$…À…ÂýÿÿéOÿÿÿ€H‰ïèpôýÿé_ÿÿÿL‰çè`ôýÿé=ÿÿÿècõýÿH…À…>ÿÿÿH‹=‹·%H5üUè÷öýÿé&ÿÿÿfH\$p1ÉHÂÎH5Ëwé[ÿÿÿfDèõýÿH…À…äþÿÿH‹=C·%H5Vè¯öýÿéÌþÿÿf.„‹D$ÇD$…À„œþÿÿ1À1Éé?ýÿÿH\$pHäÀH5owéíþÿÿ‹D$ÇD$…À„dþÿÿ1À1ÉéPýÿÿH\$pHÏÎH5Lwé¸þÿÿH\$pH'ÏH5Fwé þÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$éýÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍHôvH
˜¯$Hì€H‹z[#H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hè‚ôýÿHƒÄ01҅À„¢L‹D$8Ht$0¹º¿èV;H…ÀH‰Å„"L‹D$XHt$P¹º¿L‹pè(;H…ÀI‰Ä„<H‹t$HL‹xH9Þ„RH|$HVè	þýÿ‰D$‹D$…À„é‹T$…Ò„=H‹t$hH9Þ„gH|$HVèÎýýÿ‰D$‹D$…À„®‹D$…À„¢H‹t$@H9Þ„äH|$HVè“ýýÿ‰D$‹D$…À„s‹L$…Ɉ×HcÁH9D$0ŽÉH‹t$`H9Þ„ÓH|$HVèJýýÿ‰D$‹D$…À„*‹L$…ɈÃHcÁH;D$PµH‹t$(H9Þ„¿H|$HVèýýÿ‰D$‹D$…À„á‹t$‹L$‹D$HcT$L‹D$PÁþyÿ1ð)ðI)ЯÇH˜I9ÀŽD‹D$‹D$Hct$L‹L$0AÁøD1ÀD)ÀI)ñ¯ÇH˜I9ÁH\$pHò½H5–téãH‰ÐH‰òHL$HÁàHÁâHt$LòH|$pLL$MAÿÕèñýÿH…ÀtÇD$‹D$…Àt(òL$xòD$pèçðýÿH=QH‰Æ1ÀèFòýÿH‰D$ L;d$XtIƒ,$„¶H;l$8tHƒm„”H‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ÃD‹D$ÇD$…À…Çýÿÿë¢fH\$pH$¼H5hs1ÉH‰ß1ÀèáïýÿH‹=’²%H‰ÞèòýÿémÿÿÿD‹D$ÇD$…À…²ýÿÿéOÿÿÿ€H‰ïèïýÿé_ÿÿÿL‰çèïýÿé=ÿÿÿèðýÿH…À…>ÿÿÿH‹=+²%H5|Rè—ñýÿé&ÿÿÿfH\$p1ÉHbÉH5Øré[ÿÿÿfDè»ïýÿH…À…äþÿÿH‹=ã±%H5„RèOñýÿéÌþÿÿf.„‹D$ÇD$…À„œþÿÿ1À1Éé/ýÿÿH\$pH„»H5|réíþÿÿ‹D$ÇD$…À„dþÿÿ1À1Éé@ýÿÿH\$pHoÉH5Yré¸þÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$é&ýÿÿH\$pH—ÉéˆýÿÿfAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍHrH
ª$Hì€H‹*V#H‰D$8H‰D$XHD$pHÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PH‰\$`ÇD$ H‰\$hÇD$$H‰\$pPHD$pPHD$`PHD$`PHD$PP1ÀLŒ$ˆLD$hè2ïýÿHƒÄ01҅À„’L‹D$8Ht$0¹º¿è6H…ÀH‰Å„L‹D$XHt$P¹º¿L‹pèØ5H…ÀI‰Ä„,H‹t$HL‹xH9Þ„BH|$HžRè¹øýÿ‰D$‹D$…À„Ù‹T$…Ò„-H‹t$hH9Þ„WH|$H£Rè~øýÿ‰D$‹D$…À„ž‹D$…À„’H‹t$@H9Þ„ÔH|$H¨RèCøýÿ‰D$‹D$…À„c‹L$…ɈÇHcÁH9D$0Ž¹H‹t$`H9Þ„ÃH|$HŸRèú÷ýÿ‰D$‹D$…À„‹L$…Ɉ³HcÁH;D$P¥H‹t$(H9Þ„ÇH|$H–Rè±÷ýÿ‰D$‹D$…À„Ñ‹T$‹L$‹D$LcD$H‹|$PÁúqÿ1Ð)ÐL)ǯÆH˜H9ÇŽ]‹T$‹D$H\$pLcL$H‹|$0Áú1Ð)ÐL)ÏH°¸¯ÆH˜H9ÇŽ3KÎHL$Ht$H|$pLL$OÇAÿÕèæëýÿH…ÀtÇD$‹D$…Àt1fïÀfïÉóZD$póZL$tè¨ëýÿH=BLH‰Æ1ÀèíýÿH‰D$ fL;d$XtIƒ,$„¶H;l$8tHƒm„”H‹D$ H‹T$ HÄxH‰Ð[]A\A]A^A_ÃD‹D$ÇD$…À…×ýÿÿë¢fH\$pHä¶H5•n1ÉH‰ß1Àè¡êýÿH‹=R­%H‰ÞèÂìýÿémÿÿÿD‹D$ÇD$…À…ÂýÿÿéOÿÿÿ€H‰ïèÐéýÿé_ÿÿÿL‰çèÀéýÿé=ÿÿÿèÃêýÿH…À…>ÿÿÿH‹=ë¬%H5OèWìýÿé&ÿÿÿfH\$p1ÉH"ÄH5né[ÿÿÿfDè{êýÿH…À…äþÿÿH‹=£¬%H5$OèìýÿéÌþÿÿf.„‹D$ÇD$…À„œþÿÿ1À1Éé?ýÿÿH\$pHD¶H5©méíþÿÿ‹D$ÇD$…À„dþÿÿ1À1ÉéPýÿÿH\$pH/ÄH5†mé¸þÿÿH\$pH‡ÄH5€mé þÿÿHcD$H‹L$0‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$éýÿÿf.„AUATI‰üUSH‰óHƒìH‹Fö€˜u;H‰÷I‰Õè¨êýÿH…ÀH‰Åt`H‰Çè8èýÿòA$Hƒmt;¸HƒÄ[]A\A]ÃH‰÷èèýÿòA$HƒÄ¸[]A\A]Ãf.„H‰ïèøçýÿë»fDH‰ßè¸çýÿ…À…ÀH‹Cö€³t#èÞèýÿH…ÀHD«%L‰îH‰Çèxêýÿ1Àé{ÿÿÿH‰ßè¸éýÿ…ÀuÑH‰ßèlêýÿ…ÀtÅH‰ß1öè¾çýÿH‰ÃH…Ût°èþèýÿL‰êH‰ÞL‰çèðþÿÿ…ÀH‹t)HƒèH…ÀH‰…ÿÿÿH‰ßèQçýÿ¸éÿÿÿ€HƒèH…ÀH‰…]ÿÿÿH‰ßè(çýÿéPÿÿÿH5ÌHH‰ßèQéýÿH‰Ãë„ff.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH°kH
ZÍ$HìH‹\O#H‰D$pH‰D$xH‰„$€H‰„$ˆHD$HÇD$(ÇD$Ç$ÇD$HÇD$0H‰\$8H‰\$@ÇD$H‰\$HÇD$ÇD$ÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hè)èýÿHƒÄ0…À„}H‹t$PH9ÞtsH|$H7Mèòýÿ‰$‹$…Àt8‹L$ƒùv^Hœ$H×H5jH‰ß1Àè/æýÿH‹=à¨%H‰ÞèPèýÿH‹D$(H‹D$(HĐ[]A\A]A^ÃfD‹$ÇD$…ÀtÑH‹t$XH9ÞtGH|$HëLè†ñýÿ‰$‹$…Àt¬‹L$ƒùv6Hœ$HüÖH5jéoÿÿÿ„‹$ÇD$…À„mÿÿÿH‹t$`H9Þ„—H|$ HÃLèñýÿ‰$‹$…À„@ÿÿÿ‹L$ ƒù‡H‹t$hH9Þ„ŒH|$$HÉLèäðýÿ‰$‹$…À„ÿÿÿ‹L$$ƒùvwHœ$HN×H5—iéÉþÿÿfHĐ1À[]A\A]A^ÃfD‹$ÇD$ …Àu†é´þÿÿHœ$H…ÖH59ié€þÿÿ‹$ÇD$$…À„†þÿÿLd$0H‹t$8HeLL‰çè}ûÿÿ‰$‹$…À„_þÿÿ‹T$1ÀL‹D$HH´$€¿…Һ”ÀÁàƒÈ‰Áèð,H…ÀI‰Å„ÅL‹pH‹„$€ºL‹D$@Ht$p¹¿H…	D$HOЉT$H‹”$ˆ‰T$ºèš,H…ÀH‰Ã„^‹|$H‹T$p…ÿt?HcD$H9Ðt<H‹=ˆ¦%H51×èôåýÿH;\$@„™ýÿÿHƒ+…ýÿÿH‰ßèãýÿé‚ýÿÿHcD$ë¿H;D$xt;H‹=E¦%H5&×è±åýÿë»èúãýÿH…À…QýÿÿH‹="¦%H5{KèŽåýÿé9ýÿÿH…:H
rDHNƒ|$$HKD‰D$‹D$ L‹CHDʅÀtƒøHHDH?DHEЃ|$H3DH5&DHEð…ÿH=VHDøHƒìHD$PAVHD$(PAPATLL$8LD$4ÿÕHƒÄ0èBãýÿH…ÀtÇ$‹$…À„çþÿÿH=µCL‰î1ÀèzäýÿH‰D$(éÌþÿÿèãýÿH…À…büÿÿH‹=3¥%H5ÜJèŸäýÿéJüÿÿf.„AUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
ÓÇ$Hì˜H‹5J#HÐfH‰D$pH‰D$xH‰„$€H‰„$ˆHD$HÇD$0ÇD$ÇD$ÇD$ÇD$H‰\$8H‰\$@ÇD$H‰\$HÇD$ÇD$ÇD$ H‰\$PÇD$$H‰\$XÇD$(H‰\$`ÇD$,H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèûâýÿHƒÄ0…À„H‹t$PH9ÞtuH|$ HñIèäìýÿ‰D$‹D$…Àt8‹L$ ƒùv_Hœ$HàÑH5ÂeH‰ß1ÀèÿàýÿH‹=°£%H‰Þè ãýÿH‹D$0H‹D$0HĘ[]A\A]Ä‹D$ÇD$ …ÀtÐH‹t$XH9ÞtFH|$$H¢IèUìýÿ‰D$‹D$…Àt©‹L$$ƒùv4Hœ$HÉÑH5EeélÿÿÿD‹D$ÇD$$…À„lÿÿÿH‹t$`H9Þ„ŽH|$(HzIèíëýÿ‰D$‹D$…À„=ÿÿÿ‹L$(ƒùwyH‹t$hH9Þ„†H|$,H‚Ièµëýÿ‰D$‹D$…À„ÿÿÿ‹L$,ƒùvpHœ$HÒH5ÉdéÈþÿÿHĘ1À[]A\A]ËD$ÇD$(…ÀuŒé»þÿÿHœ$H\ÑH5sdé‡þÿÿ‹D$ÇD$,…À„ŒþÿÿH‹t$8H¼$H IHDŽ$èGöÿÿ…Àtfï8òZ„$óD$‰D$‹D$…À„;þÿÿ‹T$1ÀL‹D$HH´$€¿…Һ”ÀÁàƒÈ‰Áèœ'H…ÀI‰Ä„ÅL‹hH‹„$€ºL‹D$@Ht$p¹¿H…	D$HOЉT$H‹”$ˆ‰T$ºèF'H…ÀH‰Ã„d‹|$ H‹T$p…ÿt?HcD$H9Ðt<H‹=4¡%H5ÝÑè àýÿH;\$@„uýÿÿHƒ+…kýÿÿH‰ßèÃÝýÿé^ýÿÿHcD$ë¿H;D$xt;H‹=ñ %H5ÒÑè]àýÿë»è¦ÞýÿH…À…-ýÿÿH‹=Π%H5Hè:àýÿéýÿÿH…:H
?HNƒ|$,H÷>‰D$‹D$(L‹CHDʅÀtƒøHô>Hë>HEЃ|$$Hß>H5Ò>HEð…ÿH=<QHDøHƒìHD$$PAUHD$0PAPHD$8PLL$<LD$8ÿÕHƒÄ0èêÝýÿH…ÀtÇD$‹D$…À„áþÿÿH=[>L‰æ1Àè ßýÿH‰D$0éÆþÿÿè±ÝýÿH…À…8üÿÿH‹=ٟ%H5bGèEßýÿé üÿÿAUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
Á$Hì˜H‹åD#HãaH‰D$pH‰D$xH‰„$€H‰„$ˆHD$HÇD$0ÇD$ÇD$ÇD$ÇD$H‰\$8H‰\$@ÇD$H‰\$HÇD$ÇD$ÇD$ H‰\$PÇD$$H‰\$XÇD$(H‰\$`ÇD$,H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hè«ÝýÿHƒÄ0…À„H‹t$PH9ÞtuH|$ HFè”çýÿ‰D$‹D$…Àt8‹L$ ƒùv_Hœ$HÌH5Õ`H‰ß1Àè¯ÛýÿH‹=`ž%H‰ÞèÐÝýÿH‹D$0H‹D$0HĘ[]A\A]Ä‹D$ÇD$ …ÀtÐH‹t$XH9ÞtFH|$$H2Fèçýÿ‰D$‹D$…Àt©‹L$$ƒùv4Hœ$HyÌH5X`élÿÿÿD‹D$ÇD$$…À„lÿÿÿH‹t$`H9Þ„ŽH|$(H
Fèæýÿ‰D$‹D$…À„=ÿÿÿ‹L$(ƒùwyH‹t$hH9Þ„†H|$,HFèeæýÿ‰D$‹D$…À„ÿÿÿ‹L$,ƒùvpHœ$HÍÌH5Ü_éÈþÿÿHĘ1À[]A\A]ËD$ÇD$(…ÀuŒé»þÿÿHœ$HÌH5†_é‡þÿÿ‹D$ÇD$,…À„ŒþÿÿH‹t$8H¼$H°EHDŽ$è÷ðÿÿ…Àtfï8òZ„$óD$‰D$‹D$…À„;þÿÿL‹D$@Ht$p¹º¿è]"H…ÀH‰Ã„eL‹h1|$L‹D$HH´$€º¿”ÀÁàƒÈ‰Áè"H…ÀI‰Ä„L‹@H‹D$pHt:‹|$ H
€:‰D$H‹„$€…ÿ‰D$H‹„$ˆ‰D$DD$xƒ|$,‰D$‹D$(HDʅÀtƒøHB:H9:HEЃ|$$H-:H5 :HEð…ÿH=ŠLHDøHƒìHD$$PAPHD$0PAUHD$8PLL$<LD$8ÿÕHƒÄ0è8ÙýÿH…ÀtÇD$‹D$…ÀtH=­9L‰æ1ÀèrÚýÿH‰D$0H;\$@„âüÿÿHƒ+…ØüÿÿH‰ßèà×ýÿéËüÿÿèæØýÿH…ÀuÔH‹=›%H5{Dè~Úýÿë¿èÇØýÿH…À…žüÿÿH‹=ïš%H5Dè[Úýÿé†üÿÿfDAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHg]H
ȹ$Hì¨H‹ê?#H‰D$pH‰D$xH‰„$€H‰„$ˆH‰„$H‰„$˜HD$HÇD$0ÇD$ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hè¯ØýÿHƒÄ0…À„óH‹t$hH9ÞtyH|$$HeCè˜âýÿ‰D$‹D$…Àt8‹L$$ƒùvcHœ$ H¬ÎH5=\H‰ß1Àè³ÖýÿH‹=d™%H‰ÞèÔØýÿH‹D$0H‹D$0HĨ[]A\A]A^A_Ä‹D$ÇD$$…ÀtÌH‹t$`H9ÞtFH|$ HCèâýÿ‰D$‹D$…Àt¥‹L$ ƒùv4Hœ$ H‘ÎH5¾[éhÿÿÿD‹D$ÇD$ …À„hÿÿÿL¤$ H‹t$8HðBHDŽ$ L‰çèÔìÿÿ…Àtfï8òZ„$ óD$‰D$‹D$…À„ÿÿÿH‹t$PH9Þ„¡HãBL‰çHDŽ$ èìÿÿ…ÀtfïɸòZŒ$ óL$‰D$‹D$…À„¿þÿÿL‹D$@Ht$p¹º¿èåH…ÀH‰Ã„“L‹D$HH´$€¹º¿L‹pè´H…ÀI‰Å„.D‹D$ L‹xH‹t$xH‹D$pH‹¼$€E…	ID$(Hc։|$,„Û9ø‰t$‰D$@•Ç@„ÿ…áƒ|$L‹D$XH´$H‰”$H‰”$˜¿ºɃá Eè$H…ÀI‰Ä„ÄHcT$H‹„$H9ÐuH;„$˜„ØH‹=	—%H5šÎèuÖýÿL;l$HtIƒm„€H;\$@„„ýÿÿHƒ+…zýÿÿH‰ßè†Óýÿémýÿÿ1ÀéoýÿÿÇD$éþÿÿ;´$ˆ‰D$HcЉt$‰ñ@•ÇéÿÿÿH¨ÍH5yYL‰ç1ÀèÇÓýÿH‹=x–%L‰æèèÕýÿénÿÿÿL‰ïèÓýÿésÿÿÿè!ÔýÿH…À…ôüÿÿH‹=I–%H5
AèµÕýÿéÜüÿÿ‹D$ H5†4…ÀtƒøH5‘4HŒ4HDðƒ|$$HT$HL$Ht4H=g4M‰ñRAÿt$HEøHD$(PHD$DPAWHD$PPLD$DÿÕHƒÄ0èŽÓýÿH…ÀtÇD$‹D$…À„°þÿÿH=ÿ3L‰æ1ÀèÄÔýÿH‰D$0é•þÿÿèUÓýÿH…À…™þÿÿH‹=}•%H5Ž@èéÔýÿéþÿÿè/ÓýÿH…À…aþÿÿH‹=W•%H5¸@èÃÔýÿéIþÿÿ@f.„AUATHÇÀÿÿÿÿUSH‰÷H‰ÍH‰ÖH
³²$HìH‹U:#HXH‰D$hH‰D$pH‰D$xH‰„$€HD$ HÇD$0ÇD$ÇD$ÇD$ÇD$H‰\$8H‰\$@ÇD$H‰\$HÇD$ H‰\$PÇD$$H‰\$XÇD$(H‰\$`ÇD$,PHD$hPHD$hPHD$hPHD$hP1ÀLL$hLD$`è9ÓýÿHƒÄ0…À„}H‹t$XH9ÞtsH|$ Hç?è"Ýýÿ‰D$‹D$…Àt8‹L$ ƒùv]Hœ$€H6ÉH5WH‰ß1Àè=ÑýÿH‹=î“%H‰Þè^ÓýÿH‹D$(H‹D$(HĈ[]A\A]ÃfD‹D$ÇD$ …ÀtÒH‹t$PH9ÞtFH|$Hš?è•Üýÿ‰D$‹D$…Àt«‹L$ƒùv4Hœ$€H!ÉH5›VénÿÿÿD‹D$ÇD$…À„nÿÿÿL¤$€H‹t$0Hx?HDŽ$€L‰çèdçÿÿ…Àtfï8òZ„$€óD$‰D$‹D$…À„ÿÿÿH‹t$@H9Þ„:Hc?L‰çHDŽ$€èçÿÿ…ÀtfïɸòZŒ$€óL$‰D$‹D$…À„ÅþÿÿL‹D$8Ht$`¹º¿èuH…ÀH‰Ã„§‹|$H‹T$`H‹L$hL‹`…ÿ‰։T$$HcÁ„³‰L$ƒ|$L‹D$Hº‰t$Ht$p¿H‰D$pH‰D$xɃá EèH…ÀI‰Å„HcT$H‹D$pH9ÐuH;D$xtdH‹=ú‘%H5‹ÉèfÑýÿH;\$8„ýýÿÿHƒ+…óýÿÿH‰ßè‰Îýÿéæýÿÿ@HĈ1À[]A\A]ÃÇD$éôþÿÿ‰T$‰ÎHcÂéCÿÿÿ‹D$H5ë/…ÀtƒøH5ö/Hñ/HDðƒ|$ HT$HL$HÙ/H=Ì/M‰áRAÿuHEøHD$$PHD$<PLD$0ÿÕHƒÄ èüÎýÿH…ÀtÇD$‹D$…À„-ÿÿÿH=m/L‰î1Àè2ÐýÿH‰D$(éÿÿÿèÃÎýÿH…À…ÿÿÿH‹=ë%H5ì=èWÐýÿéìþÿÿèÎýÿH…À…æüÿÿH‹=Ő%H5v=è1ÐýÿéÎüÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHÃSH
ث$Hì¨H‹º5#H‰D$pH‰D$xH‰„$€H‰„$ˆH‰„$H‰„$˜HD$HÇD$0ÇD$ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèÎýÿHƒÄ0…À„H‹t$`H9ÞtyH|$ HÅ<èhØýÿ‰D$‹D$…Àt8‹L$ ƒùvcHœ$ H¼ÌH5˜RH‰ß1ÀèƒÌýÿH‹=4%H‰Þè¤ÎýÿH‹D$0H‹D$0HĨ[]A\A]A^A_Ä‹D$ÇD$ …ÀtÌH‹t$hH9ÞtFH|$$Hr<èÕ×ýÿ‰D$‹D$…Àt¥‹L$$ƒùv4Hœ$ HéÃH5RéhÿÿÿD‹D$ÇD$$…À„hÿÿÿL¤$ H‹t$8HP<HDŽ$ L‰çè¤âÿÿ…Àtfï8òZ„$ óD$‰D$‹D$…À„ÿÿÿH‹t$PH9Þ„±H;<L‰çHDŽ$ èOâÿÿ…ÀtfïɸòZŒ$ óL$‰D$‹D$…À„¿þÿÿL‹D$@Ht$p¹º¿èµH…ÀH‰Ã„¡L‹D$HH´$€¹º¿L‹pè„H…ÀI‰Å„(D‹L$ H‹”$€H‹L$pH‹|$xL‹xL‹„$ˆE…ÉHcò‰T$,‰L$(HcÇ„âD9IT$‰|$•„Ò…åƒ|$L‹D$XºH‰´$H´$¿H‰„$˜Ƀá EèìH…ÀI‰Ä„¶HcD$H9„$uHcD$H9„$˜„ÜH‹=ό%H5PÌè;ÌýÿL;l$HtIƒm„„H;\$@„zýÿÿHƒ+…pýÿÿH‰ßèLÉýÿécýÿÿ€1Àé_ýÿÿÇD$é}þÿÿ9׉L$D‰D$•ÂIcÀHcñéÿÿÿHdËH5ÅO‰ÁL‰ç1Àè‰ÉýÿH‹=:Œ%L‰æèªËýÿéjÿÿÿL‰ïèÝÈýÿéoÿÿÿèãÉýÿH…À…æüÿÿH‹=Œ%H5T:èwËýÿéÎüÿÿƒ|$$Hd*H5W*HT$HL$H=½<M‰ñHEðƒ|$ RAÿt$HDøHD$(PHD$DPAWHD$PPLD$DÿÕHƒÄ0èdÉýÿH…ÀtÇD$‹D$…À„ÀþÿÿH=Õ)L‰æ1ÀèšÊýÿH‰D$0é¥þÿÿè+ÉýÿH…À…©þÿÿH‹=S‹%H5ì9è¿Êýÿé‘þÿÿèÉýÿH…À…qþÿÿH‹=-‹%H5:è™ÊýÿéYþÿÿ@AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH~NH
Ȥ$Hì¨H‹*0#H‰D$pH‰D$xH‰„$€H‰„$ˆH‰„$H‰„$˜HD$HÇD$0ÇD$ÇD$ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(ÇD$,PHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèçÈýÿHƒÄ0…À„ûH‹t$`H9Þ„H|$ H9èÌÒýÿ‰D$‹D$…Àu H‹D$0H‹D$0HĨ[]A\A]A^A_Ã@‹L$ ƒùwoH‹t$hH9Þ„©H|$$Hý8èxÒýÿ‰D$‹D$…Àt¬‹L$$ƒù†“Hœ$ H˜ËH5Më5€‹D$ÇD$ …Àu™ékÿÿÿHœ$ H)¸H5¸LH‰ß1ÀèXÆýÿH‹=	‰%H‰ÞèyÈýÿé4ÿÿÿ@1Àé3ÿÿÿf„‹D$ÇD$$…À„ÿÿÿL¤$ H‹t$8Hx8HDŽ$ L‰çèäÜÿÿ…Àtfï8òZ„$ óD$‰D$‹D$…À„¸þÿÿH‹t$PH9Þ„ºHc8L‰çHDŽ$ èÜÿÿ…ÀtfïɸòZŒ$ óL$‰D$‹D$…À„cþÿÿL‹D$@Ht$p¹º¿èõ
H…ÀH‰Ã„¬L‹D$HH´$€¹º¿L‹pèÄ
H…ÀI‰Å„\D‹T$ H‹T$pL‹xL‹D$xH‹„$€L‹Œ$ˆE…ÒHcú‰T$(D‰ÁHcð‰D$,„úD‰D$‰ÑIcø‹T$$‰L$…Ò„ÎD9ɉD$•À…׃|$L‹D$XºH‰´$˜H´$H‰¼$¿Ƀá Eè
H…ÀI‰Ä„ÑHcD$H9„$uHcD$H9„$˜„ÎH‹=ö†%H5wÆèbÆýÿL;l$HtIƒmtzH;\$@„	ýÿÿHƒ+…ÿüÿÿH‰ßèwÃýÿéòüÿÿfÇD$étþÿÿ9ÁD‰L$Icñ•Àé*ÿÿÿ‰T$éÿÿÿ‰ñH7ÊH5HJL‰ç1Àè¾ÃýÿH‹=o†%L‰æèßÅýÿéxÿÿÿL‰ïèÃýÿéyÿÿÿèÄýÿH…À…üÿÿH‹=@†%H5q6è¬Åýÿégüÿÿ‹D$$H5}$…ÀtƒøH5ˆ$Hƒ$HDð‹D$ H=Y$…ÀtƒøH=d$H_$HDøHT$HL$HƒìRAÿt$HD$0PHD$LPAWHD$XPAVLL$TLD$PÿÕHƒÄ@èpÃýÿH…ÀtÇD$‹D$…À„¥þÿÿH=á#L‰æ1Àè¦ÄýÿH‰D$0éŠþÿÿè7ÃýÿH…À…ŠþÿÿH‹=_…%H5à5èËÄýÿérþÿÿèÃýÿH…À…VþÿÿH‹=9…%H5
6è¥Äýÿé>þÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHÞHH
X”$HìÀH‹:*#H‰D$`H‰„$€H‰„$ HD$@HÇD$HÇD$(ÇD$$H‰\$PÇD$,H‰\$XH‰\$hÇD$0H‰\$pÇD$4H‰\$xH‰œ$ˆÇD$8H‰œ$ÇD$<H‰œ$˜ÇD$@H‰œ$¨ÇD$DH‰œ$°PH„$¸PH„$¨PH„$¨PH„$˜PH„$˜PH„$ØPH„$ÀPH„$¨P1ÀLŒ$ L„$˜èÎÂýÿHƒÄP1҅À„ªLd$ H‹t$HHç4L‰çè·Ìýÿ‰D$‹D$…Àt{‹L$ …ɈgH‹´$¨H9Þ„~H|$<Hê4è}Ìýÿ‰D$‹D$…ÀtA‹L$<ƒùvhHœ$°H	ÈH5ZGH‰ß1Àè˜ÀýÿH‹=Iƒ%H‰Þè¹Âýÿf„H‹D$@H‹T$@HĸH‰Ð[]A\A]A^A_ЋD$ÇD$<…ÀtÐH‹t$hH9Þ„ÚH|$(HŽ4èáËýÿ‰D$‹D$…Àt¥‹|$(…ÿ„ÑH‹´$ˆH9Þ„ÝH|$0H”4è§Ëýÿ‰D$‹D$…À„gÿÿÿ‹t$0…ö„ÉH‹t$pH9Þ„ØH|$,H™4èlËýÿ‰D$‹D$…À„,ÿÿÿH‹´$H9Þ„³H|$4H§4è:Ëýÿ‰D$‹D$…À„úþÿÿH‹t$PH¼$°H¾4HDŽ$°èEÖÿÿ…Àtfï8òZ„$°óD$$‰D$‹D$…À„©þÿÿL‹D$`Ht$X¹º¿è«H…ÀH‰Ã„‹L$(‹t$(‹D$ HcT$,H‹|$XÁù1΃è)ίÆÐH˜H9ÇŽô…Òx	H9׏ÿH‹=s%H5$YèßÀýÿH;\$`„$þÿÿHƒ+…þÿÿH‰ßè¾ýÿé
þÿÿDHœ$°HÑUH5EéËýÿÿD‹D$ÇD$(…À…;þÿÿéÏýÿÿ€Hœ$°1ÉH'WH5ûDé‰ýÿÿ‹D$ÇD$0…À…<þÿÿé’ýÿÿHœ$°1ÉHÆH5×DéSýÿÿÇD$,é0þÿÿÇD$4éUþÿÿH‹=Œ€%H5Xèø¿ýÿéÿÿÿL‹„$€Ht$x¹º¿L‹sè>H…ÀI‰Å„‡‹L$0‹t$0‹D$ HcT$4H‹|$xÁù1΃è)ίÆÐH˜H9Ç~F…Òx	H9׏šH‹=
€%H53Çèv¿ýÿL;¬$€„‰þÿÿIƒm…~þÿÿL‰ï蕼ýÿéqþÿÿH‹=Ñ%H5ÂÆè=¿ýÿëÅ膽ýÿH…À…NþÿÿH‹=®%H5×2è¿ýÿé6þÿÿè`½ýÿH…À…WüÿÿH‹=ˆ%H5a2èô¾ýÿé?üÿÿ1|$8M‹ML‹„$ H´$˜º¿L‰L$”ÀÁàƒÈ‰Áè%H…ÀI‰ÇL‹L$„´‹T$ H‹p¹B¯™÷ùH˜H9„$˜|zHcT$,ƒ|$<H=oHcD$4I–HYMHDúHT$$VHt$8VL‰æLD$8ÿÕ莼ýÿH…ÀZYtÇD$‹D$…À„­þÿÿH=ýL‰þ1Àè½ýÿH‰D$@é’þÿÿH‹=‰~%H5:Æèõ½ýÿézþÿÿè;¼ýÿH…À…lþÿÿH‹=c~%H5Ü1èϽýÿéTþÿÿf.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH`BH
ºŒ$HìpH‹\##H‰D$8H‰D$XHD$HÇD$ ÇD$ÇD$H‰\$(ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$`ÇD$H‰\$hPHD$pPHD$`PHD$`PH„$€PHD$hP1ÀLL$`LD$XèV¼ýÿHƒÄ01҅À„šLd$H‹t$(H1L‰çè?Æýÿ‰D$‹D$…Àtk‹L$…ɈwH‹t$hH9ÞtuH|$H)1èÆýÿ‰D$‹D$…Àt8‹L$ƒùv_H\$pHûQH5GAH‰ß1Àè*ºýÿH‹=Û|%H‰ÞèK¼ýÿH‹D$ H‹T$ HÄpH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$HH9Þ„úH|$HÖ0èyÅýÿ‰D$‹D$…Àt¥‹D$…À„ñH‹t$PH9Þ„ýH|$Hß0èBÅýÿ‰D$‹D$…À„jÿÿÿH‹t$0H|$pHù0HÇD$pèSÐÿÿ…Àtfï8òZD$póD$‰D$‹D$…À„"ÿÿÿL‹D$@Ht$8¹º¿è¼H…ÀH‰Ã„§‹T$‹t$‹D$HcL$H‹|$8Áú1փè)Ö¯ÆÈH˜H9ÇŽ_…Ɉ?H9ÏŽ61|$L‹D$`Ht$Xº¿L‹s”ÀÁàƒÈ‰Áè@H…ÀI‰Å„„‹T$¹B¯™÷ùH˜H9D$XŒ2HcD$ƒ|$H=’HT$M‹MLD$L‰æIÆHpHDøÿÕ轸ýÿH…ÀtÇD$‹D$…À…ùH;\$@„þÿÿHƒ+…÷ýÿÿH‰ßèw·ýÿéêýÿÿfH\$pHLOH5ò>é´ýÿÿ„‹D$ÇD$…À…þÿÿé¯ýÿÿ€H\$p1ÉH¢PH5Ð>érýÿÿÇD$éþÿÿH‹=Jz%H5ûQ趹ýÿé]ÿÿÿH‹=2z%H5«Q螹ýÿéEÿÿÿèä·ýÿH…À…CýÿÿH‹=z%H5/èx¹ýÿé+ýÿÿH‹=ôy%H5½Ãè`¹ýÿéÿÿÿH=5L‰î1Àèú¸ýÿH‰D$ éìþÿÿ苷ýÿH…À…ÞþÿÿH‹=³y%H5/è¹ýÿéÆþÿÿf.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH÷=H
Š†$HìpH‹¬#H‰D$8H‰D$XHD$HÇD$ ÇD$ÇD$H‰\$(ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$`ÇD$H‰\$hPHD$pPHD$`PHD$`PH„$€PHD$hP1ÀLL$`LD$X覷ýÿHƒÄ01҅À„šLd$H‹t$(HG.L‰çèÁýÿ‰D$‹D$…Àtk‹L$…ɈwH‹t$hH9ÞtuH|$HQ.è\Áýÿ‰D$‹D$…Àt8‹L$ƒùv_H\$pHKMH5Þ<H‰ß1ÀèzµýÿH‹=+x%H‰Þ蛷ýÿH‹D$ H‹T$ HÄpH‰Ð[]A\A]A^ËD$ÇD$…ÀtÐH‹t$HH9Þ„úH|$Hþ-èÉÀýÿ‰D$‹D$…Àt¥‹D$…À„ñH‹t$PH9Þ„ýH|$H.è’Àýÿ‰D$‹D$…À„jÿÿÿH‹t$0H|$pH!.HÇD$pè£Ëÿÿ…Àtfï8òZD$póD$‰D$‹D$…À„"ÿÿÿL‹D$@Ht$8¹º¿èýH…ÀH‰Ã„§‹T$‹t$‹D$HcL$H‹|$8Áú1փè)Ö¯ÆÈH˜H9ÇŽ_…Ɉ?H9ÏŽ61|$L‹D$`Ht$Xº¿L‹s”ÀÁàƒÈ‰ÁèüH…ÀI‰Å„„‹T$¹B¯™÷ùH˜H9D$XŒ2HcD$ƒ|$H=âHT$M‹MLD$L‰æI†HÀHDøÿÕè
´ýÿH…ÀtÇD$‹D$…À…ùH;\$@„þÿÿHƒ+…÷ýÿÿH‰ßèDzýÿéêýÿÿfH\$pHœJH5‰:é´ýÿÿ„‹D$ÇD$…À…þÿÿé¯ýÿÿ€H\$p1ÉHòKH5g:érýÿÿÇD$éþÿÿH‹=šu%H5KMèµýÿé]ÿÿÿH‹=‚u%H5ûLèî´ýÿéEÿÿÿè4³ýÿH…À…CýÿÿH‹=\u%H5=,èȴýÿé+ýÿÿH‹=Du%H5
¿谴ýÿéÿÿÿH=…L‰î1ÀèJ´ýÿH‰D$ éìþÿÿè۲ýÿH…À…ÞþÿÿH‹=u%H5,,èo´ýÿéÆþÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËHŒ9H
X€$HìÀL‹5ú#H‰D$PH‰D$`H‰„$¨H‰„$°HD$<HÇD$@ÇD$ ÇD$L‰t$HL‰t$XL‰t$hÇD$$L‰t$pÇD$(L‰t$xÇD$,L‰´$€ÇD$0L‰´$ˆÇD$4L‰´$ÇD$8L‰´$˜ÇD$<L‰´$ PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨P1ÀLŒ$ L„$色ýÿHƒÄP…À„5H‹t$hL9ötsH|$Hÿ*èr¼ýÿ‰D$‹D$…Àt8‹L$ƒùv]Hœ$°H558H—½1ÀH‰ß荰ýÿH‹=>s%H‰Þ讲ýÿH‹D$8H‹D$8Hĸ[]A\A]A^A_Ãf‹D$ÇD$…ÀtÒH¬$°H‹t$@H´*HDŽ$°H‰ïèÇÿÿ…Àtfï8òZ„$°óD$‰D$‹D$…À„~ÿÿÿH‹t$pL9ö„NH|$ Hš*荻ýÿ‰D$‹D$…À„Oÿÿÿ‹T$ …Ò„:H‹t$xL9ö„ZH|$$HŸ*èR»ýÿ‰D$‹D$…À„ÿÿÿH‹´$€L9ö„5H|$(H­*è »ýÿ‰D$‹D$…À„âþÿÿ‹D$(…À„!H‹´$ˆL9ö„"H|$,H¯*èâºýÿ‰D$‹D$…À„¤þÿÿL‹D$PHt$H¹º¿è¤÷H…ÀI‰Ä„\HcD$$…ÀxH;D$HŒÐH‹=•q%H5ֽè±ýÿL;d$P„HþÿÿIƒ,$…=þÿÿL‰çè#®ýÿé0þÿÿfD1Àé-þÿÿ‹D$ÇD$ …À…Ëþÿÿé	þÿÿHbH5#61ÉH‰ï1Àèm®ýÿH‹=q%H‰î莰ýÿéÛýÿÿÇD$$é®þÿÿ‹D$ÇD$(…À…äþÿÿéµýÿÿ1ÉHj¼H5ß5ëªÇD$,éæþÿÿL‹D$`Ht$X¹º¿M‹|$è‘öH…ÀI‰Å„·HcT$,…Òx
H‹D$XH9Â|\H‹=ƒp%H5L½èï¯ýÿL;l$`„ãþÿÿIƒm…ØþÿÿL‰ïè­ýÿéËþÿÿè®ýÿH…À…ýÿÿH‹=?p%H58)諯ýÿéøüÿÿH‹´$I‹ML9öH‰L$„ÎH|$0H¨)èû¸ýÿ‰D$‹D$…Àt€HcT$,H‹D$X‹|$(Hct$0HƒèH)ЋT$(H‰ñÁú1×)×H™HcÿH÷ÿH½HƒÀH9ƏHHcT$$H‹D$H‹|$ HƒèH)ЋT$ Áú1×)×H™HcÿH÷ÿHƒÀH9Ə…öH=½ˆ1|$4L‹„$˜H‰´$ H‰´$¨H´$ º¿”ÀÁà…‰ÁèõH…ÀH‰Å„‹HcT$$ƒ|$H=ˆ
Ht$0HcD$,I—Hm
HDúHT$HƒìVÿuLD$@APL‹T$(LD$@M‚ÿÓHƒÄ 蔬ýÿH…ÀtÇD$‹D$…À„<þÿÿH=
H‰î1ÀèʭýÿH‰D$8é!þÿÿè[¬ýÿH…À…þÿÿH‹=ƒn%H5\(èï­ýÿéûýÿÿHó»H5z3H‰ï1À被ýÿH‹=Sn%H‰îèíýÿéÏýÿÿHƒè‹L$(H)ЋT$(Áú1Ñ)ÑH™HcÉH÷ùHcT$$‹L$ H‰ÆH‹D$HHƒèH)ЋT$ Áú1Ñ)ÑH™HcÉH÷ùVHH9ƉÈL‰D$0éçýÿÿ詫ýÿH…À…OüÿÿH‹=Ñm%H5'è=­ýÿé7üÿÿ„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍH¾2H
êv$Hì€H‹Ì#H‰D$8H‰D$pH‰D$xHD$$HÇD$(ÇD$ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`èīýÿHƒÄ0…À„xH‹t$HH9ÞtvH|$Hâ&譵ýÿ‰D$‹D$…Àt8‹L$ƒùv`Hœ$€H5Ì1HҶ1ÀH‰ßèȩýÿH‹=yl%H‰Þèé«ýÿH‹D$(H‹D$(HĀ[]A\A]A^À‹D$ÇD$…ÀtÏL¤$€H‹t$0H”&HDŽ$€L‰çèPÀÿÿ…Àtfï8òZ„$€óD$‰D$‹D$…À„{ÿÿÿH‹t$XH9Þ„žH|$Hz&èŴýÿ‰D$‹D$…À„LÿÿÿH‹t$PH9Þ„|H|$H‹&薴ýÿ‰D$‹D$…À„ÿÿÿ‹t$…öugHG\H5Å0L‰ç1É1À质ýÿH‹=ek%L‰æèժýÿéçþÿÿHĀ1À[]A\A]A^ÃfDÇD$éjÿÿÿ‹D$ÇD$…À„®þÿÿL‹D$@Ht$8¹º¿èéðH…ÀI‰Å„«HcD$…Àˆ\H‹T$8H9ЍNH‹t$`M‹uH9Þ„QH|$ H,&诳ýÿ‰D$‹D$…À„øHcT$H‹D$8‹t$Hc|$ HƒèH)ЋT$H‰ùÁú1Ö)ÖH™HcöH÷þH(ºHƒÀH9ǏF…ÿˆ71|$$L‹D$hHt$pH‰|$pH‰|$xº¿”ÀÁà…‰ÁèðH…ÀH‰Ã„#HcD$ƒ|$H=€Ht$ HT$L‹KI†HaHDøHƒìVLD$(ÿÕ褧ýÿH…ÀZYtÇD$‹D$…ÀtH=H‰Þ1ÀèܨýÿH‰D$(L;l$@„3ýÿÿIƒm…(ýÿÿL‰ïèI¦ýÿéýÿÿH‹=…i%H5Ƶèñ¨ýÿëÈHƒê‹L$H)ÂH‰ЋT$Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$ é—þÿÿè
§ýÿH…À…ËüÿÿH‹=5i%H5V$表ýÿé³üÿÿH¹H5t.L‰ç1ÀèT¦ýÿH‹=i%L‰æèu¨ýÿéIÿÿÿ軦ýÿH…À…;ÿÿÿH‹=ãh%H5„$èO¨ýÿé#ÿÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH.H
8n$Hì°H‹Ú
#H‰„$˜H‰„$ H‰D$HH‰D$`HD$HÇD$0ÇD$ÇD$ÇD$H‰\$8H‰\$@H‰\$PÇD$H‰\$XÇD$H‰\$hÇD$H‰\$pÇD$ H‰\$xÇD$$H‰œ$€ÇD$(H‰œ$ˆÇD$,H‰œ$PH„$˜PH„$˜PH„$˜PH„$˜PH„$˜PH„$˜PH„$PH„$P1ÀLŒ$ˆL„$€èg¦ýÿHƒÄP…À„3H‹´$ˆH9ÞtvH|$$HJ#èM°ýÿ‰$‹$…Àt8‹L$$ƒùvaHœ$ H«¹H5²,H‰ß1Àèj¤ýÿH‹=g%H‰Þ苦ýÿH‹D$(H‹D$(HĨ[]A\A]A^A_À‹$ÇD$$…ÀtÎH‹t$pH9ÞtH|$Hû"辯ýÿ‰$‹$…Àt©‹T$…Òt|H‹´$€H9Þ„‹H|$ H#芯ýÿ‰$‹$…À„qÿÿÿ‹D$ …ÀuwHœ$ 1ÉH˹H5,é3ÿÿÿ€‹$ÇD$…Àu•é1ÿÿÿ@1Àé0ÿÿÿHœ$ 1ÉH¹H5¹+éïþÿÿ‹$ÇD$ …À„òþÿÿL¤$ H‹t$0H¡"HDŽ$ L‰çèºÿÿ…Àtfï8òZ„$ óD$‰$‹$…À„ þÿÿH‹t$PH9Þ„ºHŽ"L‰çHDŽ$ è¹ÿÿ…ÀtfïɸòZŒ$ óL$‰$‹$…À„MþÿÿL‹D$8H´$¹º¿è'ëH…ÀI‰Ä„oH‹„$˜H9„$tCH‹=e%H5û•膤ýÿL;d$8„ðýÿÿIƒ,$…åýÿÿL‰ç訡ýÿéØýÿÿÇD$ésÿÿÿH‹t$hM‹t$H9Þ„íH|$H?"貭ýÿ‰$‹$…Àt¢H‹t$xH9Þ„ÑH|$HV"艭ýÿ‰$‹$…À„uÿÿÿH‹„$L‹D$HHt$@¹º¿‰D$èAêH…ÀI‰Å„H‹D$‹t$HcT$H‹|$@Hÿ‹D$Áþ1ð)ð¯ÁÐH˜H9ÇŽ…ÒxH9×vH‹=
d%H5¾;èy£ýÿL;l$H„èþÿÿIƒm…ÝþÿÿL‰ï蛠ýÿéÐþÿÿÇD$éÿÿÿÇD$é6ÿÿÿ臡ýÿH…À…£üÿÿH‹=¯c%H5Ø è£ýÿé‹üÿÿL‹D$`ƒÊÿI9Ø„Ì1|$HcÒHt$XH‰T$X¿ºM‹}”ÀÁà…‰ÁèDéH…ÀH‰Ãtm‹L$ D‹D$ H‹x‹D$HcT$H‹t$XÁùA1ȃèA)ÈA¯ÀÐH˜H9Æ~!…ÒxH9ÖuH‹=c%H5ɸè|¢ýÿéþþÿÿH‹=øb%H5y¸èd¢ýÿéæþÿÿ誠ýÿH…À…ØþÿÿH‹=Òb%H5!è>¢ýÿéÀþÿÿ‹T$ ‹D$ Áú1Ð)ЋT$¯MTéÿÿÿƒ|$$LD$ H—HýH=üHcD$Ht$HDúHT$APQM‡I‰ðHL$QHL$0QL‰ñÿÕHƒÄ è ýÿH…ÀtÇ$‹$…À„7þÿÿH=ŠH‰Þ1ÀèO¡ýÿH‰D$(éþÿÿH‹=b%H59股ýÿéþÿÿèȟýÿH…À…éüÿÿH‹=ða%H5éè\¡ýÿéÑüÿÿ€AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHt'H
Hd$Hì¸H‹ê#H‰D$PH‰D$`H‰„$ˆHD$(HÇD$8ÇD$ÇD$H‰\$@ÇD$H‰\$HH‰\$XH‰\$hÇD$H‰\$pÇD$ H‰\$xÇD$$H‰œ$€ÇD$(H‰œ$ÇD$,H‰œ$˜ÇD$0H‰œ$ ÇD$4H‰œ$¨PH„$°PH„$°PH„$°PH„$°PH„$¨PH„$¨PH„$¨PH„$¨PH„$ P1ÀLŒ$˜L„$èkŸýÿHƒÄP…À„oH‹´$¨H9ÞtrH|$4HöèQ©ýÿ‰D$‹D$…Àt8‹L$4ƒùv\Hœ$°H­²H5&H‰ß1ÀèlýÿH‹=`%H‰Þ荟ýÿH‹D$8H‹D$8Hĸ[]A\A]A^A_ЋD$ÇD$4…ÀtÓLd$H‹t$@H¯L‰çèǨýÿ‰D$‹D$…Àt®‹L$…ɈØH‹t$pH9Þ„±H|$Hµ萨ýÿ‰D$‹D$…À„sÿÿÿ‹T$…Ò„¸H‹´$˜H9Þ„ÄH|$,H·èR¨ýÿ‰D$‹D$…À„5ÿÿÿ‹D$,…À„°H‹t$xH9Þ„¿H|$ H¼è¨ýÿ‰D$‹D$…À„úþÿÿH‹´$ H9Þ„šH|$0HÊèå§ýÿ‰D$‹D$…À„ÈþÿÿL¬$°H‹t$HHáHDŽ$°L‰ïèí²ÿÿ…Àtfï8òZ„$°óD$‰D$‹D$…À„tþÿÿH‹´$€H9Þ„!HÉL‰ïHDŽ$°蕲ÿÿ…ÀtfïɸòZŒ$°óL$$‰D$‹D$…À„þÿÿAƒÍÿH9œ$„QL‹D$XHt$P¹º¿èéãH…ÀH‰Ã„ËT$H‹@¹H‰D$B¯™÷ùH˜H9D$PŒƒ1|$(L‹„$H´$ˆMcíº¿L‰¬$ˆ”ÀÁà…‰ÁèzãH…ÀI‰Æ„’‹L$,‹t$,‹D$HcT$0H‹¼$ˆÁù1΃è)ίÆÐH˜H9ÇŽG…Òx	H9׏ŸH‹=?]%H5H¶諜ýÿH;\$X„ýÿÿHƒ+…	ýÿÿH‰ßèΙýÿéüüÿÿf„1Àéöüÿÿf„‹D$ÇD$…À„ÏüÿÿécýÿÿHœ$°Hp1H5´"é–üÿÿHœ$°1ÉHë2H5¦"éyüÿÿ‹D$ÇD$,…À…UýÿÿéyüÿÿHœ$°1ÉHÕsH5‚"éCüÿÿÇD$ éIýÿÿÇD$0énýÿÿÇD$$é
þÿÿH‹=C\%H5”´诛ýÿéÿþÿÿèõ™ýÿH…À…üÿÿH‹=\%H5®艛ýÿé÷ûÿÿH‹=\%H5ִèq›ýÿéÁþÿÿ跙ýÿH…À…³þÿÿH‹=ß[%H5ÀèK›ýÿé›þÿÿ‹T$,‹L$,‹D$Áú1ÑDè)ыT$0¯ÁDléˆýÿÿL‹D$hHt$`¹º¿M‹~èmáH…ÀI‰Å„Š‹L$D‹D$H‹p‹D$‹T$ H‹|$`ÁùA1ȃèA)ÈA¯ÀÐH˜H9Ç~B…ÒxHcÂH9ÇqH‹=3[%H5ü´蟚ýÿL;l$h„éýÿÿIƒm…ÞýÿÿL‰ïèWýÿéÑýÿÿH‹=ýZ%H5Ž´èišýÿëÈ貘ýÿH…À…®ýÿÿH‹=ÚZ%H5èFšýÿé–ýÿÿHcT$0ƒ|$4H=.ùI—HùHDúHT$HƒìLD$4APQL†L‰æHL$<QH‹L$(LL$<ÿÕHƒÄ è>˜ýÿH…ÀtÇD$‹D$…À„6ÿÿÿH=¯øL‰ö1Àèt™ýÿH‰D$8éÿÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH5 H
¨Z$HìÈH‹Jÿ"H‰„$°H‰„$¸H‰D$`H‰„$ˆHD$0HÇD$@ÇD$ÇD$ÇD$H‰\$HÇD$H‰\$PH‰\$XÇD$ H‰\$hÇD$$H‰\$pÇD$(H‰\$xÇD$,H‰œ$€ÇD$0H‰œ$ÇD$4H‰œ$˜ÇD$8H‰œ$ ÇD$<H‰œ$¨PH„$°PH„$°PH„$°PH„$°PH„$¨PH„$¨PH„$¨PH„$¨PH„$ P1ÀLŒ$ L„$˜谗ýÿHƒÄP…À„,H‹´$¨H9ÞtwH|$<H#薡ýÿ‰D$‹D$…Àt8‹L$<ƒùvaHœ$ÀHòªH5¬H‰ß1À豕ýÿH‹=bX%H‰ÞèҗýÿH‹D$@H‹D$@HÄÈ[]A\A]A^A_ÃfD‹D$ÇD$<…ÀtÎH‹t$pH9Þ„jH|$$HÎè¡ýÿ‰D$‹D$…Àt£‹T$$…Ò„iH‹´$˜H9Þ„xH|$4HÔèǠýÿ‰D$‹D$…À„eÿÿÿ‹D$4…À„kH‹t$xH9Þ„zH|$(HÙ茠ýÿ‰D$‹D$…À„*ÿÿÿH‹´$ H9Þ„UH|$8HçèZ ýÿ‰D$‹D$…À„øþÿÿL¤$ÀH‹t$PHþHDŽ$ÀL‰çèb«ÿÿ…Àtfï8òZ„$ÀóD$‰D$‹D$…À„¤þÿÿH‹´$€H9Þ„ÜHæL‰çHDŽ$Àè
«ÿÿ…ÀtfïɸòZŒ$ÀóL$,‰D$‹D$…À„LþÿÿL‹D$XH´$°¹º¿èmÜH…ÀI‰Å„{H‹Œ$¸H‹@H¥öH5Ï…ÉH‰D$‰L$x`Hƒ¼$°¸Lt$HO„$°H‹t$HHºL‰÷‰D$ èŸýÿ‰D$‹D$…Àt9‹L$…Éx
;L$ ŒüH6H5qL‰ç1Àè0“ýÿH‹=áU%L‰æèQ•ýÿL;l$X„týÿÿIƒm…iýÿÿL‰ïès’ýÿé\ýÿÿfD‹D$ÇD$$…À…«ýÿÿé=ýÿÿ€1Àé9ýÿÿHœ$À1ÉH¯+H5¼éøüÿÿ‹D$ÇD$4…À…¡ýÿÿéõüÿÿ€Hœ$À1ÉHlH5Žé¸üÿÿÇD$(éŽýÿÿÇD$8é³ýÿÿÇD$,éRþÿÿL‹„$ƒÊÿI9Ø„Í1|$0HcÒH´$ˆH‰”$ˆ¿º”ÀÁà…‰Áè¥ÚH…ÀI‰Ätl‹L$4‹t$4‹D$HcT$8H‹¼$ˆÁù1΃è)ίÆÐH˜H9Ç~%…Òx	H9׏¡H‹=rT%H5{­èޓýÿéˆþÿÿH‹=ZT%H5+­èƓýÿépþÿÿè’ýÿH…À…bþÿÿH‹=4T%H5ý蠓ýÿéJþÿÿ‹D$‹L$4ЋT$4Áú1Ñ)ыT$8¯MTéÿÿÿèQýÿH…À…–ûÿÿH‹=éS%H5"èU“ýÿé~ûÿÿL‹D$hHt$`¹º¿M‹|$èÙH…ÀH‰Ã„‡‹|$$D‹D$$H‹p‹D$HcT$(H‹L$`ÁÿA1øƒèA)øA¯ÀÐH˜H9Á~>…ÒxH9ÑpH‹=eS%H5.­èђýÿH;\$h„uýÿÿHƒ+…kýÿÿH‰ßèôýÿé^ýÿÿH‹=0S%H5l蜒ýÿëÉèåýÿH…À…;ýÿÿH‹=
S%H5èy’ýÿé#ýÿÿHcD$8ƒ|$<H=añHL$M‡H–HGñHt$HDúHƒìHT$<RAPHT$DRHT$DRPL‰òL‹D$8LL$PÿÕHƒÄ0èeýÿH…ÀtÇD$‹D$…À„+ÿÿÿH=ÖðL‰æ1À蛑ýÿH‰D$@éÿÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËHÕH
ØP$HìL‹=z÷"HÇD$`H‰„$èH‰„$ðH‰„$˜ÇD$(ÇD$,L‰|$hÇD$0L‰|$pÇD$4L‰|$xÇD$8L‰¼$€ÇD$<L‰¼$ˆL‰¼$ÇD$@L‰¼$ ÇD$DL‰¼$¨ÇD$HL‰¼$°ÇD$LL‰¼$¸H‰„$ÀHD$PÇD$PL‰¼$ÈÇD$TL‰¼$ÐÇD$XL‰¼$ØÇD$\L‰¼$àPH„$èPH„$èPH„$èPH„$èPH„$àPH„$àPH„$àPH„$àPH„$ØPH„$ØPH„$ØPH„$ØP1ÀLŒ$ØL„$Ð葏ýÿHƒÄp…À„UH‹´$ØL9þtxH|$THìèw™ýÿ‰D$ ‹D$ …Àt8‹L$TƒùvbHœ$ðH“°H5H‰ß1À蒍ýÿH‹=CP%H‰Þ賏ýÿH‹D$XH‹D$XHÄø[]A\A]A^A_À‹D$ ÇD$T…ÀtÍHl$,H‹t$pHŸH‰ïèç˜ýÿ‰D$ ‹D$ …Àt¨‹L$,…ɈŸLd$0H‹t$xH®L‰ç趘ýÿ‰D$ ‹D$ …À„sÿÿÿ‹L$0…Ɉ£H‹´$ L9þ„yH|$<H­èx˜ýÿ‰D$ ‹D$ …À„5ÿÿÿ‹T$<…Ò„€H‹´$ÈL9þ„ŒH|$LH¯è:˜ýÿ‰D$ ‹D$ …À„÷þÿÿ‹D$L…À„xH‹´$¨L9þ„„H|$@H±èü—ýÿ‰D$ ‹D$ …À„¹þÿÿH‹´$ÐL9þ„_H|$PH¿èʗýÿ‰D$ ‹D$ …À„‡þÿÿL´$ðH‹´$€HÓHDŽ$ðL‰÷èϢÿÿ…Àtfï8òZ„$ðóD$4‰D$ ‹D$ …À„0þÿÿH‹´$°L9þ„ãH»L‰÷HDŽ$ðèw¢ÿÿ…ÀtfïɸòZŒ$ðóL$D‰D$ ‹D$ …À„ØýÿÿL‹„$ˆH´$๺¿è×ÓH…ÀI‰Å„yH‹@H‹t$`HËH‰$HD$$H‰ÇH‰D$赖ýÿ‰D$ ‹D$ …Àt;‹D$,D$0‹L$$9ÈŒYHö°H5’L‰÷1Àè͊ýÿH‹=~M%L‰öèîŒýÿL;¬$ˆ„-ýÿÿIƒm…"ýÿÿL‰ïè
Šýÿéýÿÿ„1Àéýÿÿf„Hœ$ðH٭H5áéÉüÿÿD‹D$ ÇD$<…À… ýÿÿéÄüÿÿHœ$ðH®H5¸éüÿÿHœ$ð1ÉH#H5«ésüÿÿ‹D$ ÇD$L…À…ýÿÿésüÿÿHœ$ð1ÉHõcH5‡é=üÿÿÇD$@é„ýÿÿÇD$Pé©ýÿÿÇD$DéKþÿÿè-ŠýÿH…À…!üÿÿH‹=UL%H5öèKýÿé	üÿÿHD$(H‹t$hHkH‰ÇH‰D$è•ýÿ‰D$ ‹D$ …À„ þÿÿ‹L$(…Éx
HcÁH;„$ètH¯H5é_þÿÿHƒ¼$à¸L‹„$ÀHO„$à‰D$8ƒÈÿM9ø„å1҃|$HH´$¸H˜¿H‰„$¸”ÂÁâ€ʅ‰ѺètÑH…ÀI‰Ç„€ƒ|$TL‹HH‹´$¸ud‹D$$Pÿ‹|$L‹D$LHcL$PÁÿ1ø)ø¯ÂÈH˜H9Æ~%…Éx	H9Ώ‘H‹=2K%H5;¤螊ýÿé«ýÿÿH‹=K%H5S¯膊ýÿé“ýÿÿ‹D$(PÿëšèÈýÿH…À…|ýÿÿH‹=ëJ%H5\èWŠýÿédýÿÿƒ|$T‹D$Pp…,‹D$$Hÿ‹T$L‹D$LÁú1Ð)ЯÁðééþÿÿL‹„$˜H´$¹º¿L‰L$ègÐH…ÀI‰ÆL‹L$„¬‹L$TH‹xH‹´$…É…‡‹D$$D@ÿD‹T$<‹D$<HcT$@AÁúD1ÐD)ÐA¯ÀÐH˜H9Æ~E…Òx	H9֏ˆH‹=J%H5.¯聉ýÿL;´$˜„…üÿÿIƒ.…{üÿÿL‰÷衆ýÿénüÿÿH‹=ÝI%H5®®èI‰ýÿëƋD$(D@ÿétÿÿÿ腇ýÿH…À…>üÿÿH‹=­I%H5fè‰ýÿé&üÿÿƒééÓþÿÿHcD$P…ÉI4H—H=×çtHççH=âçƒùHEúHƒìM‰àH‰éHT$TRVHT$\RHT$\RPHD$hPÿt$8H‹T$PH‹t$HLL$tÿÓHƒÄ@èí†ýÿH…ÀtÇD$ ‹D$ …À„ÿÿÿH=^çL‰þ1Àè#ˆýÿH‰D$Xéèþÿÿf„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHèH
ØE$HìÐH‹úí"H‰„$¸H‰„$ÀH‰D$hH‰„$€HD$8HÇD$PÇD$(ÇD$$ÇD$,ÇD$0H‰\$XH‰\$`H‰\$pÇD$4H‰\$xÇD$8H‰œ$ˆÇD$<H‰œ$ÇD$@H‰œ$˜ÇD$DH‰œ$ ÇD$HH‰œ$¨ÇD$LH‰œ$°PH„$¸PH„$¸PH„$¸PH„$¸PH„$¸PH„$¸PH„$°PH„$°P1ÀLŒ$¨L„$ ès†ýÿHƒÄP…À„OH‹´$¨H9Þ„æH|$DHrèUýÿ‰D$‹D$…Àu!H‹D$HH‹D$HHÄÈ[]A\A]A^A_ÃD‹L$Dƒù‡»H‹´$H9Þ„êH|$8HVèùýÿ‰D$‹D$…Àt¤‹|$8…ÿ„áH‹´$ H9Þ„ðH|$@H\迏ýÿ‰D$‹D$…À„fÿÿÿ‹t$@…ö…×Hœ$À1ÉHú™H5ó
ë?f„‹D$ÇD$D…À…Qÿÿÿéÿÿÿ€Hœ$ÀH‘¦H5
H‰ß1À萃ýÿH‹=AF%H‰Þ豅ýÿéãþÿÿ@1Àéâþÿÿ‹D$ÇD$8…À…+ÿÿÿé¾þÿÿ€Hœ$À1ÉHç˜H5>
ëœfD‹D$ÇD$@…À„ƒþÿÿL¤$ÀH‹t$PHHDŽ$ÀL‰çèä™ÿÿ…Àtfï8òZ„$ÀóD$(‰D$‹D$…À„/þÿÿH‹t$pH9Þ„YH{L‰çHDŽ$À菙ÿÿ…ÀtfïɸòZŒ$ÀóL$,‰D$‹D$…À„ÚýÿÿL‹D$XH´$°¹º¿èòÊH…ÀI‰Ä„!H‹´$ˆL‹pH9Þ„ÝH|$4H}èЍýÿ‰D$‹D$…À„ŒH‹´$˜H9Þ„¸H|$<H‹融ýÿ‰D$‹D$…À„Z‹L$DH‹„$°H‹”$¸…ÉA‰ID$ A‰׉T$$uA‰ÑA‰ÇL‹D$hHt$`¹º¿D‰L$è/ÊH…ÀI‰ÅD‹L$„¤‹t$8‹D$8AƒéHcT$4H‹L$`Áþ1ð)ðA¯ÁÐH˜H9ÁŽQ…ÒˆH9ÑŽL‹„$€ƒÊÿI9Ø„21|$0M‹MHcÒHt$x¿H‰T$xºL‰L$”ÀÁà…‰Áè•ÉH…ÀH‰ÃL‹L$„‹t$@‹D$@AƒïHcT$<H‹L$xÁþ1ð)ðA¯ÇÐH˜H9ÁŽ¥…Òx	H9яõH‹=ZC%H5™èƂýÿL;l$htIƒm„L;d$X„àûÿÿIƒ,$…ÕûÿÿL‰çèÖýÿéÈûÿÿÇD$,éÕýÿÿÇD$4é+þÿÿÇD$<éPþÿÿH‹=ëB%H5œèW‚ýÿë蠀ýÿH…À…~ûÿÿH‹=ÈB%H5è4‚ýÿéfûÿÿH‹=°B%H5qªè‚ýÿéQÿÿÿL‰ïèOýÿéVÿÿÿèU€ýÿH…À…HÿÿÿH‹=}B%H5–èéýÿé0ÿÿÿH‹CH=ºàLHcD$4M‹D$D…ÀtƒøH=¶àH­àHEøHt$ HL$(HT$$HƒìHD$HI‰ñPARHD$DPHD$XPAPM‰ðÿÕHƒÄ0èÅýÿH…ÀtÇD$‹D$…À„–þÿÿH=6àH‰Þ1Àèû€ýÿH‰D$Hé{þÿÿH‹=ÂA%H5ªè.ýÿécþÿÿ‹T$@‹D$@Áú1Ð)ÐAWÿ¯‹T$<Té«ýÿÿèQýÿH…À…2þÿÿH‹=yA%H5âèå€ýÿéþÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌH¹H
X8$HìˆH‹zæ"H‰D$@H‰D$`HD$xHÇD$(ÇD$ÇD$H‰\$0ÇD$H‰\$8H‰\$HÇD$H‰\$PÇD$H‰\$XH‰\$hÇD$ H‰\$pÇD$$H‰\$xPHD$xPHD$hPHD$hPHD$XPHD$XP1ÀLŒ$˜LD$xèoýÿHƒÄ01҅À„™L‹D$HHt$@¹º¿èCÆH…ÀH‰Å„§L‹D$hHt$`¹º¿L‹pèÆH…ÀI‰Å„ÙH‹t$8L‹xH9Þ„GH¼$€HXHDŽ$€è'”ÿÿ…Àtfï8òZ„$€óD$‰D$‹D$…À„ËH‹t$XH9Þ„-H|$HA蜈ýÿ‰D$‹D$…À„œ‹T$…Ò„ H‹t$xH9Þ„bH|$$HFèaˆýÿ‰D$‹D$…À„a‹D$$…À„UH‹t$PH9Þ„gH|$HKè&ˆýÿ‰D$‹D$…À„&‹L$…ɈZHcÁH9D$@ŽLH‹t$pH9Þ„YH|$ HBè݇ýÿ‰D$‹D$…À„Ý‹L$ …ɈIHcÁH;D$`;H‹t$0H9Þ„HH|$H9蔇ýÿ‰D$‹D$…À„”‹T$$‹L$‹D$$LcD$ H‹|$`Áúqÿ1Ð)ÐL)ǯÆH˜H9ÇŽ~‹T$‹D$LcL$H‹|$@Áú1Ð)ÐL)ϯÆH˜H9ǏüHœ$€H‚HH5ìH‰ß1ÀèV{ýÿH‹=>%H‰Þèw}ýÿ€H;l$HtHƒmt2H‹D$(H‹T$(HĈH‰Ð[]A\A]A^A_ÃÇD$€?éìýÿÿH‰ïèhzýÿëÄfDèk{ýÿH…Àu´H‹=—=%H5Hè}ýÿ럐‹D$ÇD$…À…ìýÿÿéwÿÿÿ€Hœ$€1ÉHGH5Ùé3ÿÿÿè{ýÿH…À…BÿÿÿH‹=3=%H54èŸ|ýÿé*ÿÿÿf.„‹D$ÇD$$…À…·ýÿÿéÿÿÿ€Hœ$€1ÉHGH5{éÃþÿÿ‹D$ÇD$…À„Ìþÿÿ1À1Éé¬ýÿÿHœ$€Há¦H5Oé…þÿÿ‹D$ÇD$ …À„‘þÿÿ1À1ÉéºýÿÿHœ$€H!§H5)éMþÿÿHcD$H‹L$@‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$éýÿÿKŽHL$Ht$H|$LL$$O‡AÿÔèÙyýÿH…ÀtÇD$‹D$…À„þÿÿH=JÚL‰î1Àè{ýÿH‰D$(éåýÿÿHœ$€HFTé§ýÿÿAVAUH‰÷ATUH‰ÖSH“H‰ÍH
A1$HìPH‹ãà"HD$HÇD$ÇD$Ç$ÇD$H‰\$ H‰\$(HÇD$0ÿÿÿÿÇD$H‰\$8ÇD$H‰\$@ÇD$H‰\$HPHD$PPHD$PPHD$8P1ÀLL$XLD$HèzýÿHƒÄ 1҅À„¼Ld$PH‹t$(HÑHÇD$PL‰çè ÿÿ…Àtfï8òZD$PóD$‰$‹$…À„iƒ|$L‹D$8Ht$0º¿Ƀá ƒÁèƒÀH…ÀI‰Å„ÇH‹t$HL‹pH9Þ„EH|$HÙèdƒýÿ‰$‹$…À„‹D$…À„2H‹t$@H9Þ„TH|$Hàè+ƒýÿ‰$‹$…À„Í‹L$…ɈAHcÑH‹D$0H90H‹t$ H9Þ„XH|$HÖèá‚ýÿ‰$‹$…À„ƒ‹T$‹D$‹L$Hc|$H‹t$0Áú1Ð)ЍQÿH)þ¯ÂH˜H9ÆHDH5¼é‹IþHL$Ht$H|$ÿÕèIwýÿH…ÀtÇ$‹$…ÀtH=À×L‰î1Àè…xýÿH‰D$H‹D$H‹T$HÄPH‰Ð[]A\A]A^Ë$ÇD$…À…ÓþÿÿëËH‘BH51ÉL‰ç1ÀèNvýÿH‹=ÿ8%L‰æèoxýÿëD‹$ÇD$…Àt‰1Ò1ÉéÂþÿÿH¹BH5Óë¸è‹výÿH…À…bÿÿÿH‹=³8%H5ÄèxýÿéJÿÿÿH)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$é™þÿÿ€AVAUH‰÷ATUH‰ÖSHH‰ÍH
ñ,$HìXH‹“Ý"HD$PHÇD$ ÇD$ÇD$ÇD$H‰\$(H‰\$0HÇD$8ÿÿÿÿH‰\$@ÇD$H‰\$HÇD$H‰\$PPHD$PPHD$8P1ÀLL$XLD$Hè½výÿHƒÄ 1҅Àt<Ld$PH‹t$(HâHÇD$PL‰çèá‹ÿÿ…Àu-‰D$‹D$…ÀuBH‹D$H‹T$HÄPH‰Ð[]A\A]A^Ã@¸fï	D$‹D$òZD$PóD$…Àt¾L‹D$8Ht$0¹º¿è!½H…ÀI‰Å„…H‹t$HL‹pH9Þ„óH|$HÇè€ýÿ‰D$‹D$…À„aÿÿÿ‹D$…À„æH‹t$@H9Þ„H|$HÌèÇýÿ‰D$‹D$…À„&ÿÿÿ‹L$…ɈûHcÑH‹D$0H9ÐŽêH‹t$ H9Þ„H|$HÀè{ýÿ‰D$‹D$…À„Úþÿÿ‹T$‹D$‹L$Hc|$H‹t$0Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏãH›@H5˜þë:f.„‹D$ÇD$…À…&ÿÿÿévþÿÿ€Hy?H5:þ1ÉL‰ç1Àè6sýÿH‹=ç5%L‰æèWuýÿéAþÿÿf‹D$ÇD$…À„+þÿÿ1Ò1ÉéÿÿÿH™?H5üýë°èksýÿH…À…þÿÿH‹=“5%H5ôèÿtýÿééýÿÿH)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$éàþÿÿI¾HL$Ht$H|$ÿÕè
sýÿH…ÀtÇD$‹D$…À„“ýÿÿH=~ÓL‰î1ÀèCtýÿH‰D$éxýÿÿf„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖfïÀI‰ÌHì°H‹$Ú"H
í&$H‰D$XH‰D$xHD$4HÇD$HóD$@ÇD$ óD$DÇD$$H‰\$PÇD$(HýH‰\$`ÇD$,H‰\$hÇD$0H‰\$pÇD$4H‰œ$€ÇD$8H‰œ$ˆÇD$<H‰œ$H‰œ$˜H‰œ$ PHD$0PH„$ PH„$ PH„$PH„$PH„$€PH„$ØPH„$ØP1ÀLŒ$ÈL„$¨è¹rýÿHƒÄP…À„=ƒ|$ L‹D$XHt$Pº¿Ƀá ƒÁ臹H…ÀH‰Å„ƒ|$,L‹D$xHt$pº¿L‹pɃá ƒÁèQ¹H…ÀI‰Ç„¥H‹@L¬$ H‹´$HZHDŽ$ L‰ïH‰D$èa‡ÿÿ…Àu-‰D$‹D$…ÀuEH‹D$@H‹D$@HĨ[]A\A]A^A_ÃD¸fïɉD$‹D$òZŒ$ óL$8…Àt»H‹´$˜HL‰ïHDŽ$ èé†ÿÿ…ÀtfïҸòZ”$ óT$<‰D$‹D$…À„lÿÿÿH‹t$hH9Þ„/H|$(Hè^{ýÿ‰D$‹D$…À„=ÿÿÿ‹|$(…ÿ„"H‹´$ˆH9Þ„)H|$4Hè {ýÿ‰D$‹D$…À„ÿþÿÿ‹t$4…ö„H‹t$`H9Þ„H|$$H
èåzýÿ‰D$‹D$…À„Äþÿÿ‹L$$…ɈHcÁH;D$PþH‹´$€H9Þ„H|$0Hþè™zýÿ‰D$‹D$…À„xþÿÿ‹L$0…ɈîHcÁH;D$pàH‹t$HH9Þ„åH|$HõèPzýÿ‰D$‹D$…À„/þÿÿ‹|$4‹L$‹D$4HcT$0L‹D$pÁÿqÿ1ø)øI)ЯÆH˜I9ÀŽ3D‹L$(‹D$(LcD$$H‹|$PAÁùD1ÈD)ÈL)ǯÆH˜H9Ǐ™HB;H5°ùL‰ï1ÀènýÿH‹=Ç0%L‰îè7pýÿé¡ýÿÿfè{nýÿH…À…‘ýÿÿH‹=£0%H5dèpýÿéyýÿÿf.„1Àérýÿÿf„è;nýÿH…À…QýÿÿH‹=c0%H5ÔÿèÏoýÿé9ýÿÿf.„‹D$ÇD$(…À„ýÿÿéåýÿÿ€1ÉH—9H5¥øé;ÿÿÿ‹D$ÇD$4…À…ðýÿÿéÞüÿÿ1ÉHFGH5†øé
ÿÿÿ‹D$ÇD$$…À„µüÿÿ1À1Éé÷ýÿÿH¦9H5høéÚþÿÿ‹D$ÇD$0…À„…üÿÿ1ÉéþÿÿH˜GH5Løé¬þÿÿHcT$$H‹D$P‹L$(HƒèH)ЋT$(Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$éüýÿÿH‹D$H|$K4ÆHÐHT$(HƒìHD$DPLL$HLD$DAÿÔèålýÿH…ÀZYtÇD$‹D$…À„éûÿÿH=SÍL‰úH‰î1ÀènýÿH‰D$@éËûÿÿHUGéöýÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖfïÀI‰ÌHì°H‹ôÓ"H
ý$H‰D$XH‰D$xHD$4HÇD$HóD$@ÇD$ óD$DÇD$$H‰\$PÇD$(HA÷H‰\$`ÇD$,H‰\$hÇD$0H‰\$pÇD$4H‰œ$€ÇD$8H‰œ$ˆÇD$<H‰œ$H‰œ$˜H‰œ$ PHD$0PH„$ PH„$ PH„$PH„$PH„$€PH„$ØPH„$ØP1ÀLŒ$ÈL„$¨è‰lýÿHƒÄP…À„=ƒ|$ L‹D$XHt$Pº¿Ƀá ƒÁèW³H…ÀH‰Å„ƒ|$,L‹D$xHt$pº¿L‹pɃá ƒÁè!³H…ÀI‰Ç„¥H‹@L¬$ H‹´$HzÿHDŽ$ L‰ïH‰D$è1ÿÿ…Àu-‰D$‹D$…ÀuEH‹D$@H‹D$@HĨ[]A\A]A^A_ÃD¸fïɉD$‹D$òZŒ$ óL$8…Àt»H‹´$˜H=ÿL‰ïHDŽ$ 蹀ÿÿ…ÀtfïҸòZ”$ óT$<‰D$‹D$…À„lÿÿÿH‹t$hH9Þ„/H|$(H#ÿè.uýÿ‰D$‹D$…À„=ÿÿÿ‹|$(…ÿ„"H‹´$ˆH9Þ„)H|$4H%ÿèðtýÿ‰D$‹D$…À„ÿþÿÿ‹t$4…ö„H‹t$`H9Þ„H|$$H*ÿèµtýÿ‰D$‹D$…À„Äþÿÿ‹L$$…ɈHcÁH;D$PþH‹´$€H9Þ„H|$0Hÿèitýÿ‰D$‹D$…À„xþÿÿ‹L$0…ɈîHcÁH;D$pàH‹t$HH9Þ„åH|$Hÿè týÿ‰D$‹D$…À„/þÿÿ‹|$4‹L$‹D$4HcT$0L‹D$pÁÿqÿ1ø)øI)ЯÆH˜I9ÀŽ3D‹L$(‹D$(LcD$$H‹|$PAÁùD1ÈD)ÈL)ǯÆH˜H9Ǐ™H5H5ìóL‰ï1ÀèægýÿH‹=—*%L‰îèjýÿé¡ýÿÿfèKhýÿH…À…‘ýÿÿH‹=s*%H5Œüèßiýÿéyýÿÿf.„1Àérýÿÿf„èhýÿH…À…QýÿÿH‹=3*%H5üèŸiýÿé9ýÿÿf.„‹D$ÇD$(…À„ýÿÿéåýÿÿ€1ÉHg3H5åòé;ÿÿÿ‹D$ÇD$4…À…ðýÿÿéÞüÿÿ1ÉHAH5Åòé
ÿÿÿ‹D$ÇD$$…À„µüÿÿ1À1Éé÷ýÿÿHv3H5¦òéÚþÿÿ‹D$ÇD$0…À„…üÿÿ1ÉéþÿÿHhAH5‰òé¬þÿÿHcT$$H‹D$P‹L$(HƒèH)ЋT$(Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$éüýÿÿH‹D$H|$K4†HHT$(HƒìHD$DPLL$HLD$DAÿÔèµfýÿH…ÀZYtÇD$‹D$…À„éûÿÿH=#ÇL‰úH‰î1ÀèægýÿH‰D$@éËûÿÿH%AéöýÿÿATUH‰÷SfïÀH‰ÖH‰ÍHßñHƒìPH‹ÍÍ"H
V$HD$8HÇD$óD$ÇD$óD$HÇD$@ÿÿÿÿH‰\$ óD$H‰\$(óD$H‰\$0H‰\$8PHD$8P1ÀLL$8LD$0ègýÿZ1҅ÀYt<Ld$HH‹t$ H"üHÇD$HL‰çè)|ÿÿ…Àu%‰D$‹D$…Àu:H‹D$H‹T$HƒÄPH‰Ð[]A\øfïɉD$‹D$òZL$HóL$…ÀtÆH‹t$(HûûL‰çHÇD$HèÂ{ÿÿ…ÀtfïҸòZT$HóT$‰D$‹D$…Àt„H‹t$0HùûL‰çHÇD$Hè€{ÿÿ…Àtfï۸òZ\$Hó\$‰D$‹D$…À„>ÿÿÿH‹t$8HóûL‰çHÇD$Hè:{ÿÿ…Àtfïä¸òZd$Hód$‰D$‹D$…À„øþÿÿHt$@I‰عº¿HÇD$@蜬H…ÀH‰ÃtSHL$HT$Ht$H|$L‹@ÿÕèUdýÿH…ÀtÇD$‹D$…À„“þÿÿH=ÆÄH‰Þ1Àè‹eýÿH‰D$éxþÿÿèdýÿH…À…jþÿÿH‹=D&%H5]ûè°eýÿéRþÿÿf.„USH‰÷fïÀH‰ÖHƒìHH‹YË"HlïH‰ËLL$0LD$(H
N$HÇD$ óD$H‰D$(H‰D$01ÀÇD$óD$óD$óD$è¤dýÿ1҅Àt<Hl$8H‹t$(H
ûHÇD$8H‰ïèÌyÿÿ…Àu(‰D$‹D$…Àu=H‹D$ H‹T$ HƒÄHH‰Ð[]ĸfï҉D$‹D$òZT$8óT$…ÀtÃH‹t$0HãúH‰ïHÇD$8èbyÿÿ…Àtfï۸òZ\$8ó\$‰D$‹D$…ÀtHL$HT$Ht$H|$ÿÓè²býÿH…ÀtÇD$‹D$…À„MÿÿÿfïÀH=8î¸fïÉóZD$óZL$èÔcýÿH‰D$ éÿÿÿf.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHîíH
*F$HìH‹¬É"H‰D$pH‰D$xH‰„$€H‰„$ˆHD$HÇD$(ÇD$Ç$ÇD$HÇD$0H‰\$8H‰\$@ÇD$H‰\$HÇD$ÇD$ÇD$H‰\$PÇD$H‰\$XÇD$ H‰\$`ÇD$$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$hèybýÿHƒÄ0…À„}H‹t$PH9ÞtsH|$HWùèblýÿ‰$‹$…Àt8‹L$ƒùv^Hœ$H`QH5ÍìH‰ß1Àè`ýÿH‹=0#%H‰Þè býÿH‹D$(H‹D$(HĐ[]A\A]A^ÃfD‹$ÇD$…ÀtÑH‹t$XH9ÞtGH|$HùèÖkýÿ‰$‹$…Àt¬‹L$ƒùv6Hœ$HLQH5Sìéoÿÿÿ„‹$ÇD$…À„mÿÿÿH‹t$`H9Þ„—H|$ Hãøènkýÿ‰$‹$…À„@ÿÿÿ‹L$ ƒù‡H‹t$hH9Þ„ŒH|$$Héøè4kýÿ‰$‹$…À„ÿÿÿ‹L$$ƒùvwHœ$HžQH5ÕëéÉþÿÿfHĐ1À[]A\A]A^ÃfD‹$ÇD$ …Àu†é´þÿÿHœ$HÕPH5wëé€þÿÿ‹$ÇD$$…À„†þÿÿLd$0H‹t$8H…øL‰çèÍuÿÿ‰$‹$…À„_þÿÿL‹D$@Ht$p¹º¿èQ§H…ÀH‰Ã„_L‹h1|$L‹D$HH´$€º¿”ÀÁàƒÈ‰Áè§H…ÀI‰Æ„L‹@H‹D$pHh¿‹|$H
t¿‰D$H‹„$€…ÿ‰D$H‹„$ˆ‰D$DD$xƒ|$$‰D$‹D$ HDʅÀtƒøH6¿H-¿HEЃ|$H!¿H5¿HEð…ÿH=~ÑHDøHƒìHD$PAPHD$(PAUATLL$8LD$4ÿÕHƒÄ0è0^ýÿH…ÀtÇ$‹$…ÀtH=§¾L‰ö1Àèl_ýÿH‰D$(H;\$@„ýÿÿHƒ+…ýÿÿH‰ßèÚ\ýÿéõüÿÿèà]ýÿH…ÀuÔH‹= %H5…÷èx_ýÿë¿èÁ]ýÿH…À…ÈüÿÿH‹=é%H5÷èU_ýÿé°üÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHéH
(?$Hì¸H‹êÄ"H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$ H‰„$¨HD$HÇD$0ÇD$ÇD$ÇD$HÇD$8H‰\$@H‰\$HH‰\$PHÇD$XH‰\$`ÇD$H‰\$hÇD$ H‰\$pÇD$$H‰\$xÇD$(ÇD$,PH„$€PH„$€PH„$€PH„$€PHD$xP1ÀLL$xLD$pè›]ýÿHƒÄ0…À„¯H‹t$xH9ÞtuH|$$Haöè„gýÿ‰D$‹D$…Àt8‹L$$ƒùv_Hœ$°H˜SH5QèH‰ß1ÀèŸ[ýÿH‹=P%H‰ÞèÀ]ýÿH‹D$0H‹D$0Hĸ[]A\A]A^A_Ã@‹D$ÇD$$…ÀtÐH‹t$pH9ÞtFH|$ Höèõfýÿ‰D$‹D$…Àt©‹L$ ƒùv4Hœ$°HSH5ÖçélÿÿÿD‹D$ÇD$ …À„lÿÿÿLd$8H‹t$@HóõL‰çèÓqÿÿ‰D$‹D$…À„CÿÿÿH‹t$`H9Þ„ŒH|$XH	öè¤qÿÿ‰D$‹D$…À„ÿÿÿL‹D$HH´$€¹º¿è#£H…ÀH‰Ã„ªL‹D$PH´$¹º¿L‹pèò¢H…ÀI‰Å„LD‹D$ L‹xH‹´$ˆH‹„$€H‹¼$E…	ID$(Hc։|$,„ä9ø‰t$‰D$@•Ç@„ÿ…êƒ|$L‹D$hH´$ H‰”$ H‰”$¨¿ºɃá Eè\¢H…ÀI‰Â„ÜHcT$H‹„$ H9ÐuH;„$¨„éH‹=A%H5ÒSè­[ýÿL;l$PtIƒm„‘H;\$H„ÐýÿÿHƒ+…ÆýÿÿH‰ßè¾Xýÿé¹ýÿÿf„1Àé³ýÿÿHÇD$Xé{þÿÿ;´$˜‰D$HcЉt$‰ñ@•Çé
ÿÿÿH¬$°HÏRH5Èå1ÀH‰ïèîXýÿH‹=Ÿ%H‰îè[ýÿé]ÿÿÿL‰ïèBXýÿébÿÿÿèHYýÿH…À…/ýÿÿH‹=p%H5AôèÜZýÿéýÿÿ‹D$ H5­¹…ÀtƒøH5¸¹H³¹HDðƒ|$$HT$HL$H›¹H=Ž¹M‰ñRAÿrM‰àHEøHD$hL‰T$PHD$DPAWHD$PPÿÕHƒÄ0è³XýÿH…ÀL‹T$tÇD$‹D$…À„˜þÿÿH=¹L‰Ö1ÀèäYýÿH‰D$0é}þÿÿèuXýÿH…À…þÿÿH‹=%H5¾óè	ZýÿéiþÿÿèOXýÿH…À…IþÿÿH‹=w%H5èóèãYýÿé1þÿÿ@f.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHaäH
8$Hì˜H‹l¿"H‰D$xH‰„$€H‰„$ˆH‰„$HD$ HÇD$0ÇD$ÇD$ÇD$HÇD$8H‰\$@H‰\$HHÇD$PH‰\$XÇD$ H‰\$`ÇD$$H‰\$hÇD$(H‰\$pÇD$,PHD$xPHD$xPHD$xPHD$xP1ÀLL$pLD$hèOXýÿHƒÄ0…À„CH‹t$hH9ÞtyH|$ H
óè8býÿ‰D$‹D$…Àt8‹L$ ƒùvcHœ$HLNH5SãH‰ß1ÀèSVýÿH‹=%H‰ÞètXýÿH‹D$(H‹D$(HĐ[]A\A]A^Ãf.„‹D$ÇD$ …ÀtÌH‹t$`H9ÞtFH|$Hºòè¥aýÿ‰D$‹D$…Àt¥‹L$ƒùv4Hœ$H1NH5ÓâéhÿÿÿD‹D$ÇD$…À„hÿÿÿLd$0H‹t$8H›òL‰çèƒlÿÿ‰D$‹D$…À„?ÿÿÿH‹t$PH9Þ„'H|$HH±òèTlÿÿ‰D$‹D$…À„ÿÿÿL‹D$@Ht$p¹º¿è֝H…ÀH‰Ã„Ž‹|$H‹T$pH‹L$xL‹h…ÿHc‰T$$‰Î„ljL$‰ÖHcC|$L‹D$Xº‰t$H´$€¿H‰„$€H‰„$ˆɃá Eè^H…ÀI‰Æ„<HcT$H‹„$€H9Ðu
H;„$ˆt_H‹=G%H5ØNè³VýÿH;\$@„4þÿÿHƒ+…*þÿÿH‰ßèÖSýÿéþÿÿHĐ1À[]A\A]A^ÃHÇD$Héàþÿÿ‰T$é9ÿÿÿ‹D$H5=µ…ÀtƒøH5HµHCµHDðƒ|$ HT$HL$H+µH=µM‰éRAÿvM‰àHEøHD$XPHD$<PÿÕHƒÄ èPTýÿH…ÀtÇD$‹D$…À„4ÿÿÿH=tL‰ö1Àè†UýÿH‰D$(éÿÿÿèTýÿH…À…JýÿÿH‹=?%H5ñè«Uýÿé2ýÿÿèñSýÿH…À…åþÿÿH‹=%H52ñè…UýÿéÍþÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHKàH
˜1$Hì¸H‹»"H‰„$€H‰„$ˆH‰„$H‰„$˜H‰„$ H‰„$¨HD$HÇD$0ÇD$ÇD$ÇD$HÇD$8H‰\$@H‰\$HH‰\$PHÇD$XH‰\$`ÇD$H‰\$hÇD$ H‰\$pÇD$$H‰\$xÇD$(ÇD$,PH„$€PH„$€PH„$€PH„$€PHD$xP1ÀLL$xLD$pèËSýÿHƒÄ0…À„·H‹t$pH9ÞtuH|$ H)ðè´]ýÿ‰D$‹D$…Àt8‹L$ ƒùv_Hœ$°HRH5ßH‰ß1ÀèÏQýÿH‹=€%H‰ÞèðSýÿH‹D$0H‹D$0Hĸ[]A\A]A^A_Ã@‹D$ÇD$ …ÀtÐH‹t$xH9ÞtFH|$$HÚïè%]ýÿ‰D$‹D$…Àt©‹L$$ƒùv4Hœ$°H9IH5ÞélÿÿÿD‹D$ÇD$$…À„lÿÿÿLd$8H‹t$@H»ïL‰çèhÿÿ‰D$‹D$…À„CÿÿÿH‹t$`H9Þ„”H|$XHÑïèÔgÿÿ‰D$‹D$…À„ÿÿÿL‹D$HH´$€¹º¿èS™H…ÀH‰Ã„°L‹D$PH´$¹º¿L‹pè"™H…ÀI‰Å„>D‹L$ L‹xH‹Œ$€H‹„$H‹¼$ˆL‹„$˜E…ɉL$(Hcð‰D$,HcׄãD9ID$‰|$•À…æƒ|$L‹D$h¿H‰´$ H´$ H‰”$¨ºɃá E脘H…ÀI‰Â„ÆHcD$H9„$ uHcD$H9„$¨„åH‹=g%H5èQèÓQýÿL;l$PtIƒm„H;\$H„ÆýÿÿHƒ+…¼ýÿÿH‰ßèäNýÿé¯ýÿÿ€1Àé«ýÿÿHÇD$Xésþÿÿ9ljL$D‰D$•ÀIcÐHcñéÿÿÿH¬$°‰ÑH5ÜHêP1ÀH‰ïèOýÿH‹=É%H‰îè9QýÿéaÿÿÿL‰ïèlNýÿéfÿÿÿèrOýÿH…À…)ýÿÿH‹=š%H5îèQýÿéýÿÿƒ|$$Hó¯H5æ¯HT$HL$H=LÂM‰ñM‰àHEðƒ|$ RAÿrL‰T$HDøHD$hPHD$DPAWHD$PPÿÕHƒÄ0èñNýÿH…ÀL‹T$tÇD$‹D$…À„°þÿÿH=]¯L‰Ö1Àè"PýÿH‰D$0é•þÿÿè³NýÿH…À…™þÿÿH‹=Û%H5”íèGPýÿéþÿÿèNýÿH…À…aþÿÿH‹=µ%H5¾íè!PýÿéIþÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH&ÛH
¨*$HìÈH‹ªµ"H‰„$H‰„$˜H‰„$ H‰„$¨H‰„$°H‰„$¸HD$,HÇD$@ÇD$ ÇD$ÇD$$ÇD$(HÇD$HH‰\$PH‰\$XH‰\$`HÇD$hH‰\$pÇD$,H‰\$xÇD$0H‰œ$€ÇD$4H‰œ$ˆÇD$8ÇD$<PH„$PH„$PH„$PH„$PH„$ˆP1ÀLŒ$ˆL„$€èDNýÿHƒÄ0…À„H‹´$€H9Þ„ŸH|$0H‹ìè&Xýÿ‰D$‹D$…Àu"H‹D$@H‹D$@HÄÈ[]A\A]A^A_ÃfD‹L$0ƒùwoH‹´$ˆH9Þ„žH|$4HrìèÍWýÿ‰D$‹D$…Àt§‹L$4ƒù†ˆHœ$ÀHíPH5Ùë2@‹D$ÇD$0…Àu™éiÿÿÿHœ$ÀH=H58ÙH‰ß1Àè°KýÿH‹=a%H‰ÞèÑMýÿé2ÿÿÿ@1Àé1ÿÿÿ‹D$ÇD$4…À„ÿÿÿLd$HH‹t$PHûëL‰çèSbÿÿ‰D$‹D$…À„éþÿÿH‹t$pH9Þ„H|$hHìè$bÿÿ‰D$‹D$…À„ºþÿÿL‹D$XH´$¹º¿裓H…ÀH‰Ã„ÁL‹D$`H´$ ¹º¿L‹pèr“H…ÀI‰Å„{D‹T$0H‹”$L‹xL‹„$˜H‹„$ L‹Œ$¨E…҉щT$8IcøHcð‰D$<„üD‰D$ ‹T$4‰L$(…Ò„ÕD9ɉD$$•À…äƒ|$,L‹D$xºH‰´$¸H´$°H‰¼$°¿Ƀá EèRH…ÀI‰Â„ðHcD$ H9„$°uHcD$$H9„$¸„ãH‹=¤%H5%LèLýÿL;l$`tIƒm„‹H;\$X„YýÿÿHƒ+…OýÿÿH‰ßè!IýÿéBýÿÿ@HÇD$héjþÿÿ9ÁD‰L$$Icñ•Àé#ÿÿÿ‰T$ D‰ÁHcúéúþÿÿH¬$À‰ñHÐOH5	×1ÀH‰ïèWIýÿH‹=%H‰îèxKýÿécÿÿÿL‰ïè«Hýÿéhÿÿÿè±IýÿH…À…¾üÿÿH‹=Ù%H52êèEKýÿé¦üÿÿ‹D$4H5ª…ÀtƒøH5!ªHªHDð‹D$0H=ò©…ÀtƒøH=ý©Hø©HDøHT$ HL$$HƒìM‰áRAÿrH„$€L‰T$ PHD$\PAWHD$hPAVLD$hÿÕHƒÄ@èIýÿH…ÀL‹T$tÇD$‹D$…À„†þÿÿH=p©L‰Ö1Àè5JýÿH‰D$@ékþÿÿèÆHýÿH…À…oþÿÿH‹=î
%H5—éèZJýÿéWþÿÿè HýÿH…À…7þÿÿH‹=È
%H5Áéè4JýÿéþÿÿDf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH†ÕH
8$HìÀH‹º¯"H‰D$`H‰„$€H‰„$ HD$8HÇD$@ÇD$$ÇD$ H‰\$HHÇD$PH‰\$XH‰\$hÇD$(H‰\$pÇD$,H‰\$xH‰œ$ˆÇD$0H‰œ$ÇD$4H‰œ$˜ÇD$8H‰œ$¨ÇD$<H‰œ$°PH„$¸PH„$¨PH„$¨PH„$˜PH„$˜PH„$ØPH„$ÀPH„$¨P1ÀLŒ$ L„$èMHýÿHƒÄP1҅À„©Ld$H‹t$@HŽèL‰çè6Rýÿ‰D$‹D$…Àtz‹L$…Ɉ>H‹´$¨H9Þ„}H|$4H‘èèüQýÿ‰D$‹D$…Àt@‹L$4ƒùvgHœ$°HˆMH5ÔH‰ß1ÀèFýÿH‹=È%H‰Þè8Hýÿ„H‹D$8H‹T$8HĸH‰Ð[]A\A]A^A_ЋD$ÇD$4…ÀtÐH‹t$hH9Þ„²H|$ H6èèaQýÿ‰D$‹D$…Àt¥‹|$ …ÿ„©H‹´$ˆH9Þ„µH|$(H<èè'Qýÿ‰D$‹D$…À„gÿÿÿ‹t$(…ö„¡H‹t$pH9Þ„°H|$$HAèèìPýÿ‰D$‹D$…À„,ÿÿÿH‹´$H9Þ„‹H|$,HOèèºPýÿ‰D$‹D$…À„úþÿÿLt$HH‹t$PHièL‰÷èÑ[ÿÿ‰D$‹D$…À„ÑþÿÿL‹D$`Ht$X¹º¿èSH…ÀH‰Ã„‹L$ ‹t$ ‹D$HcT$$H‹|$XÁù1΃è)ίÆÐH˜H9ÇŽô…Òx	H9׏ÿH‹=%H5ÌÞè‡FýÿH;\$`„LþÿÿHƒ+…BþÿÿH‰ßèªCýÿé5þÿÿDHœ$°HyÛH5ëÑéôýÿÿD‹D$ÇD$ …À…cþÿÿé÷ýÿÿ€Hœ$°1ÉHÏÜH5ËÑé²ýÿÿ‹D$ÇD$(…À…dþÿÿéºýÿÿHœ$°1ÉHÁKH5§Ñé|ýÿÿÇD$$éXþÿÿÇD$,é}þÿÿH‹=4%H5­Ýè EýÿéÿÿÿL‹„$€Ht$x¹º¿L‹{èæ‹H…ÀI‰Å„‡‹L$(‹|$(‹D$HcT$,H‹t$xÁù1σè)ϯÇÐH˜H9Æ~F…Òx	H9֏šH‹=²%H5ÛLèEýÿL;¬$€„‰þÿÿIƒm…~þÿÿL‰ïè=BýÿéqþÿÿH‹=y%H5jLèåDýÿëÅè.CýÿH…À…NþÿÿH‹=V%H5¯æèÂDýÿé6þÿÿèCýÿH…À…üÿÿH‹=0%H59æèœDýÿégüÿÿ1|$0M‹ML‹„$ H´$˜º¿L‰L$”ÀÁàƒÈ‰Áè͊H…ÀI‰ÂL‹L$„À‹T$H‹p¹B¯™÷ùH˜H9„$˜Œ‚HcT$$ƒ|$4H=£L‰T$HcD$,VL‰æI×Hô¢MÁHDúHT$0RL‰òLD$0ÿÕè/BýÿZH…ÀYL‹T$tÇD$‹D$…À„¡þÿÿH=™¢L‰Ö1Àè^CýÿH‰D$8é†þÿÿH‹=%%H5ÖKè‘Cýÿénþÿÿè×AýÿH…À…`þÿÿH‹=ÿ%H5¨åèkCýÿéHþÿÿfDAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH&ÏH
¸$HìxH‹ú¨"H‰D$8H‰D$XHD$HÇD$ÇD$Ç$H‰\$ HÇD$(H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$`ÇD$H‰\$hPHD$pPHD$`PHD$`PH„$€PHD$hP1ÀLL$`LD$PèôAýÿHƒÄ01҅À„˜Ld$H‹t$ HíäL‰çèÝKýÿ‰$‹$…Àtk‹L$…ɈWH‹t$hH9Þt}H|$Hùäè¬Kýÿ‰$‹$…Àt:‹L$ƒùvhH\$pH×H5ÎH‰ß1ÀèÌ?ýÿH‹=}%H‰ÞèíAýÿDH‹D$H‹T$HÄxH‰Ð[]A\A]A^A_Ãf„‹$ÇD$…ÀtÉH‹t$HH9Þ„ÓH|$HŸäèKýÿ‰$‹$…Àt ‹D$…À„ÌH‹t$PH9Þ„ØH|$HªäèÝJýÿ‰$‹$…À„gÿÿÿH\$(H‹t$0HÆäH‰ßèöUÿÿ‰$‹$…À„@ÿÿÿL‹D$@Ht$8¹º¿èz‡H…ÀI‰Å„¥‹T$‹t$‹D$HcL$H‹|$8Áú1փè)Ö¯ÆÈH˜H9ÇŽ]…Ɉ=H9ÏŽ41|$L‹D$`Ht$Xº¿M‹u”ÀÁàƒÈ‰Áèþ†H…ÀI‰Ç„‚‹T$¹B¯™÷ùH˜H9D$XŒ0HcL$HOŸH=NŸM‹OLD$H‰ÚL‰æHÁáLñƒ|$HDøÿÕèz>ýÿH…ÀtÇ$‹$…À…øL;l$@„ þÿÿIƒm…þÿÿL‰ïè5=ýÿéþÿÿH\$pHÕH5ÚËéÒýÿÿ„‹$ÇD$…À…AþÿÿéÐýÿÿ„H\$p1ÉHbÖH5¸ËéýÿÿÇD$é/þÿÿH‹=
%H5»×èv?ýÿé^ÿÿÿH‹=òÿ$H5k×è^?ýÿéFÿÿÿè¤=ýÿH…À…cýÿÿH‹=Ìÿ$H5ãè8?ýÿéKýÿÿH‹=´ÿ$H5}Iè ?ýÿéÿÿÿH=õL‰þ1Àèº>ýÿH‰D$éíþÿÿèK=ýÿH…À…ßþÿÿH‹=sÿ$H5ôâèß>ýÿéÇþÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHÝÊH
¨$HìxH‹j¤"H‰D$8H‰D$XHD$HÇD$ÇD$Ç$H‰\$ HÇD$(H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$`ÇD$H‰\$hPHD$pPHD$`PHD$`PH„$€PHD$hP1ÀLL$`LD$Pèd=ýÿHƒÄ01҅À„˜Ld$H‹t$ H5âL‰çèMGýÿ‰$‹$…Àtk‹L$…ɈWH‹t$hH9Þt}H|$HAâèGýÿ‰$‹$…Àt:‹L$ƒùvhH\$pH
ÓH5ÈÉH‰ß1Àè<;ýÿH‹=íý$H‰Þè]=ýÿDH‹D$H‹T$HÄxH‰Ð[]A\A]A^A_Ãf„‹$ÇD$…ÀtÉH‹t$HH9Þ„ÓH|$Hçáè‚Fýÿ‰$‹$…Àt ‹D$…À„ÌH‹t$PH9Þ„ØH|$HòáèMFýÿ‰$‹$…À„gÿÿÿH\$(H‹t$0HâH‰ßèfQÿÿ‰$‹$…À„@ÿÿÿL‹D$@Ht$8¹º¿èê‚H…ÀI‰Å„¥‹T$‹t$‹D$HcL$H‹|$8Áú1փè)Ö¯ÆÈH˜H9ÇŽ]…Ɉ=H9ÏŽ41|$L‹D$`Ht$Xº¿M‹}”ÀÁàƒÈ‰Áèn‚H…ÀI‰Æ„‚‹T$¹B¯™÷ùH˜H9D$XŒ0HcD$ƒ|$H=M‹NLD$H‰ÚL‰æIÇH šHDøÿÕèí9ýÿH…ÀtÇ$‹$…À…ûL;l$@„#þÿÿIƒm…þÿÿL‰ïè¨8ýÿéþÿÿH\$pH|ÐH5‘ÇéÒýÿÿ„‹$ÇD$…À…AþÿÿéÐýÿÿ„H\$p1ÉHÒÑH5oÇéýÿÿÇD$é/þÿÿH‹=zû$H5+Óèæ:ýÿé[ÿÿÿH‹=bû$H5ÛÒèÎ:ýÿéCÿÿÿè9ýÿH…À…cýÿÿH‹=<û$H5Màè¨:ýÿéKýÿÿH‹=$û$H5íDè:ýÿéÿÿÿH=e™L‰ö1Àè*:ýÿH‰D$éêþÿÿè»8ýÿH…À…ÜþÿÿH‹=ãú$H5<àèO:ýÿéÄþÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËH”ÆH
˜$HìÀL‹5ڟ"H‰D$PH‰D$`H‰„$¨H‰„$°HD$4HÇD$8HÇD$@ÇD$L‰t$HL‰t$XL‰t$hÇD$L‰t$pÇD$ L‰t$xÇD$$L‰´$€ÇD$(L‰´$ˆÇD$,L‰´$ÇD$0L‰´$˜ÇD$4L‰´$ PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨PH„$¨P1ÀLŒ$ L„$èh8ýÿHƒÄP…À„üH‹t$hL9ötrH|$HßèQBýÿ‰D$‹D$…Àt8‹L$ƒùv\Hœ$°H}CH55ÅH‰ß1Àèl6ýÿH‹=ù$H‰Þè8ýÿH‹D$0H‹D$0Hĸ[]A\A]A^A_ЋD$ÇD$…ÀtÓHl$8H‹t$@HÇÞH‰ïèMÿÿ‰D$‹D$…Àt®H‹t$pL9ö„MH|$HáÞèœAýÿ‰D$‹D$…Àtƒ‹T$…Ò„=H‹t$xL9ö„LH|$HêÞèeAýÿ‰D$‹D$…À„HÿÿÿH‹´$€L9ö„'H|$ HøÞè3Aýÿ‰D$‹D$…À„ÿÿÿ‹D$ …À„H‹´$ˆL9ö„H|$$HúÞèõ@ýÿ‰D$‹D$…À„ØþÿÿL‹D$PHt$H¹º¿è·}H…ÀI‰Ä„YHcD$…ÀxH;D$HŒÍH‹=¨÷$H5éCè7ýÿL;d$P„|þÿÿIƒ,$…qþÿÿL‰çè64ýÿédþÿÿ1Àéfþÿÿf„‹D$ÇD$…À…Èþÿÿé:þÿÿHœ$°1ÉHèH5QÃéþÿÿÇD$é¼þÿÿ‹D$ÇD$ …À…òþÿÿé÷ýÿÿHœ$°1ÉHƒBH5 ÃéÁýÿÿÇD$$ééþÿÿL‹D$`Ht$X¹º¿M‹|$è§|H…ÀI‰Å„ÚHcT$$…Òx
H‹D$XH9Â|\H‹=™ö$H5bCè6ýÿL;l$`„æþÿÿIƒm…ÛþÿÿL‰ïè'3ýÿéÎþÿÿè-4ýÿH…À…GýÿÿH‹=Uö$H5†ÝèÁ5ýÿé/ýÿÿH‹´$I‹ML9öH‰$„òH|$(H÷Ýè?ýÿ‰D$‹D$…ÀtHcT$$H‹D$X‹|$ Hct$(HƒèH)ЋT$ H‰ñÁú1×)×H™HcÿH÷ÿHƒÀH9Ə‡HcT$H‹D$H‹|$HƒèH)ЋT$Áú1×)×H™HcÿH÷ÿHƒÀH9ƏA…öˆ1|$,L‹„$˜H‰´$ H‰´$¨H´$ º¿”ÀÁà…‰Áè<{H…ÀI‰Â„“HcT$ƒ|$H=­“Ht$(HcD$$I×H’“HDúHƒìVAÿrHT$8L‰T$ RH‹T$ LD$8LÂH‰êÿÓHƒÄ è¶2ýÿH…ÀL‹T$tÇD$‹D$…À„CþÿÿH="“L‰Ö1Àèç3ýÿH‰D$0é(þÿÿèx2ýÿH…À…þÿÿH‹= ô$H5±Üè4ýÿéþÿÿHœ$°HHBH5·ÀH‰ß1Àè·1ýÿH‹=hô$H‰ÞèØ3ýÿéÎýÿÿHœ$°HÔAëÊHœ$°HƒAë¹Hƒè‹L$ H)ЋT$ Áú1Ñ)ÑH™HcÉH÷ùHcT$‹L$H‰ÆH‹D$HHƒèH)ЋT$Áú1Ñ)ÑH™HcÉH÷ùVHH9ƉÈL‰D$(éÃýÿÿèœ1ýÿH…À…/üÿÿH‹=Äó$H5EÛè03ýÿéüÿÿf.„AVAUHÇÀÿÿÿÿATUH‰÷SH‰ÖH‰ÍHֿH
:ý#Hì€H‹¼˜"H‰D$8H‰D$pH‰D$xHD$HÇD$ HÇD$(ÇD$H‰\$0H‰\$@ÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XÇD$H‰\$`ÇD$H‰\$hPHD$pPHD$pPHD$pPHD$pPHD$pP1ÀLL$pLD$`è³1ýÿHƒÄ0…À„7H‹t$HH9ÞtuH|$H	Ûèœ;ýÿ‰D$‹D$…Àt8‹L$ƒùv_Hœ$€HÈ<H5ܾH‰ß1Àè·/ýÿH‹=hò$H‰ÞèØ1ýÿH‹D$ H‹D$ HĀ[]A\A]A^ÃfD‹D$ÇD$…ÀtÐLd$(H‹t$0H¿ÚL‰çèOFÿÿ‰D$‹D$…Àt«H‹t$XH9Þ„H|$HÑÚèä:ýÿ‰D$‹D$…Àt€H‹t$PH9ÞtsH|$HêÚè½:ýÿ‰D$‹D$…À„Uÿÿÿ‹t$…öu^Hœ$€1ÉHdâH5
¾éÿÿÿ„HĀ1À[]A\A]A^ÃfDÇD$é{ÿÿÿ‹D$ÇD$…À„ïþÿÿL‹D$@Ht$8¹º¿èwH…ÀI‰Å„±HcD$…ÀˆbH‹T$8H9ЍTH‹t$`M‹uH9Þ„WH|$H”Úèß9ýÿ‰D$‹D$…À„þHcT$H‹D$8Hœ$€‹t$Hc|$HƒèH)ЋT$H‰ùÁú1Ö)ÖH™HcöH÷þHP@HƒÀH9ǏL…ÿˆ51|$L‹D$hHt$pH‰|$pH‰|$xº¿”ÀÁà…‰Áè7vH…ÀH‰Ã„)HcD$ƒ|$H=¨ŽHt$L‰âL‹KIÆH‹ŽHDøHƒìVLD$ ÿÕèÎ-ýÿH…ÀZYtÇD$‹D$…ÀtH=AŽH‰Þ1Àè/ýÿH‰D$ L;l$@„nýÿÿIƒm…cýÿÿL‰ïès,ýÿéVýÿÿH‹=¯ï$H5ð;è/ýÿëÈHƒê‹L$H)ÂH‰ЋT$Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$é‘þÿÿè7-ýÿH…À…ýÿÿH‹=_ï$H5¸ØèË.ýÿéîüÿÿHœ$€H7?H5¾»H‰ß1Àèv,ýÿH‹='ï$H‰Þè—.ýÿéAÿÿÿèÝ,ýÿH…À…3ÿÿÿH‹=ï$H5ÞØèq.ýÿéÿÿÿff.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH[»H
¸ô#HìÐH‹ú“"H‰„$¸H‰„$ÀH‰D$`H‰„$€HD$(HÇD$@ÇD$$ÇD$ HÇD$HH‰\$PH‰\$XH‰\$hHÇD$pH‰\$xÇD$(H‰œ$ˆÇD$,H‰œ$ÇD$0H‰œ$˜ÇD$4H‰œ$ ÇD$8H‰œ$¨ÇD$<H‰œ$°PH„$¸PH„$¸PH„$¸PH„$¸PH„$¸PH„$¸PH„$°PH„$¨P1ÀLŒ$ L„$˜èy,ýÿHƒÄP…À„EH‹´$¨H9ÞtxH|$4H”×è_6ýÿ‰D$‹D$…Àt8‹L$4ƒùvbHœ$ÀH»?H5ê¹H‰ß1Àèz*ýÿH‹=+í$H‰Þè›,ýÿH‹D$8H‹D$8HÄÈ[]A\A]A^A_À‹D$ÇD$4…ÀtÍH‹´$H9Þ„‡H|$(H;×èÆ5ýÿ‰D$‹D$…ÀtŸ‹T$(…Ò„~H‹´$ H9Þ„H|$0HA×èŒ5ýÿ‰D$‹D$…À„aÿÿÿ‹D$0…ÀuxHœ$À1ÉHË?H57¹é#ÿÿÿ€‹D$ÇD$(…Àu’é ÿÿÿ1Àé ÿÿÿHœ$À1ÉH?H5á¸éßþÿÿ‹D$ÇD$0…À„áþÿÿLd$@H‹t$HHÛÖL‰çè#@ÿÿ‰D$‹D$…À„¸þÿÿH‹t$pH9Þ„–H|$hHñÖèô?ÿÿ‰D$‹D$…À„‰þÿÿL‹D$PH´$°¹º¿èsqH…ÀI‰Å„}H‹„$¸H9„$°tDH‹=fë$H5GèÒ*ýÿL;l$P„,þÿÿIƒm…!þÿÿL‰ïèô'ýÿéþÿÿHÇD$héqÿÿÿH‹´$ˆI‹EH9ÞH‰D$„óH|$$HÃÖèö3ýÿ‰D$‹D$…Àt˜H‹´$˜H9Þ„ÒH|$,HÕÖèÈ3ýÿ‰D$‹D$…À„fÿÿÿH‹„$°L‹D$`Ht$X¹º¿‰D$è~pH…ÀI‰Æ„K‹D$‹|$(HcT$$H‹t$XHÿ‹D$(Áÿ1ø)ø¯ÁÐH˜H9ÆŽ…ÒxH9ÖuH‹=Jê$H5ûÁè¶)ýÿL;t$`„ÙþÿÿIƒ.…ÏþÿÿL‰÷èÙ&ýÿéÂþÿÿÇD$$éÿÿÿÇD$,é6ÿÿÿèÅ'ýÿH…À…ÑüÿÿH‹=íé$H5VÕèY)ýÿé¹üÿÿL‹„$€ƒÊÿI9Ø„Ì1|$ HcÒHt$xH‰T$x¿ºM‹~”ÀÁà…‰ÁèoH…ÀH‰Ãtm‹|$0D‹D$0H‹p‹D$HcT$,H‹L$xÁÿA1øƒèA)øA¯ÀÐH˜H9Á~!…ÒxH9ÑuH‹=Ké$H5?è·(ýÿéüþÿÿH‹=3é$H5´>èŸ(ýÿéäþÿÿèå&ýÿH…À…ÖþÿÿH‹=
é$H5–Õèy(ýÿé¾þÿÿ‹T$0‹D$0Áú1Ð)ЋT$,¯MTéÿÿÿƒ|$4H
A‡H=@‡HÖHcD$$Ht$I‰ðHDùHL$0MÇQRHT$xRHT$@RL‰âH‹L$(ÿÕHƒÄ èS&ýÿH…ÀtÇD$‹D$…À„4þÿÿH=ĆH‰Þ1Àè‰'ýÿH‰D$8éþÿÿH‹=Pè$H5ɿè¼'ýÿéþÿÿè&ýÿH…À…×üÿÿH‹=*è$H5cÔè–'ýÿé¿üÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËHܴH
ë#HìÈL‹%*"H‰D$XH‰D$hH‰„$˜HD$(HÇD$8ÇD$ÇD$L‰d$@HÇD$HL‰d$PL‰d$`L‰d$pÇD$ L‰d$xÇD$$L‰¤$€HDŽ$ˆL‰¤$ÇD$(L‰¤$ ÇD$,L‰¤$¨ÇD$0L‰¤$°ÇD$4L‰¤$¸PH„$ÀPH„$ÀPH„$ÀPH„$ÀPH„$¸PH„$°PH„$°PH„$°PH„$¨P1ÀLŒ$ L„$è£%ýÿHƒÄP…À„'H‹´$¸L9ætzH|$4HnÓè‰/ýÿ‰D$‹D$…Àt8‹L$4ƒùvdHœ$ÀHå8H5f³H‰ß1Àè¤#ýÿH‹=Uæ$H‰ÞèÅ%ýÿH‹D$8H‹D$8HÄÈ[]A\A]A^A_Ãf„‹D$ÇD$4…ÀtËHl$H‹t$@HÓH‰ïè÷.ýÿ‰D$‹D$…Àt¦‹L$…ɈˆH‹t$xL9æ„aH|$ H%ÓèÀ.ýÿ‰D$‹D$…À„kÿÿÿ‹T$ …Ò„hH‹´$¨L9æ„tH|$,H'Óè‚.ýÿ‰D$‹D$…À„-ÿÿÿ‹D$,…À„`H‹´$€L9æ„lH|$$H)ÓèD.ýÿ‰D$‹D$…À„ïþÿÿH‹´$°L9æ„GH|$0H7Óè.ýÿ‰D$‹D$…À„½þÿÿL|$HH‹t$PHQÓL‰ÿè)9ÿÿ‰D$‹D$…À„”þÿÿH‹´$L9æ„H¼$ˆHaÓèô8ÿÿ‰D$‹D$…À„_þÿÿAƒÍÿL9¤$ „ìL‹D$`Ht$X¹º¿èdjH…ÀI‰Ä„‹T$H‹@¹H‰$B¯™÷ùH˜H9D$XŒr1|$(L‹„$ H´$˜Mcíº¿L‰¬$˜”ÀÁà…‰ÁèöiH…ÀI‰Æ„“‹L$,‹|$,‹D$HcT$0H‹´$˜Áù1σè)ϯÇÐH˜H9ÆŽH…Òx	H9֏yH‹=»ã$H5Ä<è'#ýÿL;d$`„WýÿÿIƒ,$…LýÿÿL‰çèI ýÿé?ýÿÿ@1Àé>ýÿÿf„‹D$ÇD$ …À„ýÿÿé³ýÿÿHœ$ÀHð·H5\°éÞüÿÿHœ$À1ÉHk¹H5N°éÁüÿÿ‹D$ÇD$,…À…¥ýÿÿéÁüÿÿHœ$À1ÉHUúH5*°é‹üÿÿÇD$$éœýÿÿÇD$0éÁýÿÿH‹=Ðâ$H5!;è<"ýÿéÿÿÿHDŽ$ˆéöýÿÿ‹T$,‹L$,‹D$Áú1ÑDè)ыT$0¯ÁDléíýÿÿH‹=€â$H5Q;èì!ýÿéÀþÿÿè2 ýÿH…À…²þÿÿH‹=Zâ$H5ƒÑèÆ!ýÿéšþÿÿM‹NL‹D$pHt$h¹º¿L‰L$è
hH…ÀI‰ÅL‹L$„Œ‹L$ D‹D$ H‹p‹D$HcT$$H‹|$hÁùA1ȃèA)ÈA¯ÀÐH˜H9Ç~C…Òx	H9׏—H‹=Éá$H5’;è5!ýÿL;l$p„þÿÿIƒm…øýÿÿL‰ïèWýÿéëýÿÿH‹=“á$H5$;èÿ ýÿëÈèHýÿH…À…ÈýÿÿH‹=pá$H5áÐèÜ ýÿé°ýÿÿè"ýÿH…À…ûÿÿH‹=Já$H5#Ðè¶ ýÿéìúÿÿƒ|$4HcD$0H
˜H=—LÖL‰úH‰îHDùHƒìIÁHL$4QPH„$ PH‹L$ LL$@ÿÓHƒÄ è®ýÿH…ÀtÇD$‹D$…À„ÿÿÿH=L‰ö1ÀèäýÿH‰D$8éõþÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËHͭH
˜á#HìØL‹%º…"H‰„$ÀH‰„$ÈH‰D$hH‰„$˜HD$0HÇD$@ÇD$ÇD$ÇD$ L‰d$HHÇD$PL‰d$XL‰d$`ÇD$$L‰d$pÇD$(L‰d$xÇD$,L‰¤$€HDŽ$ˆL‰¤$ÇD$0L‰¤$ ÇD$4L‰¤$¨ÇD$8L‰¤$°ÇD$<L‰¤$¸PH„$ÀPH„$ÀPH„$ÀPH„$ÀPH„$¸PH„$°PH„$°PH„$°PH„$¨P1ÀLŒ$¨L„$˜èýÿHƒÄP…À„ÜH‹´$¸L9ætwH|$<HÓÎèþ'ýÿ‰D$‹D$…Àt8‹L$<ƒùvaHœ$ÐHZ1H5<¬H‰ß1ÀèýÿH‹=ÊÞ$H‰Þè:ýÿH‹D$@H‹D$@HÄØ[]A\A]A^A_ÃfD‹D$ÇD$<…ÀtÎH‹t$xL9æ„H|$(H~Îèi'ýÿ‰D$‹D$…Àt£‹T$(…Ò„!H‹´$¨L9æ„0H|$4H„Îè/'ýÿ‰D$‹D$…À„eÿÿÿ‹D$4…À„#H‹´$€L9æ„/H|$,H†Îèñ&ýÿ‰D$‹D$…À„'ÿÿÿH‹´$°L9æ„
H|$8H”Îè¿&ýÿ‰D$‹D$…À„õþÿÿLl$PH‹t$XH®ÎL‰ïèÖ1ÿÿ‰D$‹D$…À„ÌþÿÿH‹´$L9愼H¼$ˆH¾Îè¡1ÿÿ‰D$‹D$…À„—þÿÿL‹D$`H´$À¹º¿è cH…ÀH‰Å„>H‹Œ$ÈH‹@…ÉH‰$‰L$ˆHƒ¼$À¸L|$ HO„$ÀH‹t$HHÈÎL‰ÿ‰D$$èÔ%ýÿ‰D$‹D$…ÀtA‹L$ …Éx
;L$$ŒHœ$ÐHϼH5OªH‰ß1ÀèæýÿH‹=—Ü$H‰ÞèýÿH;l$`„ÂýÿÿHƒm…·ýÿÿH‰ïè)ýÿéªýÿÿ@‹D$ÇD$(…À…ûýÿÿéýÿÿ€1Àé‰ýÿÿf„Hœ$Ð1ÉH_²H5”©é@ýÿÿ‹D$ÇD$4…À…éýÿÿé=ýÿÿ€Hœ$Ð1ÉH?óH5f©éýÿÿÇD$,éÙýÿÿÇD$8éþýÿÿHDŽ$ˆéKþÿÿL‹„$ ƒÊÿM9à„1|$0HcÒH´$˜H‰”$˜¿º”ÀÁà…‰ÁèQaH…ÀI‰Æ„­‹L$4‹|$4‹D$HcT$8H‹´$˜Áù1σè)ϯÇÐH˜H9Æ~f…Òx	H9֏¼H‹=Û$H5#4è†ýÿézþÿÿHœ$ÐH9{H5‹¨éFþÿÿè±ýÿH…À…üÿÿH‹=ÙÚ$H5bÌèEýÿéüÿÿH‹=ÁÚ$H5’3è-ýÿé!þÿÿèsýÿH…À…þÿÿH‹=›Ú$H5´Ìèýÿéûýÿÿ‹D$‹L$4ЋT$4Áú1Ñ)ыT$8¯MTéÉþÿÿM‹NL‹D$pHt$h¹º¿L‰L$è&`H…ÀI‰ÄL‹L$„ˆ‹|$(D‹D$(H‹p‹D$HcT$,H‹L$hÁÿA1øƒèA)øA¯ÀÐH˜H9Á~?…ÒxH9ÑqH‹=éÙ$H5²3èUýÿL;d$p„CýÿÿIƒ,$…8ýÿÿL‰çèwýÿé+ýÿÿH‹=³Ù$H5D3èýÿëÈèhýÿH…À…ýÿÿH‹=Ù$H5ñËèüýÿéðüÿÿHcD$8ƒ|$<H=äwIÁHÖHÏwHt$HDúHƒìHT$<RQL‰éH”$ RHT$HRPL‰úL‹D$0LL$TÿÓHƒÄ0èèýÿH…ÀtÇD$‹D$…À„*ÿÿÿH=YwL‰ö1ÀèýÿH‰D$@éÿÿÿ@AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËH}¦H
Ø×#Hì L‹5ú}"HÇD$pH‰„$H‰„$H‰„$°ÇD$@ÇD$DL‰t$xÇD$HL‰´$€ÇD$LL‰´$ˆÇD$PL‰´$HDŽ$˜L‰´$ L‰´$¨ÇD$TL‰´$¸ÇD$XL‰´$ÀÇD$\L‰´$ÈHDŽ$ÐL‰´$ØH‰„$àHD$`ÇD$`L‰´$èÇD$dL‰´$ðÇD$hL‰´$øÇD$lL‰´$PH„$PH„$PH„$PH„$PH„$PH„$øPH„$øPH„$øPH„$ðPH„$ðPH„$èPH„$èP1ÀLŒ$èL„$àèýÿHƒÄp…À„H‹´$øL9ötzH|$dH®Éèéýÿ‰D$8‹D$8…Àt8‹L$dƒùvdHœ$H7H5š¤H‰ß1ÀèýÿH‹=µÖ$H‰Þè%ýÿH‹D$hH‹D$hHÄ[]A\A]A^A_Ãf„‹D$8ÇD$d…ÀtËHl$DH‹´$€H\ÉH‰ïèTýÿ‰D$8‹D$8…Àt£‹L$D…Ɉ\Ld$HH‹´$ˆHhÉL‰çè ýÿ‰D$8‹D$8…À„kÿÿÿ‹L$H…Ɉ]H‹´$¸L9ö„3H|$PHgÉèâýÿ‰D$8‹D$8…À„-ÿÿÿ‹T$P…Ò„:H‹´$èL9ö„FH|$\HiÉè¤ýÿ‰D$8‹D$8…À„ïþÿÿ‹D$\…À„2H‹´$ÀL9ö„>H|$THkÉèfýÿ‰D$8‹D$8…À„±þÿÿH‹´$ðL9ö„H|$`HyÉè4ýÿ‰D$8‹D$8…À„þÿÿH„$H‹´$˜HÉH‰ÇH‰D$ è@)ÿÿ‰D$8‹D$8…À„KþÿÿH‹´$ÐL9ö„ÀH¼$ÈH˜Éè)ÿÿ‰D$8‹D$8…À„þÿÿL‹„$ H´$¹º¿è‡ZH…ÀI‰Å„}H‹@H‹t$pHÓÉH‰D$HD$<H‰ÇH‰D$èdýÿ‰D$8‹D$8…ÀtC‹D$DD$H‹L$<9ÈŒ\Hœ$H7H5a¢H‰ß1ÀètýÿH‹=%Ô$H‰Þè•ýÿL;¬$ „býÿÿIƒm…WýÿÿL‰ïè´ýÿéJýÿÿ€1ÀéFýÿÿHœ$H‰4H5¹¡éýÿÿD‹D$8ÇD$P…À…æýÿÿéýÿÿHœ$H¸4H5¡éÎüÿÿHœ$1ÉH»©H5ƒ¡é±üÿÿ‹D$8ÇD$\…À…Óýÿÿé±üÿÿHœ$1ÉH¥êH5_¡é{üÿÿÇD$TéÊýÿÿÇD$`éïýÿÿHDŽ$ÈéGþÿÿèÙýÿH…À…[üÿÿH‹=Ó$H5úÇèmýÿéCüÿÿHD$@H‹t$xHoÈH‰ÇH‰D$èÊýÿ‰D$8‹D$8…À„¥þÿÿ‹L$@…Éx
HcÁH;„$tHœ$Hf6H5Ѡé\þÿÿHƒ¼$¸L‹„$àHO„$‰D$LƒÈÿM9ð„å1҃|$XH´$ØH˜¿H‰„$Ø”ÂÁâ€ʅ‰ѺèXH…ÀI‰Ç„€ƒ|$dL‹HH‹´$Øud‹D$<Pÿ‹|$\‹D$\HcL$`Áÿ1ø)ø¯ÂÈH˜H9Æ~%…Éx	H9Ώ‘H‹=ÖÑ$H5ß*èBýÿé¨ýÿÿH‹=¾Ñ$H5÷5è*ýÿéýÿÿ‹D$@PÿëšègýÿH…À…yýÿÿH‹=Ñ$H5XÇèûýÿéaýÿÿƒ|$d‹D$`p…,‹D$<Hÿ‹T$\‹D$\Áú1Ð)ЯÁðééþÿÿL‹„$°H´$¨¹º¿L‰L$(èWH…ÀI‰ÆL‹L$(„¬‹L$dH‹xH‹´$¨…É…‡‹D$<D@ÿD‹T$P‹D$PHcT$TAÁúD1ÐD)ÐA¯ÀÐH˜H9Æ~E…Òx	H9֏ˆH‹=¹Ð$H5Ò5è%ýÿL;´$°„‚üÿÿIƒ.…xüÿÿL‰÷èE
ýÿéküÿÿH‹=Ð$H5R5èíýÿëƋD$@D@ÿétÿÿÿè)ýÿH…À…;üÿÿH‹=QÐ$H5bÆè½ýÿé#üÿÿƒééÓþÿÿHcD$`…ÉI4ÁH×H={ntH‹nH=†nƒùHEúHƒìM‰àH‰éHT$dRVH”$àRHT$pRPHD$|Pÿt$@L‹L$`H‹T$XH‹t$PÿÓHƒÄ@èŽ
ýÿH…ÀtÇD$8‹D$8…À„ÿÿÿH=ÿmL‰þ1ÀèÄýÿH‰D$héåþÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ËH°H
ØÌ#HìÐL‹=št"H‰„$¸H‰„$ÀH‰D$`H‰„$€HD$(HÇD$@ÇD$ ÇD$ÇD$$HÇD$HL‰|$PL‰|$XL‰|$hHÇD$pL‰|$xÇD$(L‰¼$ˆÇD$,L‰¼$ÇD$0L‰¼$˜ÇD$4L‰¼$ ÇD$8L‰¼$¨ÇD$<L‰¼$°PH„$¸PH„$¸PH„$¸PH„$¸PH„$¸PH„$¸PH„$°PH„$¨P1ÀLŒ$ L„$˜è
ýÿHƒÄP…À„MH‹´$¨L9þ„äH|$4HhÄèóýÿ‰D$‹D$…ÀuH‹D$8H‹D$8HÄÈ[]A\A]A^A_ËL$4ƒù‡»H‹´$L9þ„êH|$(HNÄè™ýÿ‰D$‹D$…Àt¦‹|$(…ÿ„áH‹´$ L9þ„ðH|$0HTÄè_ýÿ‰D$‹D$…À„hÿÿÿ‹t$0…ö…×Hœ$À1ÉHš H5»›ë?f„‹D$ÇD$4…À…Qÿÿÿé ÿÿÿ€Hœ$ÀH1-H5U›H‰ß1Àè0
ýÿH‹=áÌ$H‰ÞèQýÿéåþÿÿ@1Àéäþÿÿ‹D$ÇD$(…À…+ÿÿÿéÀþÿÿ€Hœ$À1ÉH‡H5›ëœfD‹D$ÇD$0…À„…þÿÿHl$@H‹t$HH‹ÃH‰ïè“ ÿÿ‰D$‹D$…À„\þÿÿH‹t$pL9þ„7H|$hH¡Ãèd ÿÿ‰D$‹D$…À„-þÿÿL‹D$PH´$°¹º¿èãQH…ÀI‰Ä„&H‹´$ˆH‹@L9þH‰$„ÞH|$$HÊÃè½ýÿ‰D$‹D$…À„ŒH‹´$˜L9þ„¹H|$,HØÃè‹ýÿ‰D$‹D$…À„Z‹L$4H‹”$°H‹„$¸…ÉA‰։T$A‰ID$tA‰ÑA‰ÆL‹D$`Ht$X¹º¿D‰L$èQH…ÀI‰ÅD‹L$„¥‹t$(‹D$(AƒéHcT$$H‹L$XÁþ1ð)ðA¯ÁÐH˜H9ÁŽR…ÒˆH9ÑŽL‹„$€ƒÊÿM9ø„?1|$ M‹MHcÒHt$x¿H‰T$xºL‰L$”ÀÁà…‰Áè‚PH…ÀI‰ÂL‹L$„‹t$0‹D$0AƒîHcT$,H‹L$xÁþ1ð)ðA¯ÆÐH˜H9ÁŽ²…Òx	H9яöH‹=GÊ$H5 è³	ýÿL;l$`tIƒm„žL;d$P„/üÿÿIƒ,$…$üÿÿL‰çèÃýÿéüÿÿHÇD$héÐýÿÿÇD$$é*þÿÿÇD$,éOþÿÿH‹=×É$H5ˆ¡èC	ýÿëŽèŒýÿH…À…ÌûÿÿH‹=´É$H5]Áè 	ýÿé´ûÿÿH‹=œÉ$H5]1è	ýÿéPÿÿÿL‰ïè;ýÿéUÿÿÿèAýÿH…À…GÿÿÿH‹=iÉ$H5âÁèÕýÿé/ÿÿÿI‹BH=¦gLÐHcD$$IKD$4…ÀtƒøH=¢gH™gHEøL‰T$Ht$HT$HƒìHD$8I‰ñPAPH„$€PHD$HPQH‰éL‹D$0ÿÓHƒÄ0èªýÿH…ÀL‹T$tÇD$‹D$…À„‰þÿÿH=gL‰Ö1ÀèÛýÿH‰D$8énþÿÿH‹=¢È$H5ë0èýÿéVþÿÿ‹T$0‹D$0Áú1Ð)ÐAVÿ¯‹T$,Téžýÿÿè1ýÿH…À…%þÿÿH‹=YÈ$H5"ÁèÅýÿé
þÿÿAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÌHVH
˜¿#HìˆH‹Zm"H‰D$@H‰D$`HD$xHÇD$ ÇD$ÇD$H‰\$(HÇD$0H‰\$8H‰\$HÇD$H‰\$PÇD$H‰\$XH‰\$hÇD$H‰\$pÇD$H‰\$xPHD$xPHD$hPHD$hPHD$XPHD$PP1ÀLŒ$˜LD$xèNýÿHƒÄ01҅À„pL‹D$HHt$@¹º¿è"MH…ÀH‰Å„†L‹D$hHt$`¹º¿L‹pèôLH…ÀI‰Å„¸H‹t$8L‹xH9Þ„H|$0HšÀèÿÿ‰D$‹D$…À„ÍH‹t$XH9Þ„7H|$H«Àè¦ýÿ‰D$‹D$…À„ž‹T$…Ò„*H‹t$xH9Þ„lH|$H°Àèkýÿ‰D$‹D$…À„c‹D$…À„_H‹t$PH9Þ„qH|$HµÀè0ýÿ‰D$‹D$…À„(‹L$…ɈdHcÁH9D$@ŽVH‹t$pH9Þ„cH|$H¬Àèçýÿ‰D$‹D$…À„ß‹L$…ɈSHcÁH;D$`EH‹t$(H9Þ„RH|$H£Àèžýÿ‰D$‹D$…À„–‹T$‹L$‹D$LcD$H‹|$`Áúqÿ1Ð)ÐL)ǯÆH˜H9ÇŽˆ‹T$‹D$LcL$H‹|$@Áú1Ð)ÐL)ϯÆH˜H9ǏHœ$€HŒÏH5”DH‰ß1Àè^ýÿH‹=Å$H‰Þèýÿ€H;l$HtHƒmt:H‹D$ H‹T$ HĈH‰Ð[]A\A]A^A_ÃòðòD$0éäýÿÿDH‰ïèhýÿë¼fDèkýÿH…Àu¬H‹=—Ä$H5¨½èýÿ뗐‹D$ÇD$…À…âýÿÿéoÿÿÿ€Hœ$€1ÉHGH5“é+ÿÿÿèýÿH…À…:ÿÿÿH‹=3Ä$H5”½èŸýÿé"ÿÿÿf.„‹D$ÇD$…À…­ýÿÿéÿþÿÿ€Hœ$€1ÉHGH5£’é»þÿÿ‹D$ÇD$…À„Äþÿÿ1À1Éé¢ýÿÿHœ$€Há-H5w’é}þÿÿ‹D$ÇD$…À„‰þÿÿ1À1Éé°ýÿÿHœ$€H!.H5Q’éEþÿÿHcD$H‹L$@‹T$H)ÁÁúH‰ȋL$1Ñ)ÑH™HcÉH÷ù‰D$é“ýÿÿKÎHL$Ht$0H|$LL$OÇAÿÔèÙýÿH…ÀtÇD$‹D$…À„øýÿÿH=JaL‰î1ÀèýÿH‰D$ éÝýÿÿHœ$€HFÛéýÿÿAVAUH‰÷ATUH‰ÖSH»‘H‰ÍH
¸#Hì`H‹ãg"HD$HÇD$ ÇD$ÇD$HÇD$0H‰\$(H‰\$8HÇD$@ÿÿÿÿÇD$H‰\$HÇD$H‰\$PÇD$H‰\$XPHD$`PHD$`PHD$@P1ÀLL$hLD$XèþýÿHƒÄ 1҅À„ªLd$0H‹t$8H/½L‰çè'ÿÿ‰D$‹D$…À„wƒ|$L‹D$HHt$@º¿Ƀá ƒÁè¡GH…ÀI‰Å„íH‹t$XL‹pH9Þ„SH|$HW½è‚
ýÿ‰D$‹D$…À„‹D$…À„FH‹t$PH9Þ„hH|$H\½èG
ýÿ‰D$‹D$…À„׋L$…Ɉ[HcÑH‹D$@H9JH‹t$(H9Þ„zH|$HP½èû	ýÿ‰D$‹D$…À„‹‹t$‹D$‹L$HcT$H‹|$@Áþ1ð)ðqÿH)ׯÆH˜H9ÇH\$`HËH5÷é›HÁâHL$H|$LòL‰æÿÕè[þüÿH…ÀtÇD$‹D$…ÀtH=Ð^L‰î1Àè•ÿüÿH‰D$ H‹D$ H‹T$ HÄ`H‰Ð[]A\A]A^ËD$ÇD$…À…ÆþÿÿëÊf.„H\$`H”ÉH531ÉH‰ß1ÀèQýüÿH‹=À$H‰Þèrÿüÿ됋D$ÇD$…Àt€1Ò1Éé¯þÿÿ€H\$`H´ÉH5öŽë°èƒýüÿH…À…JÿÿÿH‹=«¿$H5»èÿüÿé2ÿÿÿH)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$éxþÿÿDf.„AVAUH‰÷ATUH‰ÖSH§ŽH‰ÍH
!´#HìXH‹ƒd"HD$PHÇD$ÇD$ÇD$HÇD$(H‰\$ H‰\$0HÇD$8ÿÿÿÿH‰\$@ÇD$H‰\$HÇD$H‰\$PPHD$PPHD$0P1ÀLL$XLD$Hè¬ýüÿHƒÄ 1҅Àt-Ld$ H‹t$(H1»L‰çèÙÿÿ‰$‹$…ÀuH‹D$H‹T$HÄPH‰Ð[]A\A]A^ÃfL‹D$8Ht$0¹º¿èBDH…ÀI‰Å„†H‹t$HL‹pH9Þ„äH|$HH»è#ýÿ‰$‹$…ÀtŠ‹D$…À„ÝH‹t$@H9Þ„H|$HS»èîýÿ‰$‹$…À„Qÿÿÿ‹L$…ɈüHcÑH‹D$0H9ÐŽëH‹t$H9Þ„H|$HI»è¤ýÿ‰$‹$…À„ÿÿÿ‹T$‹D$‹L$Hc|$H‹t$0Áú1Ð)ЍQÿH)þ¯ÂH˜H9ƏîH\$PHÁÇH5æŒë5‹$ÇD$…À…0ÿÿÿé©þÿÿ„H\$PH¤ÆH5Œ1ÉH‰ß1ÀèaúüÿH‹=½$H‰Þè‚üüÿénþÿÿD‹$ÇD$…À„Vþÿÿ1Ò1Ééÿÿÿ@H\$PH¼ÆH5GŒë¨è‹úüÿH…À…#þÿÿH‹=³¼$H5t¹èüüÿéþÿÿH)ЋT$‹L$Áú1Ñ)ÑH™HcÉH÷ù‰D$éÖþÿÿIþHL$H|$L‰æÿÕè/úüÿH…ÀtÇ$‹$…À„¹ýÿÿH=¢ZL‰î1ÀègûüÿH‰D$éžýÿÿf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖfïÀI‰ÌHì°L‹5Da"H
m®#H‰D$HH‰D$hHD$,HÇD$8ò„$ˆÇD$ò„$˜ÇD$L‰t$@ÇD$ HB‹L‰t$PÇD$$L‰t$XÇD$(L‰t$`ÇD$,L‰t$pÇD$0L‰t$xÇD$4L‰´$€L‰´$L‰´$ PHD$(PH„$PH„$PH„$€PH„$€PHD$pPH„$ØPH„$ÐP1ÀLŒ$¸L„$˜èÜùüÿHƒÄP…À„ðƒ|$L‹D$HHt$@º¿Ƀá ƒÁèª@H…ÀH‰Ã„΃|$$L‹D$hHt$`º¿L‹hɃá ƒÁèt@H…ÀI‰Ç„XH‹@H¬$€H‹´$ˆHݸH‰ïH‰$è‘ÿÿ‰D$‹D$…Àu%H‹D$0H‹D$0HĨ[]A\A]A^A_Ãf„H„$H‹´$˜HɸH‰ÇH‰D$è<ÿÿ‰D$‹D$…Àt«H‹t$XL9ö„2H|$ HָèÑýÿ‰D$‹D$…Àt€‹|$ …ÿ„)H‹t$xL9ö„;H|$,H߸èšýÿ‰D$‹D$…À„Eÿÿÿ‹t$,…ö„'H‹t$PL9ö„6H|$Hä¸è_ýÿ‰D$‹D$…À„
ÿÿÿ‹L$…Ɉ&HcÁH;D$@H‹t$pL9ö„%H|$(H۸èýÿ‰D$‹D$…À„Áþÿÿ‹L$(…ɈHcÁH;D$`H‹t$8L9ö„H|$HҸèÍýÿ‰D$‹D$…À„xþÿÿ‹|$,‹L$‹D$,HcT$(H‹t$`ÁÿDAÿ1ø)øH)ÖA¯ÀH˜H9ÆŽ_D‹L$ ‹D$ Hct$H‹|$@AÁùD1ÈD)ÈH)÷A¯ÀH˜H9ǏÃHœ$ H´ÂH5JˆDH‰ß1Àè†õüÿH‹=7¸$H‰Þè§÷üÿéÝýÿÿfèëõüÿH…À…ÍýÿÿH‹=¸$H54¶è÷üÿéµýÿÿf.„1Àé®ýÿÿf„è«õüÿH…À…ýÿÿH‹=ӷ$H5¤µè?÷üÿéuýÿÿf.„‹D$ÇD$ …À„WýÿÿéÞýÿÿ€Hœ$ 1ÉHÿÀH55‡é3ÿÿÿ‹D$ÇD$,…À…ÞýÿÿéýÿÿHœ$ 1ÉH¦ÎH5‡éúþÿÿ‹D$ÇD$…À„áüÿÿ1À1ÉéÝýÿÿHœ$ HþÀH5è†éÂþÿÿ‹D$ÇD$(…À„©üÿÿ1ÉéíýÿÿHœ$ HèÎH5ĆéŒþÿÿHcT$H‹D$@‹L$ HƒèH)ЋT$ Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$éÏýÿÿH‹$HÁâH|$HÁæI‰éLîHÑHT$ Hƒìÿt$LD$<AÿÔè4ôüÿH…ÀZYtÇD$‹D$…À„üÿÿH=¢TL‰úH‰Þ1ÀèeõüÿH‰D$0éæûÿÿHœ$ HœÎéËýÿÿ€AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖfïÀI‰ÌHì°L‹54["H
§#H‰D$HH‰D$hHD$,HÇD$8ò„$ˆÇD$ò„$˜ÇD$L‰t$@ÇD$ H£…L‰t$PÇD$$L‰t$XÇD$(L‰t$`ÇD$,L‰t$pÇD$0L‰t$xÇD$4L‰´$€L‰´$L‰´$ PHD$(PH„$PH„$PH„$€PH„$€PHD$pPH„$ØPH„$ÐP1ÀLŒ$¸L„$˜èÌóüÿHƒÄP…À„ðƒ|$L‹D$HHt$@º¿Ƀá ƒÁèš:H…ÀH‰Ã„΃|$$L‹D$hHt$`º¿L‹hɃá ƒÁèd:H…ÀI‰Ç„XH‹@H¬$€H‹´$ˆHµH‰ïH‰$èÿÿ‰D$‹D$…Àu%H‹D$0H‹D$0HĨ[]A\A]A^A_Ãf„H„$H‹´$˜H	µH‰ÇH‰D$è,ÿÿ‰D$‹D$…Àt«H‹t$XL9ö„2H|$ HµèÁüüÿ‰D$‹D$…Àt€‹|$ …ÿ„)H‹t$xL9ö„;H|$,HµèŠüüÿ‰D$‹D$…À„Eÿÿÿ‹t$,…ö„'H‹t$PL9ö„6H|$H$µèOüüÿ‰D$‹D$…À„
ÿÿÿ‹L$…Ɉ&HcÁH;D$@H‹t$pL9ö„%H|$(Hµèüüÿ‰D$‹D$…À„Áþÿÿ‹L$(…ɈHcÁH;D$`H‹t$8L9ö„H|$Hµè½ûüÿ‰D$‹D$…À„xþÿÿ‹|$,‹L$‹D$,Hct$(H‹T$`ÁÿDAÿ1ø)øH)òA¯ÀH˜H9ÂŽZD‹L$ ‹D$ Hc|$H‹T$@AÁùD1ÈD)ÈH)úA¯ÀH˜H9ÃHœ$ H¤¼H5¦‚DH‰ß1ÀèvïüÿH‹='²$H‰Þè—ñüÿéÝýÿÿfèÛïüÿH…À…ÍýÿÿH‹=²$H5|²èoñüÿéµýÿÿf.„1Àé®ýÿÿf„è›ïüÿH…À…ýÿÿH‹=ñ$H5ô±è/ñüÿéuýÿÿf.„‹D$ÇD$ …À„WýÿÿéÞýÿÿ€Hœ$ 1ÉHïºH5•é3ÿÿÿ‹D$ÇD$,…À…ÞýÿÿéýÿÿHœ$ 1ÉH–ÈH5méúþÿÿ‹D$ÇD$…À„áüÿÿ1À1ÉéÝýÿÿHœ$ HîºH5FéÂþÿÿ‹D$ÇD$(…À„©üÿÿ1ÉéíýÿÿHœ$ HØÈH5!éŒþÿÿHcT$H‹D$@‹L$ HƒèH)ЋT$ Áú1Ñ)ÑH™HcÉH÷ùƒÀ‰D$éÏýÿÿH‹$HT$ I‰éHðItýH|$Hƒìÿt$LD$<AÿÔè)îüÿH…ÀZYtÇD$‹D$…À„	üÿÿH=—NL‰úH‰Þ1ÀèZïüÿH‰D$0éëûÿÿHœ$ H‘ÈéÐýÿÿff.„AWAVH‰÷AUATH‰ÖUSHh€fïÀH‰ÍHƒìhH‹'U"H
ð #HD$PHÇD$HÇD$XÿÿÿÿÇD$òD$H‰\$ òD$(H‰\$0òD$8H‰\$@òD$HH‰\$PPHD$HP1ÀLL$@LD$0è]îüÿZ1҅ÀYt/Ld$H‹t$ HܱL‰çèŒÿÿ‰D$‹D$…Àu H‹D$H‹T$HƒÄhH‰Ð[]A\A]A^A_Ã@Ll$(H‹t$0HױL‰ïèGÿÿ‰D$‹D$…Àt»Lt$8H‹t$@Hò±L‰÷è"ÿÿ‰D$‹D$…Àt–L|$HH‹t$PH
²L‰ÿèýÿÿ‰D$‹D$…À„mÿÿÿHt$XI‰عº¿HÇD$Xèx4H…ÀH‰ÃtKL‹@L‰ùL‰òL‰îL‰çÿÕè9ìüÿH…ÀtÇD$‹D$…À„ÿÿÿH=ªLH‰Þ1ÀèoíüÿH‰D$éõþÿÿèìüÿH…À…çþÿÿH‹=(®$H5¡±è”íüÿéÏþÿÿDf.„ATUH‰÷SfïÀH‰ÖH‰ËHz~Hƒì@H‹-S"H
Vž#LL$(LD$HÇD$òD$ÇD$H‰D$H‰D$(1ÀòD$ òD$0òD$8è‚ìüÿ1҅Àt/Hl$H‹t$HK±H‰ïè³ÿÿ‰D$‹D$…ÀuH‹D$H‹T$HƒÄ@H‰Ð[]A\ÐLd$ H‹t$(HO±L‰çèwÿÿ‰D$‹D$…ÀtÄHL$8HT$0L‰æH‰ïÿÓèäêüÿH…ÀtÇD$‹D$…Àt˜òL$8H=”}¸òD$0èìüÿH‰D$éqÿÿÿ„ATUSHcÞH‰=ª¬$‰œ¬$I‰ÜHÁãH‰ßǨ¬$èséüÿH…ÀH‰‰¬$toH‰ßH‰Åè\éüÿH…ÀH‰z¬$tXAƒü~4At$þHHUHtµ„ÇHƒÂÇAøHƒéH9òuæÇDüÿÿÿÿÇEÿÿÿÿ¸[]A\ÃD[1À]A\ÐAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍH¤|H
³#Hì H‹:Q"H‰D$PH‰D$hH‰„$ˆH‰„$HD$8HÇD$@ÇD$ÇD$ÇD$ ÇD$$H‰\$HÇD$(H‰\$XÇD$,H‰\$`ÇD$0H‰\$pÇD$4H‰\$xÇD$8H‰œ$€ÇD$<PHD$8PHD$8PH„$˜PH„$˜PH„$ˆPH„$ P1ÀLŒ$L„$€èùéüÿHƒÄ@1҅À„[L¬$H‹t$@H7¯HDŽ$L‰ïèÿþÿ…Àtfï8òZ„$óD$‰D$‹D$…À„ýƒ|$ L‹D$PHt$Hº¿Ƀá ƒÁèq0H…ÀI‰Ä„uH‹t$XL‹pH9Þ„ëH|$$H/¯èRóüÿ‰D$‹D$…À„Š‹L$$Aƒàý…Òƒ|$(L‹D$hHt$`º¿Ƀá ƒÁèü/H…ÀI‰Ç„\H‹t$pH‹@H9ÞH‰$„ÊH|$,Hn¯èÙòüÿ‰D$‹D$…À„ù‹L$,Aƒàý…éƒ|$0H‹T$HH´$€H‹D$`L‹D$x¿‰T$HcÒɉD$H‰”$€ƒá H˜ºEH‰„$ˆèV/H…ÀI‰Å„H9\$xH‹@H‰D$„È‹D$…Àtn‹D$HT$Ht$H|$HƒìL‰ñ‰D$<HD$<Pÿt$HD$DPL‹L$ LD$DÿÕHƒÄ èËæüÿH…ÀtÇD$‹D$…ÀtH=@GL‰î1ÀèèüÿH‰D$8L;|$htIƒ/„€L;d$PtIƒ,$t"H‹D$8H‹T$8HĘH‰Ð[]A\A]A^A_ÃL‰çè@åüÿëÔfD‹D$ÇD$$…À…2þÿÿëªfHq­H5yL‰ï1Àè˜åüÿH‹=I¨$L‰îè¹çüÿé|ÿÿÿ@L‰ÿèèäüÿékÿÿÿ‹D$ÇD$,…À…Sþÿÿé7ÿÿÿ€èËåüÿH…À…HÿÿÿH‹=ó§$H5t¬è_çüÿé0ÿÿÿf.„H™­H5xL‰ï1ÀèåüÿH‹=¹§$L‰îè)çüÿéÔþÿÿèoåüÿH…À…ÞþÿÿH‹=—§$H5ЬèçüÿéÆþÿÿA‹u I‹}(…öxbH…ÿt]è˜úÿÿ…ÀtTH‹\$ëDÇHƒÃèùëüÿH…Àuìéùýÿÿè
åüÿH…À…aþÿÿH‹=2§$H5#­èžæüÿéIþÿÿf„èÛäüÿH…Àt
ÇD$é³ýÿÿH‹=ú¦$H53­èfæüÿëÞ@AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍHwH
8®#HìÀH‹úK"H‰D$pH‰„$ˆH‰„$¨H‰„$°HD$PHÇD$XÇD$8ÇD$4ÇD$<HÇD$`H‰\$hÇD$@H‰\$xÇD$DH‰œ$€ÇD$HH‰œ$ÇD$LH‰œ$˜ÇD$PH‰œ$ ÇD$TPHD$PPHD$PPH„$¸PH„$¸PH„$¨PH„$ÀP1ÀLŒ$°L„$ è¬äüÿHƒÄ@1҅À„NLd$XH‹t$`H¬L‰çèÕùþÿ‰D$,‹D$,…À„ƒ|$8L‹D$pHt$hº¿Ƀá ƒÁèO+H…ÀH‰Å„›H‹t$xL‹pH9Þ„	H|$<H=¬è0îüÿ‰D$,‹D$,…À„¨‹L$<Aƒàý…ðƒ|$@L‹„$ˆH´$€º¿Ƀá ƒÁèÔ*H…ÀI‰Ç„|H‹´$H‹@H9ÞH‰D$„æH|$DHB¬è­íüÿ‰D$,‹D$,…À„
‹L$DAƒàý…ýƒ|$HH‹T$hH´$ H‹„$€L‹„$˜¿‰T$0HcÒɉD$4H‰”$ ƒá H˜ºEH‰„$¨è$*H…ÀI‰Ã„DH9œ$˜H‹@H‰D$„Û‹D$,…Àty‹D$0L‰\$Ht$4H|$0HƒìL‰ñL‰â‰D$THD$TPÿt$(HD$\PL‹L$(LD$\AÿÕHƒÄ è’áüÿH…ÀL‹\$tÇD$,‹D$,…ÀtH=BL‰Þ1ÀèÇâüÿH‰D$PfL;¼$ˆtIƒ/„”@H;l$ptHƒmt"H‹D$PH‹T$PHĸH‰Ð[]A\A]A^A_ÃH‰ïèàüÿëÔfD‹D$,ÇD$<…À…þÿÿëªfHœ$°H)¨H5ÿs1ÀH‰ßèPàüÿH‹=£$H‰Þèqâüÿétÿÿÿ@L‰ÿè ßüÿécÿÿÿ‹D$,ÇD$D…À…7þÿÿé/ÿÿÿ€èƒàüÿH…À…@ÿÿÿH‹=«¢$H5\©èâüÿé(ÿÿÿfHœ$°HQ¨H5€s1ÀH‰ßèÀßüÿH‹=q¢$H‰ÞèááüÿéÌþÿÿè'àüÿH…À…ÖþÿÿH‹=O¢$H5ˆ©è»áüÿé¾þÿÿA‹s I‹{(…öxrH…ÿtmL‰\$èKõÿÿ…ÀL‹\$tZH‹\$ëHÇHƒÃL‰\$è£æüÿH…ÀL‹\$uáéÓýÿÿè¯ßüÿH…À…FþÿÿH‹=ס$H5˜©èCáüÿé.þÿÿfDL‰\$è~ßüÿH…ÀL‹\$t
ÇD$,é†ýÿÿH‹=˜¡$H5ѧèáüÿL‹\$ëÙf.„AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHfrH
(©#Hì°H‹ŠF"H‰D$XH‰D$pH‰„$˜H‰„$ HD$@HÇD$HÇD$(ÇD$$ÇD$,H‰\$PÇD$0H‰\$`ÇD$4H‰\$hÇD$8H‰\$xÇD$<H‰œ$€ÇD$@H‰œ$ˆÇD$DPHD$@PHD$@PH„$ PH„$ PH„$PH„$¨P1ÀLŒ$˜L„$ˆèNßüÿHƒÄ@1҅À„fïÀL¬$ H‹t$HHP¨L‰ïò„$ ò„$¨è>áüÿ…Àt1fïɸfïÒòZŒ$ óŒ$ˆòZ”$¨ó”$Œ‰D$‹D$…À„ƒ|$(L‹D$XHt$Pº¿Ƀá ƒÁè£%H…ÀI‰Ä„‡H‹t$`L‹pH9Þ„ýH|$,H9¨è„èüÿ‰D$‹D$…À„œ‹L$,Aƒàý…äƒ|$0L‹D$pHt$hº¿Ƀá ƒÁè.%H…ÀI‰Ç„nH‹t$xH‹@H9ÞH‰$„ÜH|$4HP¨èèüÿ‰D$‹D$…À„‹L$4Aƒàý…ûƒ|$8H‹T$PH´$H‹D$hL‹„$€¿‰T$ HcÒɉD$$H‰”$ƒá H˜ºEH‰„$˜è…$H…ÀI‰Å„1H9œ$€H‹@H‰D$„Ô‹D$…Àtz‹D$ H”$ˆHt$$H|$ HƒìL‰ñ‰D$DHD$DPÿt$HD$LPL‹L$ LD$LÿÕHƒÄ èôÛüÿH…ÀtÇD$‹D$…ÀtH=i<L‰î1Àè.ÝüÿH‰D$@f„L;|$ptIƒ/„€L;d$XtIƒ,$t"H‹D$@H‹T$@HĨH‰Ð[]A\A]A^A_ÃL‰çè`ÚüÿëÔfD‹D$ÇD$,…À… þÿÿëªfH‘¢H5¡nL‰ï1Àè¸ÚüÿH‹=i$L‰îèÙÜüÿé|ÿÿÿ@L‰ÿèÚüÿékÿÿÿ‹D$ÇD$4…À…Aþÿÿé7ÿÿÿ€èëÚüÿH…À…HÿÿÿH‹=$H5d¥èÜüÿé0ÿÿÿf.„H¹¢H5#nL‰ï1Àè(ÚüÿH‹=ٜ$L‰îèIÜüÿéÔþÿÿèÚüÿH…À…ÞþÿÿH‹=·œ$H5˜¥è#ÜüÿéÆþÿÿA‹u I‹}(…öxbH…ÿt]è¸ïÿÿ…ÀtTH‹\$ëDÇÇCHƒÃèáüÿH…Àuåéæýÿÿè#ÚüÿH…À…ZþÿÿH‹=Kœ$H5¼¥è·ÛüÿéBþÿÿfèûÙüÿH…Àt
ÇD$é§ýÿÿH‹=œ$H5S¢è†ÛüÿëÞ@AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍH2mH
¤#HìÀH‹A"H‰D$`H‰D$xH‰„$¨H‰„$°HD$HHÇD$PÇD$0ÇD$,ÇD$4H‰\$XÇD$8H‰\$hÇD$<H‰\$pÇD$@H‰œ$€ÇD$DH‰œ$ˆÇD$HH‰œ$ÇD$LPHD$HPHD$HPH„$¨PH„$¨PH„$˜PH„$°P1ÀLŒ$ L„$èÛÙüÿHƒÄ@1҅À„ML¤$H‹t$PH‘¤L‰çèáÛüÿ‰D$$‹D$$…À„ƒ|$0L‹D$`Ht$Xº¿Ƀá ƒÁè{ H…ÀH‰Å„—H‹t$hL‹pH9Þ„H|$4Hɤè\ãüÿ‰D$$‹D$$…À„¤‹L$4Aƒàý…ìƒ|$8L‹D$xHt$pº¿Ƀá ƒÁè H…ÀI‰Ç„~H‹´$€H‹@H9ÞH‰D$„èH|$<Hܤèßâüÿ‰D$$‹D$$…À„‹L$<Aƒàý…ÿƒ|$@H‹T$XH´$ H‹D$pL‹„$ˆ¿‰T$(HcÒɉD$,H‰”$ ƒá H˜ºEH‰„$¨èYH…ÀI‰Ã„QH9œ$ˆH‹@H‰D$„à‹D$$…Àt~‹D$(L‰\$Ht$,H|$(HƒìL‰ñL‰â‰D$LHD$LPÿt$(HD$TPL‹L$(LD$TAÿÕHƒÄ èÇÖüÿH…ÀL‹\$tÇD$$‹D$$…ÀtH=77L‰Þ1Àèü×üÿH‰D$H€L;|$xtIƒ/„—€H;l$`tHƒmt"H‹D$HH‹T$HHĸH‰Ð[]A\A]A^A_ÃH‰ïè0ÕüÿëÔfD‹D$$ÇD$4…À…þÿÿëªfHœ$°HYH5¥i1ÀH‰ßè€ÕüÿH‹=1˜$H‰Þè¡×üÿétÿÿÿ@L‰ÿèÐÔüÿécÿÿÿ‹D$$ÇD$<…À…5þÿÿé/ÿÿÿ€è³ÕüÿH…À…@ÿÿÿH‹=ۗ$H5ä¡èG×üÿé(ÿÿÿfHœ$°HH5'i1ÀH‰ßèðÔüÿH‹=¡—$H‰Þè×üÿéÌþÿÿèWÕüÿH…À…ÖþÿÿH‹=—$H5¢èëÖüÿé¾þÿÿA‹s I‹{(…öxzH…ÿtuL‰\$è{êÿÿ…ÀL‹\$tbH‹\$ëHÇHÇCHƒÃL‰\$èËÛüÿH…ÀL‹\$uÙéÆýÿÿè×ÔüÿH…À…>þÿÿH‹=ÿ–$H5(¢èkÖüÿé&þÿÿfDL‰\$è¦ÔüÿH…ÀL‹\$t
ÇD$$éyýÿÿH‹=$H5ùœè,ÖüÿL‹\$ëÙDAWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖH‰ÍHhH
Ÿ#Hì°H‹º;"H‰D$XH‰D$pH‰„$˜H‰„$ HD$@HÇD$HÇD$(ÇD$$ÇD$,H‰\$PÇD$0H‰\$`ÇD$4H‰\$hÇD$8H‰\$xÇD$<H‰œ$€ÇD$@H‰œ$ˆÇD$DPHD$@PHD$@PH„$ PH„$ PH„$PH„$¨P1ÀLŒ$˜L„$ˆè~ÔüÿHƒÄ@1҅À„fïÀL¬$ H‹t$HHè L‰ïò„$ ò„$¨ènÖüÿ…Àt1fïɸfïÒòZŒ$ óŒ$ˆòZ”$¨ó”$Œ‰D$‹D$…À„ƒ|$(L‹D$XHt$Pº¿Ƀá ƒÁèÓH…ÀI‰Ä„‡H‹t$`L‹pH9Þ„ýH|$,HѠè´Ýüÿ‰D$‹D$…À„œ‹L$,Aƒàý…äƒ|$0L‹D$pHt$hº¿Ƀá ƒÁè^H…ÀI‰Ç„nH‹t$xH‹@H9ÞH‰$„ÜH|$4Hè è;Ýüÿ‰D$‹D$…À„‹L$4Aƒàý…ûƒ|$8H‹T$PH´$H‹D$hL‹„$€¿‰T$ HcÒɉD$$H‰”$ƒá H˜ºEH‰„$˜èµH…ÀI‰Å„1H9œ$€H‹@H‰D$„Ô‹D$…Àtz‹D$ H”$ˆHt$$H|$ HƒìL‰ñ‰D$DHD$DPÿt$HD$LPL‹L$ LD$LÿÕHƒÄ è$ÑüÿH…ÀtÇD$‹D$…ÀtH=™1L‰î1Àè^ÒüÿH‰D$@f„L;|$ptIƒ/„€L;d$XtIƒ,$t"H‹D$@H‹T$@HĨH‰Ð[]A\A]A^A_ÃL‰çèÏüÿëÔfD‹D$ÇD$,…À… þÿÿëªfHWH5IdL‰ï1ÀèèÏüÿH‹=™’$L‰îè	Òüÿé|ÿÿÿ@L‰ÿè8Ïüÿékÿÿÿ‹D$ÇD$4…À…Aþÿÿé7ÿÿÿ€èÐüÿH…À…HÿÿÿH‹=C’$H5üè¯Ñüÿé0ÿÿÿf.„Hé—H5ËcL‰ï1ÀèXÏüÿH‹=	’$L‰îèyÑüÿéÔþÿÿè¿ÏüÿH…À…ÞþÿÿH‹=ç‘$H50žèSÑüÿéÆþÿÿA‹u I‹}(…öxbH…ÿt]èèäÿÿ…ÀtTH‹\$ëDÇÇCHƒÃèBÖüÿH…ÀuåéæýÿÿèSÏüÿH…À…ZþÿÿH‹={‘$H5TžèçÐüÿéBþÿÿfè+ÏüÿH…Àt
ÇD$é§ýÿÿH‹=J‘$H5ƒ—è¶ÐüÿëÞ@AWAVHÇÀÿÿÿÿAUATH‰÷USH‰ÖI‰ÍHÚbH
š#HìÀH‹J6"H‰D$`H‰D$xH‰„$¨H‰„$°HD$HHÇD$PÇD$0ÇD$,ÇD$4H‰\$XÇD$8H‰\$hÇD$<H‰\$pÇD$@H‰œ$€ÇD$DH‰œ$ˆÇD$HH‰œ$ÇD$LPHD$HPHD$HPH„$¨PH„$¨PH„$˜PH„$°P1ÀLŒ$ L„$èÏüÿHƒÄ@1҅À„ML¤$H‹t$PH)L‰çèÑüÿ‰D$$‹D$$…À„ƒ|$0L‹D$`Ht$Xº¿Ƀá ƒÁè«H…ÀH‰Å„—H‹t$hL‹pH9Þ„H|$4HaèŒØüÿ‰D$$‹D$$…À„¤‹L$4Aƒàý…ìƒ|$8L‹D$xHt$pº¿Ƀá ƒÁè6H…ÀI‰Ç„~H‹´$€H‹@H9ÞH‰D$„èH|$<HtèØüÿ‰D$$‹D$$…À„‹L$<Aƒàý…ÿƒ|$@H‹T$XH´$ H‹D$pL‹„$ˆ¿‰T$(HcÒɉD$,H‰”$ ƒá H˜ºEH‰„$¨è‰H…ÀI‰Ã„QH9œ$ˆH‹@H‰D$„à‹D$$…Àt~‹D$(L‰\$Ht$,H|$(HƒìL‰ñL‰â‰D$LHD$LPÿt$(HD$TPL‹L$(LD$TAÿÕHƒÄ è÷ËüÿH…ÀL‹\$tÇD$$‹D$$…ÀtH=g,L‰Þ1Àè,ÍüÿH‰D$H€L;|$xtIƒ/„—€H;l$`tHƒmt"H‹D$HH‹T$HHĸH‰Ð[]A\A]A^A_ÃH‰ïè`ÊüÿëÔfD‹D$$ÇD$4…À…þÿÿëªfHœ$°H‰’H5M_1ÀH‰ßè°ÊüÿH‹=a$H‰ÞèÑÌüÿétÿÿÿ@L‰ÿèÊüÿécÿÿÿ‹D$$ÇD$<…À…5þÿÿé/ÿÿÿ€èãÊüÿH…À…@ÿÿÿH‹=$H5|šèwÌüÿé(ÿÿÿfHœ$°H±’H5Ï^1ÀH‰ßè ÊüÿH‹=ь$H‰ÞèAÌüÿéÌþÿÿè‡ÊüÿH…À…ÖþÿÿH‹=¯Œ$H5°šèÌüÿé¾þÿÿA‹s I‹{(…öxzH…ÿtuL‰\$è«ßÿÿ…ÀL‹\$tbH‹\$ëHÇHÇCHƒÃL‰\$èûÐüÿH…ÀL‹\$uÙéÆýÿÿèÊüÿH…À…>þÿÿH‹=/Œ$H5è›Ëüÿé&þÿÿfDL‰\$èÖÉüÿH…ÀL‹\$t
ÇD$$éyýÿÿH‹=ð‹$H5)’è\ËüÿL‹\$ëÙDATH='°#US¾õèÉüÿH‹l0"I‰ÄHª‰$H=ª]H‰PèšÉüÿH…À„‹H5§]H‰ÅH‰ÇèÊüÿHƒmH‰Ãt]H…Û„½H‹50"H9CthH‹X0"H5ašH‹8èÉÊüÿHƒ+t;H‹T0"èÈüÿH‹;H5šE1äè¥ÊüÿL‰à[]A\ÃDH‰ïèÐÇüÿë™fDH‰ßèÀÇüÿH‹0"ë»1öH‰ßèmÉüÿH‹H-ûŠ$HQÿH‰EH…ÒH‰„‹H…À„9ÿ=	H‹E…‚ÿ˜ƒø
H‹E†Ôÿ…À„܃ø… èVÈüÿH…Àt!H‹’/"H5ӚH‹8èëÉüÿL‰à[]A\ÃL‰çè¸ÈüÿH=©\H‰Åè)ÉüÿH5§\H‰ÂH‰ïè×ÇüÿH=ȚèËÈüÿH5•\H‰ÂH‰ïH‰Ãè¶ÇüÿH=ˆ\1Ò1öèvÇüÿHƒ+H‰Š$„¤Hƒ=ͮ#t2HĮ#@H‰ßHÃpè‘
H‹³þÿÿH‰ÂH‰ïè_ÇüÿHƒ;uÙH56H‰ïè*ÇüÿH‹=C."1öH‰ÃèYH5\H‰ÂH‰ßè·ÆüÿH=Ð5èÈüÿH5\H‰ÂH‰ßè™ÆüÿH5K5H‰ïèÚÆüÿH‹=ƒ."1öH‰Ãè	H5È[H‰ÂH‰ßègÆüÿH=5èËÇüÿH5´[H‰ÂH‰ßèIÆüÿH5DJH‰ïèŠÆüÿH‹=c."1öH‰Ãè¹H5x[H‰ÂH‰ßèÆüÿH=Jè{ÇüÿH5d[H‰ÂH‰ßèùÅüÿH5‡IH‰ïè:ÆüÿH‹=Ã-"1öH‰ÃèiH5([H‰ÂH‰ßèÇÅüÿH=UIè+ÇüÿH5[H‰ÂH‰ßè©ÅüÿH5ÊHH‰ïèêÅüÿH‹=Ë-"1öH‰ÃèH5ØZH‰ÂH‰ßèwÅüÿH=˜HèÛÆüÿH5ÄZH‰ÂH‰ßèYÅüÿH5
HH‰ïèšÅüÿH‹=S-"1öH‰ÃèÉH5ˆZH‰ÂH‰ßè'ÅüÿH=ÛGè‹ÆüÿH5tZH‰ÂH‰ßè	ÅüÿH5r3H‰ïèJÅüÿH‹=k,"1öH‰ÃèyH58ZH‰ÂH‰ßè×ÄüÿH=@3è;ÆüÿH5$ZH‰ÂH‰ßè¹ÄüÿH5Ø2H‰ïèúÄüÿH‹=›,"1öH‰Ãè)H5èYH‰ÂH‰ßè‡ÄüÿH=¦2èëÅüÿH5ÔYH‰ÂH‰ßèiÄüÿH5B2H‰ïèªÄüÿH‹=,"1öH‰ÃèÙH5˜YH‰ÂH‰ßè7ÄüÿH=2è›ÅüÿH5„YH‰ÂH‰ßèÄüÿH5¨1H‰ïèZÄüÿH‹=C,"1öH‰Ãè‰H5HYH‰ÂH‰ßèçÃüÿH=v1èKÅüÿH54YH‰ÂH‰ßèÉÃüÿH51H‰ïè
ÄüÿH‹=c+"1öH‰Ãè9H5øXH‰ÂH‰ßè—ÃüÿH=à0èûÄüÿH5äXH‰ÂH‰ßèyÃüÿH5x0H‰ïèºÃüÿH‹=k+"1öH‰ÃèéH5¨XH‰ÂH‰ßèGÃüÿH=F0è«ÄüÿH5”XH‰ÂH‰ßè)ÃüÿH5â/H‰ïèjÃüÿH‹=++"1öH‰Ãè™H5XXH‰ÂH‰ßè÷ÂüÿH=°/è[ÄüÿH5DXH‰ÂH‰ßèÙÂüÿH5H/H‰ïèÃüÿH‹=k*"1öH‰ÃèIH5XH‰ÂH‰ßè§ÂüÿH=/èÄüÿH5ôWH‰ßH‰Âè‰ÂüÿL‰à[]A\ÃH‰ßè	ÂüÿéOûÿÿH‰ßèüÁüÿH‹EédúÿÿÿH5b”‰z	H‹*"H‹81ÀèÂüÿH‹#*"éÊùÿÿH‹*"H5à“H‹;èpÄüÿé¯ùÿÿH5ì”H‹Ý)"H‹81ÀèÓÁüÿé‹ùÿÿÿ˜º‰ÁH5B”ë•H5‰”ëËH‹X)"H5ÉVH‹8èÄüÿH‹ª)"éQùÿÿH‹†)"H5¼VH‹8è÷ÃüÿH‹ˆ)"é/ùÿÿf.„Hƒ>H‹e„$uHǀXÀH‰¸XÄSH5¸VHƒìèÃüÿH‰ÃèWÂüÿH…ÛtZH‰ßèÚÂüÿ…Àu6H=DÂèšÂüÿH‹HQÿH…ÒH‰uH‰ßH‰D$èžÀüÿH‹D$HƒÄ[ÃH=ÂH‰Þ1Àè¯ÁüÿëÃDHƒÄH=òÁ[éGÂüÿ€AWAVHëÁAUAT1ÀUSI‰ýH‰óHƒìH‹L$P‹l$Hèå¿üÿ…Àx^H˜H9Ã~WH)ÃýM|~eEþLt$XH-®ÁLdÄ`ë€H˜H9Ø}&IƒÆIÇH)ÃM9æt2I‹1ÀH‰êH‰ÞL‰ÿ臿üÿ…ÀyÓHƒÄHÇÀÿÿÿÿ[]A\A]A^A_ÃDH…Û~àHƒ¼$˜IGAÆ)tHƒÄL)è[]A\A]A^A_ÃHƒû~µHº, not alH¹locatedI‰WI‰O	ëÊf.„SH‰ûH‹(H…ÿtHƒ/uèH¿üÿH‰ß[é߾üÿDf.„AWAVAUATI‰üUS‰õH‰ÓHƒìD‹O E…É…fƒþ0„·1ÿAºHcÅL\ÃøI‹H…Éx	D9ÍŒ§1Ò1íI‰ÝŽfD9ø}<I‹t$(HcÈH4ÎL‹Iƒø~ é²f.„HƒÆL‹Iƒø—ƒÀ9øuèIƒ}A¸ˆÇuIÇEƒÂIƒÅ9Õuš9ý}cI‹A‰è„9ø}4I‹t$(HcÐHÖH‹2Hƒþ~é*fHƒÂH‹2HƒþƒÀ9øuè¾H¯ÎAƒÀA9øI‰|³…íŽA1:@H¯ÃHƒÀ9ÅóL9Ò„“L‹-k&"HƒìH5°ÁWL‰ÑA‰è1ÀL=]¿E1öI‹}è<ÀüÿY^f.„J‹óI‹}1ÀL‰þIƒÆèÀüÿD9õåI‹MH=$¿º¾1í1ÛL5
¿èà¿üÿA‹|$ …ÿ~,€I‹D$(I‹}L‰öƒÃH‹(1ÀHƒÅè¿üÿA9\$ ÛI‹MH=پº¾葿üÿHƒÄ¸[]A\A]A^A_ÃDI‹M‰ƃÀH…Éx:I9È„tþÿÿH‹r%"A‰ñH5pÀH‹81ÀèV¿üÿHƒÄ¸[]A\A]A^A_ÃfM‰Eé:þÿÿHø$H‹ÿØA‹|$ I‰Â9ÿŽ³I‹D$(1ҾA¹ë"IƒøŽÎI9È…âHƒÂH¯ñ9×~'H‹ÓL‹ÐH…ÉyÔM…ÀL‰ÁIDÉH‰ÓHƒÂH¯ñ9×ÙHc×HÇÇÿÿÿÿëfDHÇÓHƒÂ9Õ~H‹ÓHƒùò…ÿyÞHcúHƒÂ9Õã…ÿxL‰ÐH™H÷þH¯ðH‰ûL9Ö„H‰òH5|¾L‰ÑH‹J$"H‹81Àè8¾üÿHƒÄ¸[]A\A]A^A_Ã@H…É…2ÿÿÿHÇÓ¹é ÿÿÿ‰ÂH‹$"H5µ½H‹81Àèë½üÿ¸HƒÄ[]A\A]A^A_ÃHƒÄ1À[]A\A]A^A_ÃH‹Ç#"‰úH5Ž¾A‰èD‰ÉH‹81À覽üÿ¸ë¹€ƒÀéíüÿÿH‹‘#"H5z½H‹81Àèx½üÿHƒÄ¸[]A\A]A^A_Ã1ÿAº¾é þÿÿ9ýŒ_üÿÿIƒú„iÿÿÿL‹-A#"HƒìH5†¾WºA‰èL‰Ñ1ÀI‹}è½üÿXZéûüÿÿt8…ÿŽ¨I‹D$(WÿE1ÉHLÐfD1ÒHƒ8ÂHƒÀAÑH9ÁuëéPûÿÿ…í~WI‹t$(1:ë@Iƒø~+I9È…¬þÿÿHƒÀH¯Ñ9Å~/H‹ÃL‹ÆH…ÉyØL‰ÃL‰ÁëÞH…ÉuÙHÇùëʺI9Ò„–þÿÿL‰ÑH5ó¼éþÿÿE1ÉéÐúÿÿfDHƒìH‹G ƒxÿu"L‹€`M…Àt5H‹ˆXHƒÄAÿà„H‹±!"H5½H‹81À踹üÿ1ÀHƒÄÃH‹ª!"H5 »H‹81À虹üÿë߀H…Òté&ºüÿfDHƒìH‹Í!"H‰òH5üºH‹81À豻üÿè,ºüÿH…Àt
è2¹üÿ荺üÿ¸ÿÿÿÿHƒÄÃUSH‰ýHƒìH=0z$èk¹üÿH…Àt&H‰Ãèþ¹üÿH…ÀH‰C(tÇCH‰k H‰ØHƒÄ[]Ã1Àëõff.„AVAUATUSH‰ûHƒìH…ötÿÖH=Óy$è¹üÿH…ÀH‰Å„B蝹üÿH…ÀH‰E(„0Hƒ;ÇE„H“p¸H‹
‰ÆHÂpHƒÀH…Éuë‰uH‰] E1äE1öE1íënf„Hq{$HƒìE1ÀHSH‹H‹xjhjÿèI‰ÆHƒÄ M…ö„¨H‹E H‹}(L‰òJ‹4 贸üÿAƒÅIÄpD9mŽ¯H‹] Lã‹sƒþÿ„|L‹‹XM…Ét̋‹Pƒù…qÿÿÿHâz$ƒîHƒìHcÎE1ÀHSH‹LËH‹H‹xjhQ¹ÿèI‰ÆHƒÄ M…ö…bÿÿÿf.„1ÀHƒÄ[]A\A]A^ÐH‰ßè(þÿÿH…ÀI‰Æ…4ÿÿÿëÚf.„M…öt1I‹HPÿH‰èH…ÒI‰u»L‰÷H‰l$èì¶üÿH‹D$HƒÄ[]A\A]A^ÃH‰èë—DAWAVA‰×AUATA‰þUS‰ËH‰õHìøƒá…L;4"‰ÞM‰Ä”æ‰t$t„À…ëöÀt„À…ÞL-Ïy$D‰÷I‹EÿhAƒþH‰Â„J‹@(‰D$¶B!ˆD$Hƒ*„$I‹EI‹|$H‹pH9÷„Nè)¸üÿ…À…A÷Ã…ÍI‹ED‰÷ÿhAƒþH‰Æ„I‹E1҃ã@”ÂL‰çE1ÉD‚1É1Òÿ(H…ÀI‰Æ„œH‰êD‰þH‰ÇèŽöÿÿ…À…†HÄøL‰ð[]A\A]A^A_ÐE…ÿ~8AGÿI‰íI‰ìHLÅ1Àf.„1ÒIƒ<$žÂIƒÄÐL9áuë…À…³L%´x$Hƒì1ÒöÃ@D‰ñD‰þ”ÂE1ÉE1ÀI‹$H‹xjRjH‰êÿèHƒÄ H…ÀI‰Æ„îƒã…_ÿÿÿH‹@@A‹v I‹~(HcX(I‹$ÿðH¯ØI‹~1öH‰Ú詴üÿé.ÿÿÿ@‹T$…ÒtXA‹D$ …ÀtAöD$H„)I‹D$@‹t$9p(ŒH‰êD‰þL‰çèsõÿÿ…À…kƒãtIƒ$M‰æéÓþÿÿf„H‰êD‰þL‰çèBõÿÿ…À…:öà …¡I‹L$@‹D$9A(…‹A$Pÿƒú	w	AVÿƒú	v*Põƒú†;ƒø„2Pòƒú†½E…öuU…ÀuQöÇI‹D$…ŠöÇ…áöǾ…ØöÃ@A‹D$H„*%=u€y">…-ÿÿÿ„‰كá@öÃ…¯HƒìI‹E…É”ÁI‹T$(A‹t$ ¶ÉE1ÉE1ÀH‹xjQjD‰ñÿèHƒÄ H…ÀI‰Æ„@I‹EL‰æL‰÷ÿ…À…§öÇ„™ýÿÿI‹VI‹D$I‰T$A‹V I‰FA‹D$ A‰T$ I‹V(A‰F I‹D$(I‰T$(I‹V0I‰F(I‹D$0I‰T$0I‹V8I‰F0I‹D$8I‰T$8I‹V@I‰F8I‹D$@I‰T$@A‹VHI‰F@A‹D$HA‰T$HIƒ.A‰FH…,þÿÿL‰÷迲üÿéþÿÿf.„H¸failed tHl$ H}´H‰D$ H¸o createÇD$xt (H‰D$(H¸ intent(H‰D$0H¸cache|hiH‰D$8H¸de)|optiH‰D$@H¸onal arrH‰D$HH¸ay-- musH‰D$PH¸t have dH‰D$XH¸efined dH‰D$`H¸imensionH‰D$hH¸s but goH‰D$p€H‰ï‹HƒÇ‚ÿþþþ÷Ò!Ð%€€€€té‰ÂÁê©€€DÂHW‰ÆHDúI‹U@ÆHƒßH‰Þ1ÀIƒÅè6²üÿM9åu±H‰ê‹
HƒÂÿþþþ÷Ñ!È%€€€€té‰ÁÁé©€€DÁHJ‰ÃHDÑù)HƒÚf‰
H‹"H‰îE1öH‹8è
´üÿé’ûÿÿH‹i"H5"¶H‹8èò³üÿfE1öérûÿÿ„H‰×è±üÿéÏúÿÿI‹EH‰×H‰T$ÿøH‹T$H…Òt!H‹2HNÿH…ÉH‰
uH‰×H‰D$è۰üÿH‹D$H…Àt¡Ç@(Æ@!cH‰ÂÆD$cÇD$écúÿÿIƒ.…wÿÿÿL‰÷E1ö蜰üÿéáúÿÿH»failed tHl$ ÆD$HH‰\$ H»o initiaH‰\$(H»lize intH‰\$0H»ent(cachH‰\$8H»e) arrayH‰\$@‹P(;T$ÓþÿÿH‰î‹HƒÆÿþþþ÷Ñ!È%€€€€té‰ÁÁé©€€DÁHN‰ÃHDñÃHcÊHƒÞ‹T$1ÀH‰÷H5S´èv°üÿéþÿÿI‹EH‰÷H‰t$ÿøH‹t$I‰ÆH…öt
Hƒ.„·M…ö„þÿÿAÇF(AÆF!cL‰öéŸùÿÿH¸failed tHl$ H» -- inpuH‰D$ H¸o initiaH‰\$HH‰D$(H¸lize intH»t must bH‰D$0H¸ent(cachÆEHH‰D$8H¸e) arrayH‰D$@H‰]0H»e in oneH‰]8H» segmentI‹D$@H‰]@éÁþÿÿH¸failed t…ÉÆD$HH‰D$ H¸o initiaH‰D$(H¸lize intH‰D$0H¸ent(inouH‰D$8H¸t) arrayH‰D$@A‹D$H„Î%I‹L$@=…¡€y">H‰ÊHl$ „HcI(;L$tRH‰ê‹2HƒÂ†ÿþþþ÷Ö!ð%€€€€té‰ÆÁî©€€DÆHrHD։Æ@ÆH5ҲHƒÚ1ÀH‰׋T$踮üÿI‹T$@‹B$Hÿƒù	w	ANÿƒù	v|Hõƒù†¸ƒø„¯Hòƒù‡èE^òAƒûvQH‰î‹HƒÆÿþþþ÷Ñ!È%€€€€té‰Á¾R!Áé©€€DÁHNHDñ‰ÁÁ¾L$HƒÞ1ÀH‰÷H5X²è#®üÿöÇI‹D$…öÇ…d€ç„üÿÿ¨º„üÿÿH‰é‹1HƒÁ†ÿþþþ÷Ö!ð%€€€€té‰ÆÁî©€€DÆHq‰ÃHDÎÃH5¯HƒÙ1ÀH‰Ï训üÿé·ûÿÿ¾1ÒH÷öH…Ò…FùÿÿéùÿÿH‰÷èù¬üÿé<ýÿÿAVõƒú†ÖøÿÿAƒþ…·øÿÿéÇøÿÿ%I‹L$@=„”Hl$ H¾ -- inpuH‰ÊH‰t$HH¾t not foH‰u0H¾rtran coÆEHH‰u8H¾ntiguousH‰u@éúýÿÿ¾é[ÿÿÿ¨º…üþÿÿéûúÿÿAFòƒø†?øÿÿé‹øÿÿANõƒù†«þÿÿAƒþ…:þÿÿéœþÿÿ€y">H‰ÊHl$ …žýÿÿéUÿÿÿ¨º…¥þÿÿé¤úÿÿ…À…þÿÿE…ö„bþÿÿéþÿÿHl$ H¾ -- inpuH‰ÊH‰t$HH¾t not coH‰u0H¾ntiguousÆE@H‰u8é5ýÿÿ%=…ä÷ÿÿéÍ÷ÿÿDf.„AWAVI‰÷AUATUSHìh‹GH‰|$H‰$…ÀŽ˜XÿH‹o HƒÃHiÛpI‰íHëëfDIÅpI9Ý„hI‹uM‰ìL‰ÿI)ì趬üÿ…ÀA‰Æu×A‹Uƒúÿ„‚M‹•`M…Ò„¯H‹$H;‡"H\$ L‰-;n$„¬…Ò~%JÿH‰ØHtËHÇÁÿÿÿÿ€H‰HƒÀH9ÆuôA‹½PL‹$¹H‰ÞèÔóÿÿH…ÀH‰Å„L‹|$L‰àHiéÿÿHL$H‹u(IG Hxÿ`L‰çI HcWHƒÇHÁâH‰Þè­üÿH‹D$L‰çHx Hƒ¿X„íHŽm$HƒÇ‹u H‹ÿðHƒøÿ„´H…ÀˆƒH‹T$H‹uH‹R J‹¼"XH‹U@HcR(H¯Ð蝬üÿH…ÀtXH;,$t:Hƒmu3H‰ïèөüÿë)H‹D$H‹x(H…ÿ„Hƒ<$t@H‹$L‰þ苪üÿA‰ÆHÄhD‰ð[]A\A]A^A_ÃH;,$tHƒm„ÂA¾ÿÿÿÿëÏL‰þè«üÿ…ÀA‰ÆyÀH‹Q"H5’®H‹8è¬üÿë¨E1ÉHƒ¿`A”ÁA÷ÙE‰Î둅Ò~%ƒêH‰ØHTÓf.„HÇHƒÀH9ÐuðI}HåçÿÿHL$H‰ÞAÿÒH‹D$L‰çHx HcW…Ò~"JÿH‰ØHtËHÇÁÿÿÿÿ@H‰HƒÀH9ðuô1íéVþÿÿH‰ï赨üÿé1ÿÿÿè˩üÿH‰ÇH‹D$H…ÿH‰x(…ØþÿÿéÿÿÿH‹y"H5ƒª‰$H‹8è7«üÿ‹$A‰ÖéÄþÿÿ@H‹‹u H‹}(ÿðé7þÿÿA‹½PL‹$Iu¹èjñÿÿH…ÀH‰Å…×ýÿÿéªþÿÿf„Hqk$H‰úH‰÷H‰ÖH‹H‹€ÿà@HƒìH‰ò1öè©üÿH…Àt
HƒÄÄH‰D$èV©üÿH‹D$HƒÄÃff.„AWAVAUATUSH‰ýH‰óHì¸H‹(H…ÿt0è[¨üÿH…ÀI‰Åt#IƒEHĸL‰è[]A\A]A^A_Ãf„‹E…	$Ž
D`ÿL‹} IƒÄMiäpM‰þMüë€IÆpM9æ„ØI‹6M‰õH‰ßM)ý诨üÿ…ÀuÛA‹Nƒùÿ„¶M‹†`M…À„š…ÉIv~"ƒéH‰ðI|ÎHÇÁÿÿÿÿ@H‰HƒÀH9øuôL‰5j$HL$@I~HåÿÿAÿЃ|$@„Lm A‹uM‹XM…É„Hèi$HƒìA‹PIUE1ÀH‹H‹xjhjÿèHƒÄ I‰ÅéÎþÿÿ@H=o¨¹	H‰Þ󦄁H=ë;¹H‰Þó¦’À—Â)¾…ÀA‰ÇtgH=Ý;¹
H‰Þó¦—À’Â)Ѓ<$¾Àu…À„%H‰ßȩ̀üÿH‰ïH‰ÃH‰Æè.§üÿHƒ+I‰Å…CþÿÿH‰ßèɥüÿé6þÿÿ@L‹m(é$þÿÿH=l§苧üÿ‹MI‰ąÉŽHD$@HÇD$E‰þH‰l$H‰\$8H‰D$(齄H…í„H‰ï迥üÿL‹,$H‰ÃL9ëWH‰ÚH‰îL‰ÿèñ§üÿL‰îIH)ÞHƒþŽŸHrL‰ÿÆ
L)þèë¥üÿL‰ÿH‰Ã谤üÿH‰ÞL‰ç襧üÿI‰ÅH‹HPÿH…ÒH‰„§I‹$HPÿH…ÒI‰$„‚H‹D$AƒÆHD$pM‰ìD;pH‹T$H‹D$¹.H‹|$(HB H‰ÆóH¥H‹H‹¨hD‹¨PH‰T$0‹PH…í‰T$H‹XH‰T$ „[H‰ïèäüÿHXdH‰$H‰ß賦üÿH…ÀI‰Ç„׃|$ÿ„ÌþÿÿHg$D‰ïH‹ÿh¾H!H\¦H‰ÅH‰Þ1ÀL‰ÿ辣üÿHƒmLcè„HL‰èHÁè?„À…ùH‹$I9ōìH‰ÅK/L)íHƒ|$ „®‹T$…ÒŽŠHìp¹.H‹´$˜H‰çóH¥H‰îH‰ßè=ãÿÿHÄpH…ÀˆH‰îHH)ÆéGþÿÿI‰ÅH‹}(L‰êH‰ÞèL¤üÿ…À„ÖûÿÿE1íéÎûÿÿ@L‰çèP£üÿéqþÿÿH‰ßè@£üÿéLþÿÿHƒýŽ¶¸arÇscalHSf‰CHuúéÛýÿÿfHÇ$d»dé£þÿÿfD1ÒH‹‡"H‹$H5D¨H‹81Àèj¥üÿL‰ÿèr¢üÿ1öL‰çèh¥üÿH‹%fDH‰ï谢üÿé«þÿÿH‰ÅH‹\$8é#ÿÿÿLm A‹EpéçûÿÿL)úë“L‹-"IƒEéêúÿÿL‰êézÿÿÿèˣüÿH‰ÃéSýÿÿH‹L$0H~¤H‰ÇH‰Þ1Àèú¡üÿ©€HcÈ…DÿÿÿH‹$H9Á7ÿÿÿH‰ÆIH)ÎééüÿÿHDŽ$˜Hìp¹.H‹´$˜H‰çóH¥H‰îH‰ßèáÿÿHÄpHƒøÿH‰î”À¶ÀHH)Æé˜üÿÿH‹E 1öH‹¸Xè½ùÿÿI‰Åé:þÿÿDHƒì1öèe£üÿH…ÀtHƒÄÃH‰D$è£üÿH‹D$HƒÄÃ@H‹‰	"H9G”À¶ÀÃf.„@1À顤üÿf„1À鉤üÿf„1Àéi¤üÿf„1Àé1¤üÿf„1Àéù üÿf„1Àéù¡üÿf„SH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰È1Àÿt$ L‹L$ 蹣üÿXóZ[ÐSH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰È1Àÿt$ L‹L$ èɣüÿXòZ[ÐSH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰È1Àÿt$0L‹L$0è)ÿÿÿfÖD$óD$óL$óóKHƒÄ [ÄSH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰È1Àÿt$ L‹L$ èùþÿÿXòòKZ[Ãff.„SH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰È1Àÿt$0L‹L$0è‰þÿÿfÖD$óD$óL$óóKHƒÄ [ÄSH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰È1Àÿt$ L‹L$ èYþÿÿXòòKZ[Ãff.„S1ÀH‰ûH‰÷H‰ÖH‰ÊL‰ÁèQ¢üÿó[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áèa¢üÿó[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áè)¢üÿò[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰ÁèY¢üÿò[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áèá¡üÿó[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áèñ¡üÿó[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áèá¡üÿò[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áèy¡üÿò[ÃHƒìHƒÄÃOO:_fblas.zrotgNNOO:_fblas.crotgrealUTCLOOO|OOOOOi:_fblas.ztpmv%s: ztpmv:n=%d%s: ztpmv:lower=%d%s: ztpmv:diag=%d%s: ztpmv:incx=%dOOO|OOOOOi:_fblas.ctpmv%s: ctpmv:n=%d%s: ctpmv:lower=%d%s: ctpmv:diag=%d%s: ctpmv:incx=%dOOO|OOOOOi:_fblas.dtpmv%s: dtpmv:n=%d%s: dtpmv:lower=%d%s: dtpmv:diag=%d%s: dtpmv:incx=%dOOO|OOOOOi:_fblas.stpmv%s: stpmv:n=%d%s: stpmv:lower=%d%s: stpmv:diag=%d%s: stpmv:incx=%dOOO|OOOOOi:_fblas.ztbmv%s: ztbmv:lower=%d%s: ztbmv:diag=%d%s: ztbmv:incx=%d(n>=0) failed for hidden n%s: ztbmv:n=%d%s: ztbmv:k=%dOOO|OOOOOi:_fblas.ctbmv%s: ctbmv:lower=%d%s: ctbmv:diag=%d%s: ctbmv:incx=%d%s: ctbmv:n=%d%s: ctbmv:k=%dOOO|OOOOOi:_fblas.dtbmv%s: dtbmv:lower=%d%s: dtbmv:diag=%d%s: dtbmv:incx=%d%s: dtbmv:n=%d%s: dtbmv:k=%dOOO|OOOOOi:_fblas.stbmv%s: stbmv:lower=%d%s: stbmv:diag=%d%s: stbmv:incx=%d%s: stbmv:n=%d%s: stbmv:k=%dOO|OOOOOi:_fblas.ztrsv%s: ztrsv:lower=%d%s: ztrsv:diag=%d%s: ztrsv:incx=%d%s: ztrsv:n=%dOO|OOOOOi:_fblas.ctrsv%s: ctrsv:lower=%d%s: ctrsv:diag=%d%s: ctrsv:incx=%d%s: ctrsv:n=%dOO|OOOOOi:_fblas.dtrsv%s: dtrsv:lower=%d%s: dtrsv:diag=%d%s: dtrsv:incx=%d%s: dtrsv:n=%dOO|OOOOOi:_fblas.strsv%s: strsv:lower=%d%s: strsv:diag=%d%s: strsv:incx=%d%s: strsv:n=%dOO|OOOOOi:_fblas.ztrmv%s: ztrmv:trans=%d%s: ztrmv:lower=%d%s: ztrmv:diag=%d%s: ztrmv:incx=%d%s: ztrmv:offx=%d%s: ztrmv:n=%dOO|OOOOOi:_fblas.ctrmv%s: ctrmv:trans=%d%s: ctrmv:lower=%d%s: ctrmv:diag=%d%s: ctrmv:incx=%d%s: ctrmv:offx=%d%s: ctrmv:n=%dOO|OOOOOi:_fblas.dtrmv%s: dtrmv:trans=%d%s: dtrmv:lower=%d%s: dtrmv:diag=%d%s: dtrmv:incx=%d%s: dtrmv:offx=%d%s: dtrmv:n=%dOO|OOOOOi:_fblas.strmv%s: strmv:trans=%d%s: strmv:lower=%d%s: strmv:diag=%d%s: strmv:incx=%d%s: strmv:offx=%d%s: strmv:n=%dOOO|OOOOOi:_fblas.ztpsv%s: ztpsv:n=%d%s: ztpsv:lower=%d%s: ztpsv:diag=%d%s: ztpsv:incx=%dOOO|OOOOOi:_fblas.ctpsv%s: ctpsv:n=%d%s: ctpsv:lower=%d%s: ctpsv:diag=%d%s: ctpsv:incx=%dOOO|OOOOOi:_fblas.dtpsv%s: dtpsv:n=%d%s: dtpsv:lower=%d%s: dtpsv:diag=%d%s: dtpsv:incx=%dOOO|OOOOOi:_fblas.stpsv%s: stpsv:n=%d%s: stpsv:lower=%d%s: stpsv:diag=%d%s: stpsv:incx=%dOOO|OOOOOi:_fblas.ztbsv%s: ztbsv:lower=%d%s: ztbsv:diag=%d%s: ztbsv:incx=%d%s: ztbsv:n=%d%s: ztbsv:k=%dOOO|OOOOOi:_fblas.ctbsv%s: ctbsv:lower=%d%s: ctbsv:diag=%d%s: ctbsv:incx=%d%s: ctbsv:n=%d%s: ctbsv:k=%dOOO|OOOOOi:_fblas.dtbsv%s: dtbsv:lower=%d%s: dtbsv:diag=%d%s: dtbsv:incx=%d%s: dtbsv:n=%d%s: dtbsv:k=%dOOO|OOOOOi:_fblas.stbsv%s: stbsv:lower=%d%s: stbsv:diag=%d%s: stbsv:incx=%d%s: stbsv:n=%d%s: stbsv:k=%dO|OOO:_fblas.izamax%s: izamax:incx=%d%s: izamax:offx=%d%s: izamax:n=%diO|OOO:_fblas.icamax%s: icamax:incx=%d%s: icamax:offx=%d%s: icamax:n=%dO|OOO:_fblas.idamax%s: idamax:incx=%d%s: idamax:offx=%d%s: idamax:n=%dO|OOO:_fblas.isamax%s: isamax:incx=%d%s: isamax:offx=%d%s: isamax:n=%dO|OOO:_fblas.dzasum%s: dzasum:incx=%d%s: dzasum:offx=%d%s: dzasum:n=%dO|OOO:_fblas.dasum%s: dasum:incx=%d%s: dasum:offx=%d%s: dasum:n=%dO|OOO:_fblas.scasum%s: scasum:incx=%d%s: scasum:offx=%d%s: scasum:n=%dO|OOO:_fblas.sasum%s: sasum:incx=%d%s: sasum:offx=%d%s: sasum:n=%dO|OOO:_fblas.dznrm2%s: dznrm2:incx=%d%s: dznrm2:offx=%d%s: dznrm2:n=%dO|OOO:_fblas.dnrm2%s: dnrm2:incx=%d%s: dnrm2:offx=%d%s: dnrm2:n=%dO|OOO:_fblas.scnrm2%s: scnrm2:incx=%d%s: scnrm2:offx=%d%s: scnrm2:n=%dO|OOO:_fblas.snrm2%s: snrm2:incx=%d%s: snrm2:offx=%d%s: snrm2:n=%dOO|OOOOO:_fblas.ddot%s: ddot:incx=%d%s: ddot:incy=%d%s: ddot:offx=%d%s: ddot:offy=%d%s: ddot:n=%dOO|OOOOO:_fblas.sdot%s: sdot:incx=%d%s: sdot:incy=%d%s: sdot:offx=%d%s: sdot:offy=%d%s: sdot:n=%dOO|OOOOO:_fblas.zcopy%s: zcopy:incx=%d%s: zcopy:incy=%d%s: zcopy:offx=%d%s: zcopy:offy=%d%s: zcopy:n=%dOO|OOOOO:_fblas.ccopy%s: ccopy:incx=%d%s: ccopy:incy=%d%s: ccopy:offx=%d%s: ccopy:offy=%d%s: ccopy:n=%dOO|OOOOO:_fblas.dcopy%s: dcopy:incx=%d%s: dcopy:incy=%d%s: dcopy:offx=%d%s: dcopy:offy=%d%s: dcopy:n=%dOO|OOOOO:_fblas.scopy%s: scopy:incx=%d%s: scopy:incy=%d%s: scopy:offx=%d%s: scopy:offy=%d%s: scopy:n=%dOO|OOOOO:_fblas.zswap%s: zswap:incx=%d%s: zswap:incy=%d%s: zswap:offx=%d%s: zswap:offy=%d%s: zswap:n=%dOO|OOOOO:_fblas.cswap%s: cswap:incx=%d%s: cswap:incy=%d%s: cswap:offx=%d%s: cswap:offy=%d%s: cswap:n=%dOO|OOOOO:_fblas.dswap%s: dswap:incx=%d%s: dswap:incy=%d%s: dswap:offx=%d%s: dswap:offy=%d%s: dswap:n=%dOO|OOOOO:_fblas.sswap%s: sswap:incx=%d%s: sswap:incy=%d%s: sswap:offx=%d%s: sswap:offy=%d%s: sswap:n=%dOOO|OOOOOii:_fblas.drotm%s: drotm:incx=%d%s: drotm:incy=%d%s: drotm:offx=%d%s: drotm:offy=%d%s: drotm:n=%dOOO|OOOOOii:_fblas.srotm%s: srotm:incx=%d%s: srotm:incy=%d%s: srotm:offx=%d%s: srotm:offy=%d%s: srotm:n=%dROOO|OOOOi:_fblas.ztrsm%s: ztrsm:side=%d%s: ztrsm:lower=%d%s: ztrsm:trans_a=%d%s: ztrsm:diag=%dOOO|OOOOi:_fblas.ctrsm%s: ctrsm:side=%d%s: ctrsm:lower=%d%s: ctrsm:trans_a=%d%s: ctrsm:diag=%dOOO|OOOOi:_fblas.ctrmm%s: ctrmm:side=%d%s: ctrmm:lower=%d%s: ctrmm:trans_a=%d%s: ctrmm:diag=%dOOO|OOOOi:_fblas.cher2k%s: cher2k:lower=%d%s: cher2k:trans=%d%s: cher2k:k=%dOOO|OOOOi:_fblas.csyr2k%s: csyr2k:lower=%d%s: csyr2k:trans=%d%s: csyr2k:k=%dOO|OOOOi:_fblas.cherk%s: cherk:lower=%d%s: cherk:trans=%dOO|OOOOi:_fblas.csyrk%s: csyrk:lower=%d%s: csyrk:trans=%dOOO|OOOOi:_fblas.chemm%s: chemm:side=%d%s: chemm:lower=%d%s: chemm:n=%dOOO|OOOOi:_fblas.csymm%s: csymm:side=%d%s: csymm:lower=%d%s: csymm:n=%dOOO|OOOOi:_fblas.cgemm%s: cgemm:trans_a=%d%s: cgemm:trans_b=%d%s: cgemm:n=%dOOOOO|OOOOOi:_fblas.chpr2%s: chpr2:n=%d%s: chpr2:lower=%d%s: chpr2:incx=%d%s: chpr2:incy=%dOOOO|OOOi:_fblas.cspr%s: cspr:n=%d%s: cspr:lower=%d%s: cspr:incx=%dOOO|OOOOOOOi:_fblas.cher2%s: cher2:lower=%d%s: cher2:incx=%d%s: cher2:incy=%d%s: cher2:n=%dOO|OOOOOi:_fblas.cher%s: cher:lower=%d%s: cher:incx=%d%s: cher:n=%dOO|OOOOOi:_fblas.csyr%s: csyr:lower=%d%s: csyr:incx=%d%s: csyr:n=%dOOO|OOOOOOOi:_fblas.chemv%s: chemv:lower=%d%s: chemv:incx=%d%s: chemv:incy=%dOOOO|OOOOOOOi:_fblas.chpmv%s: chpmv:lower=%d%s: chpmv:n=%d%s: chpmv:incx=%d%s: chpmv:incy=%dOOOO|OOOOOOOi:_fblas.cspmv%s: cspmv:lower=%d%s: cspmv:n=%d%s: cspmv:incx=%d%s: cspmv:incy=%dOOOO|OOOOOOOi:_fblas.chbmv%s: chbmv:lower=%d%s: chbmv:incx=%d%s: chbmv:incy=%d%s: chbmv:n=%d%s: chbmv:k=%dOOOOOOO|OOOOOOOi:_fblas.cgbmv%s: cgbmv:trans=%d%s: cgbmv:kl=%d%s: cgbmv:ku=%d%s: cgbmv:incx=%d%s: cgbmv:incy=%d%s: cgbmv:m=%d%s: cgbmv:n=%dOOO|OOOOOOOi:_fblas.cgemv%s: cgemv:trans=%d%s: cgemv:incx=%d%s: cgemv:incy=%dOO|OOOOOO:_fblas.caxpy%s: caxpy:incx=%d%s: caxpy:incy=%d%s: caxpy:offx=%d%s: caxpy:offy=%d%s: caxpy:n=%dOO|OOO:_fblas.cscal%s: cscal:incx=%d%s: cscal:offx=%d%s: cscal:n=%dOOO|OOOOi:_fblas.ztrmm%s: ztrmm:side=%d%s: ztrmm:lower=%d%s: ztrmm:trans_a=%d%s: ztrmm:diag=%dOOO|OOOOi:_fblas.zher2k%s: zher2k:lower=%d%s: zher2k:trans=%d%s: zher2k:k=%dOOO|OOOOi:_fblas.zsyr2k%s: zsyr2k:lower=%d%s: zsyr2k:trans=%d%s: zsyr2k:k=%dOO|OOOOi:_fblas.zherk%s: zherk:lower=%d%s: zherk:trans=%dOO|OOOOi:_fblas.zsyrk%s: zsyrk:lower=%d%s: zsyrk:trans=%dOOO|OOOOi:_fblas.zhemm%s: zhemm:side=%d%s: zhemm:lower=%d%s: zhemm:n=%dOOO|OOOOi:_fblas.zsymm%s: zsymm:side=%d%s: zsymm:lower=%d%s: zsymm:n=%dOOO|OOOOi:_fblas.zgemm%s: zgemm:trans_a=%d%s: zgemm:trans_b=%d%s: zgemm:n=%dOOOOO|OOOOOi:_fblas.zhpr2%s: zhpr2:n=%d%s: zhpr2:lower=%d%s: zhpr2:incx=%d%s: zhpr2:incy=%dOOOO|OOOi:_fblas.zspr%s: zspr:n=%d%s: zspr:lower=%d%s: zspr:incx=%dOOO|OOOOOOOi:_fblas.zher2%s: zher2:lower=%d%s: zher2:incx=%d%s: zher2:incy=%d%s: zher2:n=%dOO|OOOOOi:_fblas.zher%s: zher:lower=%d%s: zher:incx=%d%s: zher:n=%dOO|OOOOOi:_fblas.zsyr%s: zsyr:lower=%d%s: zsyr:incx=%d%s: zsyr:n=%dOOO|OOOOOOOi:_fblas.zhemv%s: zhemv:lower=%d%s: zhemv:incx=%d%s: zhemv:incy=%dOOOO|OOOOOOOi:_fblas.zhpmv%s: zhpmv:lower=%d%s: zhpmv:n=%d%s: zhpmv:incx=%d%s: zhpmv:incy=%dOOOO|OOOOOOOi:_fblas.zspmv%s: zspmv:lower=%d%s: zspmv:n=%d%s: zspmv:incx=%d%s: zspmv:incy=%dOOOO|OOOOOOOi:_fblas.zhbmv%s: zhbmv:lower=%d%s: zhbmv:incx=%d%s: zhbmv:incy=%d%s: zhbmv:n=%d%s: zhbmv:k=%dOOOOOOO|OOOOOOOi:_fblas.zgbmv%s: zgbmv:trans=%d%s: zgbmv:kl=%d%s: zgbmv:ku=%d%s: zgbmv:incx=%d%s: zgbmv:incy=%d%s: zgbmv:m=%d%s: zgbmv:n=%dOOO|OOOOOOOi:_fblas.zgemv%s: zgemv:trans=%d%s: zgemv:incx=%d%s: zgemv:incy=%dOO|OOOOOO:_fblas.zaxpy%s: zaxpy:incx=%d%s: zaxpy:incy=%d%s: zaxpy:offx=%d%s: zaxpy:offy=%d%s: zaxpy:n=%dOO|OOO:_fblas.zscal%s: zscal:incx=%d%s: zscal:offx=%d%s: zscal:n=%dOO|OOOOO:_fblas.zdotc%s: zdotc:incx=%d%s: zdotc:incy=%d%s: zdotc:offx=%d%s: zdotc:offy=%d%s: zdotc:n=%dOO|OOOOO:_fblas.cdotc%s: cdotc:incx=%d%s: cdotc:incy=%d%s: cdotc:offx=%d%s: cdotc:offy=%d%s: cdotc:n=%dOO|OOOOO:_fblas.zdotu%s: zdotu:incx=%d%s: zdotu:incy=%d%s: zdotu:offx=%d%s: zdotu:offy=%d%s: zdotu:n=%dOO|OOOOO:_fblas.cdotu%s: cdotu:incx=%d%s: cdotu:incy=%d%s: cdotu:offx=%d%s: cdotu:offy=%d%s: cdotu:n=%dOOO|OOOOi:_fblas.dtrsm%s: dtrsm:side=%d%s: dtrsm:lower=%d%s: dtrsm:trans_a=%d%s: dtrsm:diag=%dOOO|OOOOi:_fblas.strsm%s: strsm:side=%d%s: strsm:lower=%d%s: strsm:trans_a=%d%s: strsm:diag=%dOOO|OOOOi:_fblas.strmm%s: strmm:side=%d%s: strmm:lower=%d%s: strmm:trans_a=%d%s: strmm:diag=%dOOO|OOOOi:_fblas.ssyr2k%s: ssyr2k:lower=%d%s: ssyr2k:trans=%d%s: ssyr2k:k=%dOO|OOOOi:_fblas.ssyrk%s: ssyrk:lower=%d%s: ssyrk:trans=%dOOO|OOOOi:_fblas.ssymm%s: ssymm:side=%d%s: ssymm:lower=%d%s: ssymm:n=%dOOO|OOOOi:_fblas.sgemm%s: sgemm:trans_a=%d%s: sgemm:trans_b=%d%s: sgemm:n=%dOOOOO|OOOOOi:_fblas.sspr2%s: sspr2:n=%d%s: sspr2:lower=%d%s: sspr2:incx=%d%s: sspr2:incy=%dOOOO|OOOi:_fblas.chpr%s: chpr:n=%d%s: chpr:lower=%d%s: chpr:incx=%dOOOO|OOOi:_fblas.sspr%s: sspr:n=%d%s: sspr:lower=%d%s: sspr:incx=%dOOO|OOOOOOOi:_fblas.ssyr2%s: ssyr2:lower=%d%s: ssyr2:incx=%d%s: ssyr2:incy=%d%s: ssyr2:n=%dOO|OOOOOi:_fblas.ssyr%s: ssyr:lower=%d%s: ssyr:incx=%d%s: ssyr:n=%dOOO|OOOOOOOi:_fblas.ssymv%s: ssymv:lower=%d%s: ssymv:incx=%d%s: ssymv:incy=%dOOOO|OOOOOOOi:_fblas.sspmv%s: sspmv:lower=%d%s: sspmv:n=%d%s: sspmv:incx=%d%s: sspmv:incy=%dOOOO|OOOOOOOi:_fblas.ssbmv%s: ssbmv:lower=%d%s: ssbmv:incx=%d%s: ssbmv:incy=%d%s: ssbmv:n=%d%s: ssbmv:k=%dOOOOOOO|OOOOOOOi:_fblas.sgbmv%s: sgbmv:trans=%d%s: sgbmv:kl=%d%s: sgbmv:ku=%d%s: sgbmv:incx=%d%s: sgbmv:incy=%d%s: sgbmv:m=%d%s: sgbmv:n=%dOOO|OOOOOOOi:_fblas.sgemv%s: sgemv:trans=%d%s: sgemv:incx=%d%s: sgemv:incy=%dOO|OOOOOO:_fblas.saxpy%s: saxpy:incx=%d%s: saxpy:incy=%d%s: saxpy:offx=%d%s: saxpy:offy=%d%s: saxpy:n=%dOO|OOOi:_fblas.csscal%s: csscal:incx=%d%s: csscal:offx=%d%s: csscal:n=%dOO|OOO:_fblas.sscal%s: sscal:incx=%d%s: sscal:offx=%d%s: sscal:n=%dOOOO|OOOOOii:_fblas.csrot%s: csrot:incx=%d%s: csrot:incy=%d%s: csrot:offx=%d%s: csrot:offy=%d%s: csrot:n=%dOOOO|OOOOOii:_fblas.srot%s: srot:incx=%d%s: srot:incy=%d%s: srot:offx=%d%s: srot:offy=%d%s: srot:n=%dOOOO:_fblas.srotmgOO:_fblas.srotgffOOO|OOOOi:_fblas.dtrmm%s: dtrmm:side=%d%s: dtrmm:lower=%d%s: dtrmm:trans_a=%d%s: dtrmm:diag=%dOOO|OOOOi:_fblas.dsyr2k%s: dsyr2k:lower=%d%s: dsyr2k:trans=%d%s: dsyr2k:k=%dOO|OOOOi:_fblas.dsyrk%s: dsyrk:lower=%d%s: dsyrk:trans=%dOOO|OOOOi:_fblas.dsymm%s: dsymm:side=%d%s: dsymm:lower=%d%s: dsymm:n=%dOOO|OOOOi:_fblas.dgemm%s: dgemm:trans_a=%d%s: dgemm:trans_b=%d%s: dgemm:n=%dOOOOO|OOOOOi:_fblas.dspr2%s: dspr2:n=%d%s: dspr2:lower=%d%s: dspr2:incx=%d%s: dspr2:incy=%dOOOO|OOOi:_fblas.zhpr%s: zhpr:n=%d%s: zhpr:lower=%d%s: zhpr:incx=%dOOOO|OOOi:_fblas.dspr%s: dspr:n=%d%s: dspr:lower=%d%s: dspr:incx=%dOOO|OOOOOOOi:_fblas.dsyr2%s: dsyr2:lower=%d%s: dsyr2:incx=%d%s: dsyr2:incy=%d%s: dsyr2:n=%dOO|OOOOOi:_fblas.dsyr%s: dsyr:lower=%d%s: dsyr:incx=%d%s: dsyr:n=%dOOO|OOOOOOOi:_fblas.dsymv%s: dsymv:lower=%d%s: dsymv:incx=%d%s: dsymv:incy=%dOOOO|OOOOOOOi:_fblas.dspmv%s: dspmv:lower=%d%s: dspmv:n=%d%s: dspmv:incx=%d%s: dspmv:incy=%dOOOO|OOOOOOOi:_fblas.dsbmv%s: dsbmv:lower=%d%s: dsbmv:incx=%d%s: dsbmv:incy=%d%s: dsbmv:n=%d%s: dsbmv:k=%dOOOOOOO|OOOOOOOi:_fblas.dgbmv%s: dgbmv:trans=%d%s: dgbmv:kl=%d%s: dgbmv:ku=%d%s: dgbmv:incx=%d%s: dgbmv:incy=%d%s: dgbmv:m=%d%s: dgbmv:n=%dOOO|OOOOOOOi:_fblas.dgemv%s: dgemv:trans=%d%s: dgemv:incx=%d%s: dgemv:incy=%dOO|OOOOOO:_fblas.daxpy%s: daxpy:incx=%d%s: daxpy:incy=%d%s: daxpy:offx=%d%s: daxpy:offy=%d%s: daxpy:n=%dOO|OOOi:_fblas.zdscal%s: zdscal:incx=%d%s: zdscal:offx=%d%s: zdscal:n=%dOO|OOO:_fblas.dscal%s: dscal:incx=%d%s: dscal:offx=%d%s: dscal:n=%dOOOO|OOOOOii:_fblas.zdrot%s: zdrot:incx=%d%s: zdrot:incy=%d%s: zdrot:offx=%d%s: zdrot:offy=%d%s: zdrot:n=%dOOOO|OOOOOii:_fblas.drot%s: drot:incx=%d%s: drot:incy=%d%s: drot:offx=%d%s: drot:offy=%d%s: drot:n=%dOOOO:_fblas.drotmgOO:_fblas.drotgddOOO|OOOiii:_fblas.sger%s: sger:incx=%d%s: sger:incy=%dOOO|OOOiii:_fblas.dger%s: dger:incx=%d%s: dger:incy=%dOOO|OOOiii:_fblas.cgeru%s: cgeru:incx=%d%s: cgeru:incy=%dOOO|OOOiii:_fblas.zgeru%s: zgeru:incx=%d%s: zgeru:incy=%dOOO|OOOiii:_fblas.cgerc%s: cgerc:incx=%d%s: cgerc:incy=%dOOO|OOOiii:_fblas.zgerc%s: zgerc:incx=%d%s: zgerc:incy=%dnumpy.core.multiarray_ARRAY_API_ARRAY_API not found_ARRAY_API is NULL pointer$Revision: $__version____doc___fblas.error_cpointer__name__d1d2x1y1offxincxoffyincyoverwrite_xoverwrite_yparamalphabetatransklkuloweroverwrite_aoverwrite_apdiagtrans_atrans_boverwrite_csideoverwrite_b_fblas_fblas.zrotg() 1st argument (a) can't be converted to complex_double_fblas.zrotg() 2nd argument (b) can't be converted to complex_double_fblas.crotg() 1st argument (a) can't be converted to complex_float_fblas.crotg() 2nd argument (b) can't be converted to complex_float_fblas.ztpmv() 1st argument (n) can't be converted to int(n>=0) failed for 1st argument n_fblas.ztpmv() 3rd keyword (lower) can't be converted to int(lower == 0 || lower == 1) failed for 3rd keyword lower_fblas.ztpmv() 4th keyword (trans) can't be converted to int_fblas.ztpmv() 5th keyword (diag) can't be converted to int(diag == 0 || diag == 1) failed for 5th keyword diag_fblas.ztpmv() 1st keyword (incx) can't be converted to int(incx>0||incx<0) failed for 1st keyword incx_fblas.ztpmv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `ap' of _fblas.ztpmv to C/Fortran array(len(ap)>=(n*(n+1)/2)) failed for 2nd argument apfailed in converting 3rd argument `x' of _fblas.ztpmv to C/Fortran array(len(x)>offx+(n-1)*abs(incx)) failed for 3rd argument x(offx>=0 && offx<len(x)) failed for 3rd argument x_fblas.ctpmv() 1st argument (n) can't be converted to int_fblas.ctpmv() 3rd keyword (lower) can't be converted to int_fblas.ctpmv() 4th keyword (trans) can't be converted to int_fblas.ctpmv() 5th keyword (diag) can't be converted to int_fblas.ctpmv() 1st keyword (incx) can't be converted to int_fblas.ctpmv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `ap' of _fblas.ctpmv to C/Fortran arrayfailed in converting 3rd argument `x' of _fblas.ctpmv to C/Fortran array_fblas.dtpmv() 1st argument (n) can't be converted to int_fblas.dtpmv() 3rd keyword (lower) can't be converted to int_fblas.dtpmv() 4th keyword (trans) can't be converted to int_fblas.dtpmv() 5th keyword (diag) can't be converted to int_fblas.dtpmv() 1st keyword (incx) can't be converted to int_fblas.dtpmv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `ap' of _fblas.dtpmv to C/Fortran arrayfailed in converting 3rd argument `x' of _fblas.dtpmv to C/Fortran array_fblas.stpmv() 1st argument (n) can't be converted to int_fblas.stpmv() 3rd keyword (lower) can't be converted to int_fblas.stpmv() 4th keyword (trans) can't be converted to int_fblas.stpmv() 5th keyword (diag) can't be converted to int_fblas.stpmv() 1st keyword (incx) can't be converted to int_fblas.stpmv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `ap' of _fblas.stpmv to C/Fortran arrayfailed in converting 3rd argument `x' of _fblas.stpmv to C/Fortran array_fblas.ztbmv() 3rd keyword (lower) can't be converted to int_fblas.ztbmv() 4th keyword (trans) can't be converted to int_fblas.ztbmv() 5th keyword (diag) can't be converted to int_fblas.ztbmv() 1st keyword (incx) can't be converted to int_fblas.ztbmv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `a' of _fblas.ztbmv to C/Fortran array_fblas.ztbmv() 1st argument (k) can't be converted to int(k>=0&&k<=lda-1) failed for 1st argument kfailed in converting 3rd argument `x' of _fblas.ztbmv to C/Fortran array_fblas.ctbmv() 3rd keyword (lower) can't be converted to int_fblas.ctbmv() 4th keyword (trans) can't be converted to int_fblas.ctbmv() 5th keyword (diag) can't be converted to int_fblas.ctbmv() 1st keyword (incx) can't be converted to int_fblas.ctbmv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `a' of _fblas.ctbmv to C/Fortran array_fblas.ctbmv() 1st argument (k) can't be converted to intfailed in converting 3rd argument `x' of _fblas.ctbmv to C/Fortran array_fblas.dtbmv() 3rd keyword (lower) can't be converted to int_fblas.dtbmv() 4th keyword (trans) can't be converted to int_fblas.dtbmv() 5th keyword (diag) can't be converted to int_fblas.dtbmv() 1st keyword (incx) can't be converted to int_fblas.dtbmv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `a' of _fblas.dtbmv to C/Fortran array_fblas.dtbmv() 1st argument (k) can't be converted to intfailed in converting 3rd argument `x' of _fblas.dtbmv to C/Fortran array_fblas.stbmv() 3rd keyword (lower) can't be converted to int_fblas.stbmv() 4th keyword (trans) can't be converted to int_fblas.stbmv() 5th keyword (diag) can't be converted to int_fblas.stbmv() 1st keyword (incx) can't be converted to int_fblas.stbmv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `a' of _fblas.stbmv to C/Fortran array_fblas.stbmv() 1st argument (k) can't be converted to intfailed in converting 3rd argument `x' of _fblas.stbmv to C/Fortran array_fblas.ztrsv() 3rd keyword (lower) can't be converted to int_fblas.ztrsv() 4th keyword (trans) can't be converted to int_fblas.ztrsv() 5th keyword (diag) can't be converted to int_fblas.ztrsv() 1st keyword (incx) can't be converted to int_fblas.ztrsv() 2nd keyword (offx) can't be converted to intfailed in converting 1st argument `a' of _fblas.ztrsv to C/Fortran array(shape(a,0)==shape(a,1)) failed for 1st argument afailed in converting 2nd argument `x' of _fblas.ztrsv to C/Fortran array(len(x)>offx+(n-1)*abs(incx)) failed for 2nd argument x(offx>=0 && offx<len(x)) failed for 2nd argument x_fblas.ctrsv() 3rd keyword (lower) can't be converted to int_fblas.ctrsv() 4th keyword (trans) can't be converted to int_fblas.ctrsv() 5th keyword (diag) can't be converted to int_fblas.ctrsv() 1st keyword (incx) can't be converted to int_fblas.ctrsv() 2nd keyword (offx) can't be converted to intfailed in converting 1st argument `a' of _fblas.ctrsv to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.ctrsv to C/Fortran array_fblas.dtrsv() 3rd keyword (lower) can't be converted to int_fblas.dtrsv() 4th keyword (trans) can't be converted to int_fblas.dtrsv() 5th keyword (diag) can't be converted to int_fblas.dtrsv() 1st keyword (incx) can't be converted to int_fblas.dtrsv() 2nd keyword (offx) can't be converted to intfailed in converting 1st argument `a' of _fblas.dtrsv to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.dtrsv to C/Fortran array_fblas.strsv() 3rd keyword (lower) can't be converted to int_fblas.strsv() 4th keyword (trans) can't be converted to int_fblas.strsv() 5th keyword (diag) can't be converted to int_fblas.strsv() 1st keyword (incx) can't be converted to int_fblas.strsv() 2nd keyword (offx) can't be converted to intfailed in converting 1st argument `a' of _fblas.strsv to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.strsv to C/Fortran array_fblas.ztrmv() 4th keyword (trans) can't be converted to int(trans>=0 && trans <=2) failed for 4th keyword trans_fblas.ztrmv() 3rd keyword (lower) can't be converted to int(lower==0||lower==1) failed for 3rd keyword lower_fblas.ztrmv() 5th keyword (diag) can't be converted to int(diag==0||diag==1) failed for 5th keyword diag_fblas.ztrmv() 2nd keyword (incx) can't be converted to int(incx>0||incx<0) failed for 2nd keyword incxfailed in converting 2nd argument `x' of _fblas.ztrmv to C/Fortran arrayfailed in converting 1st argument `a' of _fblas.ztrmv to C/Fortran array_fblas.ztrmv() 1st keyword (offx) can't be converted to int(offx>=0 && offx<len(x)) failed for 1st keyword offx(len(x)>offx+(n-1)*abs(incx)) failed for hidden n_fblas.ctrmv() 4th keyword (trans) can't be converted to int_fblas.ctrmv() 3rd keyword (lower) can't be converted to int_fblas.ctrmv() 5th keyword (diag) can't be converted to int_fblas.ctrmv() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.ctrmv to C/Fortran arrayfailed in converting 1st argument `a' of _fblas.ctrmv to C/Fortran array_fblas.ctrmv() 1st keyword (offx) can't be converted to int_fblas.dtrmv() 4th keyword (trans) can't be converted to int_fblas.dtrmv() 3rd keyword (lower) can't be converted to int_fblas.dtrmv() 5th keyword (diag) can't be converted to int_fblas.dtrmv() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.dtrmv to C/Fortran arrayfailed in converting 1st argument `a' of _fblas.dtrmv to C/Fortran array_fblas.dtrmv() 1st keyword (offx) can't be converted to int_fblas.strmv() 4th keyword (trans) can't be converted to int_fblas.strmv() 3rd keyword (lower) can't be converted to int_fblas.strmv() 5th keyword (diag) can't be converted to int_fblas.strmv() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.strmv to C/Fortran arrayfailed in converting 1st argument `a' of _fblas.strmv to C/Fortran array_fblas.strmv() 1st keyword (offx) can't be converted to int_fblas.ztpsv() 1st argument (n) can't be converted to int_fblas.ztpsv() 3rd keyword (lower) can't be converted to int_fblas.ztpsv() 4th keyword (trans) can't be converted to int_fblas.ztpsv() 5th keyword (diag) can't be converted to int_fblas.ztpsv() 1st keyword (incx) can't be converted to int_fblas.ztpsv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `ap' of _fblas.ztpsv to C/Fortran arrayfailed in converting 3rd argument `x' of _fblas.ztpsv to C/Fortran array_fblas.ctpsv() 1st argument (n) can't be converted to int_fblas.ctpsv() 3rd keyword (lower) can't be converted to int_fblas.ctpsv() 4th keyword (trans) can't be converted to int_fblas.ctpsv() 5th keyword (diag) can't be converted to int_fblas.ctpsv() 1st keyword (incx) can't be converted to int_fblas.ctpsv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `ap' of _fblas.ctpsv to C/Fortran arrayfailed in converting 3rd argument `x' of _fblas.ctpsv to C/Fortran array_fblas.dtpsv() 1st argument (n) can't be converted to int_fblas.dtpsv() 3rd keyword (lower) can't be converted to int_fblas.dtpsv() 4th keyword (trans) can't be converted to int_fblas.dtpsv() 5th keyword (diag) can't be converted to int_fblas.dtpsv() 1st keyword (incx) can't be converted to int_fblas.dtpsv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `ap' of _fblas.dtpsv to C/Fortran arrayfailed in converting 3rd argument `x' of _fblas.dtpsv to C/Fortran array_fblas.stpsv() 1st argument (n) can't be converted to int_fblas.stpsv() 3rd keyword (lower) can't be converted to int_fblas.stpsv() 4th keyword (trans) can't be converted to int_fblas.stpsv() 5th keyword (diag) can't be converted to int_fblas.stpsv() 1st keyword (incx) can't be converted to int_fblas.stpsv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `ap' of _fblas.stpsv to C/Fortran arrayfailed in converting 3rd argument `x' of _fblas.stpsv to C/Fortran array_fblas.ztbsv() 3rd keyword (lower) can't be converted to int_fblas.ztbsv() 4th keyword (trans) can't be converted to int_fblas.ztbsv() 5th keyword (diag) can't be converted to int_fblas.ztbsv() 1st keyword (incx) can't be converted to int_fblas.ztbsv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `a' of _fblas.ztbsv to C/Fortran array_fblas.ztbsv() 1st argument (k) can't be converted to intfailed in converting 3rd argument `x' of _fblas.ztbsv to C/Fortran array_fblas.ctbsv() 3rd keyword (lower) can't be converted to int_fblas.ctbsv() 4th keyword (trans) can't be converted to int_fblas.ctbsv() 5th keyword (diag) can't be converted to int_fblas.ctbsv() 1st keyword (incx) can't be converted to int_fblas.ctbsv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `a' of _fblas.ctbsv to C/Fortran array_fblas.ctbsv() 1st argument (k) can't be converted to intfailed in converting 3rd argument `x' of _fblas.ctbsv to C/Fortran array_fblas.dtbsv() 3rd keyword (lower) can't be converted to int_fblas.dtbsv() 4th keyword (trans) can't be converted to int_fblas.dtbsv() 5th keyword (diag) can't be converted to int_fblas.dtbsv() 1st keyword (incx) can't be converted to int_fblas.dtbsv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `a' of _fblas.dtbsv to C/Fortran array_fblas.dtbsv() 1st argument (k) can't be converted to intfailed in converting 3rd argument `x' of _fblas.dtbsv to C/Fortran array_fblas.stbsv() 3rd keyword (lower) can't be converted to int_fblas.stbsv() 4th keyword (trans) can't be converted to int_fblas.stbsv() 5th keyword (diag) can't be converted to int_fblas.stbsv() 1st keyword (incx) can't be converted to int_fblas.stbsv() 2nd keyword (offx) can't be converted to intfailed in converting 2nd argument `a' of _fblas.stbsv to C/Fortran array_fblas.stbsv() 1st argument (k) can't be converted to intfailed in converting 3rd argument `x' of _fblas.stbsv to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.izamax to C/Fortran array_fblas.izamax() 3rd keyword (incx) can't be converted to int(incx>0||incx<0) failed for 3rd keyword incx_fblas.izamax() 2nd keyword (offx) can't be converted to int(offx>=0 && offx<len(x)) failed for 2nd keyword offx_fblas.izamax() 1st keyword (n) can't be converted to int(len(x)-offx>(n-1)*abs(incx)) failed for 1st keyword nfailed in converting 1st argument `x' of _fblas.icamax to C/Fortran array_fblas.icamax() 3rd keyword (incx) can't be converted to int_fblas.icamax() 2nd keyword (offx) can't be converted to int_fblas.icamax() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.idamax to C/Fortran array_fblas.idamax() 3rd keyword (incx) can't be converted to int_fblas.idamax() 2nd keyword (offx) can't be converted to int_fblas.idamax() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.isamax to C/Fortran array_fblas.isamax() 3rd keyword (incx) can't be converted to int_fblas.isamax() 2nd keyword (offx) can't be converted to int_fblas.isamax() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dzasum to C/Fortran array_fblas.dzasum() 3rd keyword (incx) can't be converted to int_fblas.dzasum() 2nd keyword (offx) can't be converted to int_fblas.dzasum() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dasum to C/Fortran array_fblas.dasum() 3rd keyword (incx) can't be converted to int_fblas.dasum() 2nd keyword (offx) can't be converted to int_fblas.dasum() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.scasum to C/Fortran array_fblas.scasum() 3rd keyword (incx) can't be converted to int_fblas.scasum() 2nd keyword (offx) can't be converted to int_fblas.scasum() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.sasum to C/Fortran array_fblas.sasum() 3rd keyword (incx) can't be converted to int_fblas.sasum() 2nd keyword (offx) can't be converted to int_fblas.sasum() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dznrm2 to C/Fortran array_fblas.dznrm2() 3rd keyword (incx) can't be converted to int_fblas.dznrm2() 2nd keyword (offx) can't be converted to int_fblas.dznrm2() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dnrm2 to C/Fortran array_fblas.dnrm2() 3rd keyword (incx) can't be converted to int_fblas.dnrm2() 2nd keyword (offx) can't be converted to int_fblas.dnrm2() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.scnrm2 to C/Fortran array_fblas.scnrm2() 3rd keyword (incx) can't be converted to int_fblas.scnrm2() 2nd keyword (offx) can't be converted to int_fblas.scnrm2() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.snrm2 to C/Fortran array_fblas.snrm2() 3rd keyword (incx) can't be converted to int_fblas.snrm2() 2nd keyword (offx) can't be converted to int_fblas.snrm2() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.ddot to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.ddot to C/Fortran array_fblas.ddot() 3rd keyword (incx) can't be converted to int_fblas.ddot() 5th keyword (incy) can't be converted to int(incy>0||incy<0) failed for 5th keyword incy_fblas.ddot() 2nd keyword (offx) can't be converted to int_fblas.ddot() 4th keyword (offy) can't be converted to int(offy>=0 && offy<len(y)) failed for 4th keyword offy_fblas.ddot() 1st keyword (n) can't be converted to int(len(y)-offy>(n-1)*abs(incy)) failed for 1st keyword nfailed in converting 1st argument `x' of _fblas.sdot to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.sdot to C/Fortran array_fblas.sdot() 3rd keyword (incx) can't be converted to int_fblas.sdot() 5th keyword (incy) can't be converted to int_fblas.sdot() 2nd keyword (offx) can't be converted to int_fblas.sdot() 4th keyword (offy) can't be converted to int_fblas.sdot() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.zcopy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.zcopy to C/Fortran array_fblas.zcopy() 3rd keyword (incx) can't be converted to int_fblas.zcopy() 5th keyword (incy) can't be converted to int_fblas.zcopy() 2nd keyword (offx) can't be converted to int_fblas.zcopy() 4th keyword (offy) can't be converted to int_fblas.zcopy() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.ccopy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.ccopy to C/Fortran array_fblas.ccopy() 3rd keyword (incx) can't be converted to int_fblas.ccopy() 5th keyword (incy) can't be converted to int_fblas.ccopy() 2nd keyword (offx) can't be converted to int_fblas.ccopy() 4th keyword (offy) can't be converted to int_fblas.ccopy() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dcopy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.dcopy to C/Fortran array_fblas.dcopy() 3rd keyword (incx) can't be converted to int_fblas.dcopy() 5th keyword (incy) can't be converted to int_fblas.dcopy() 2nd keyword (offx) can't be converted to int_fblas.dcopy() 4th keyword (offy) can't be converted to int_fblas.dcopy() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.scopy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.scopy to C/Fortran array_fblas.scopy() 3rd keyword (incx) can't be converted to int_fblas.scopy() 5th keyword (incy) can't be converted to int_fblas.scopy() 2nd keyword (offx) can't be converted to int_fblas.scopy() 4th keyword (offy) can't be converted to int_fblas.scopy() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.zswap to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.zswap to C/Fortran array_fblas.zswap() 3rd keyword (incx) can't be converted to int_fblas.zswap() 5th keyword (incy) can't be converted to int_fblas.zswap() 2nd keyword (offx) can't be converted to int_fblas.zswap() 4th keyword (offy) can't be converted to int_fblas.zswap() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.cswap to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.cswap to C/Fortran array_fblas.cswap() 3rd keyword (incx) can't be converted to int_fblas.cswap() 5th keyword (incy) can't be converted to int_fblas.cswap() 2nd keyword (offx) can't be converted to int_fblas.cswap() 4th keyword (offy) can't be converted to int_fblas.cswap() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dswap to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.dswap to C/Fortran array_fblas.dswap() 3rd keyword (incx) can't be converted to int_fblas.dswap() 5th keyword (incy) can't be converted to int_fblas.dswap() 2nd keyword (offx) can't be converted to int_fblas.dswap() 4th keyword (offy) can't be converted to int_fblas.dswap() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.sswap to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.sswap to C/Fortran array_fblas.sswap() 3rd keyword (incx) can't be converted to int_fblas.sswap() 5th keyword (incy) can't be converted to int_fblas.sswap() 2nd keyword (offx) can't be converted to int_fblas.sswap() 4th keyword (offy) can't be converted to int_fblas.sswap() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.drotm to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.drotm to C/Fortran arrayfailed in converting 3rd argument `param' of _fblas.drotm to C/Fortran array_fblas.drotm() 3rd keyword (incx) can't be converted to int_fblas.drotm() 5th keyword (incy) can't be converted to int_fblas.drotm() 2nd keyword (offx) can't be converted to int_fblas.drotm() 4th keyword (offy) can't be converted to int_fblas.drotm() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.srotm to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.srotm to C/Fortran arrayfailed in converting 3rd argument `param' of _fblas.srotm to C/Fortran array_fblas.srotm() 3rd keyword (incx) can't be converted to int_fblas.srotm() 5th keyword (incy) can't be converted to int_fblas.srotm() 2nd keyword (offx) can't be converted to int_fblas.srotm() 4th keyword (offy) can't be converted to int_fblas.srotm() 1st keyword (n) can't be converted to int_fblas.ztrsm() 1st keyword (side) can't be converted to int(side==0 || side==1) failed for 1st keyword side_fblas.ztrsm() 2nd keyword (lower) can't be converted to int(lower==0 || lower==1) failed for 2nd keyword lower_fblas.ztrsm() 3rd keyword (trans_a) can't be converted to int(trans_a>=0 && trans_a <=2) failed for 3rd keyword trans_a_fblas.ztrsm() 4th keyword (diag) can't be converted to int(diag==0 || diag==1) failed for 4th keyword diag_fblas.ztrsm() 1st argument (alpha) can't be converted to complex_doublefailed in converting 3rd argument `b' of _fblas.ztrsm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.ztrsm to C/Fortran array(shape(a,0)==(side?n:m)) failed for 2nd argument a(shape(a,0)==shape(a,1)) failed for 2nd argument a_fblas.ctrsm() 1st keyword (side) can't be converted to int_fblas.ctrsm() 2nd keyword (lower) can't be converted to int_fblas.ctrsm() 3rd keyword (trans_a) can't be converted to int_fblas.ctrsm() 4th keyword (diag) can't be converted to int_fblas.ctrsm() 1st argument (alpha) can't be converted to complex_floatfailed in converting 3rd argument `b' of _fblas.ctrsm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.ctrsm to C/Fortran array_fblas.ctrmm() 1st keyword (side) can't be converted to int_fblas.ctrmm() 2nd keyword (lower) can't be converted to int_fblas.ctrmm() 3rd keyword (trans_a) can't be converted to int_fblas.ctrmm() 4th keyword (diag) can't be converted to int_fblas.ctrmm() 1st argument (alpha) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.ctrmm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.ctrmm to C/Fortran array_fblas.cher2k() 4th keyword (lower) can't be converted to int(lower==0||lower==1) failed for 4th keyword lower_fblas.cher2k() 3rd keyword (trans) can't be converted to int(trans>=0 && trans <=2) failed for 3rd keyword trans_fblas.cher2k() 1st argument (alpha) can't be converted to complex_float_fblas.cher2k() 1st keyword (beta) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.cher2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.cher2k to C/Fortran array(trans ? lda==ldb: ka==kb) failed for hidden kfailed in converting 2nd keyword `c' of _fblas.cher2k to C/Fortran array(shape(c,0)==n && shape(c,1)==n) failed for 2nd keyword c_fblas.csyr2k() 4th keyword (lower) can't be converted to int_fblas.csyr2k() 3rd keyword (trans) can't be converted to int_fblas.csyr2k() 1st argument (alpha) can't be converted to complex_float_fblas.csyr2k() 1st keyword (beta) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.csyr2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.csyr2k to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.csyr2k to C/Fortran array_fblas.cherk() 4th keyword (lower) can't be converted to int_fblas.cherk() 3rd keyword (trans) can't be converted to int_fblas.cherk() 1st argument (alpha) can't be converted to complex_float_fblas.cherk() 1st keyword (beta) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.cherk to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.cherk to C/Fortran array_fblas.csyrk() 4th keyword (lower) can't be converted to int_fblas.csyrk() 3rd keyword (trans) can't be converted to int_fblas.csyrk() 1st argument (alpha) can't be converted to complex_float_fblas.csyrk() 1st keyword (beta) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.csyrk to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.csyrk to C/Fortran array_fblas.chemm() 3rd keyword (side) can't be converted to int(side==0||side==1) failed for 3rd keyword side_fblas.chemm() 4th keyword (lower) can't be converted to int_fblas.chemm() 1st argument (alpha) can't be converted to complex_float_fblas.chemm() 1st keyword (beta) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.chemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.chemm to C/Fortran array(side? kb==lda : ka==ldb) failed for hidden nfailed in converting 2nd keyword `c' of _fblas.chemm to C/Fortran array(shape(c,0)==m && shape(c,1)==n) failed for 2nd keyword c_fblas.csymm() 3rd keyword (side) can't be converted to int_fblas.csymm() 4th keyword (lower) can't be converted to int_fblas.csymm() 1st argument (alpha) can't be converted to complex_float_fblas.csymm() 1st keyword (beta) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.csymm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.csymm to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.csymm to C/Fortran array_fblas.cgemm() 3rd keyword (trans_a) can't be converted to int_fblas.cgemm() 4th keyword (trans_b) can't be converted to int(trans_b>=0 && trans_b <=2) failed for 4th keyword trans_b_fblas.cgemm() 1st argument (alpha) can't be converted to complex_float_fblas.cgemm() 1st keyword (beta) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.cgemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.cgemm to C/Fortran array(trans_b?kb==k:ldb==k) failed for hidden nfailed in converting 2nd keyword `c' of _fblas.cgemm to C/Fortran array_fblas.chpr2() 1st argument (n) can't be converted to int_fblas.chpr2() 5th keyword (lower) can't be converted to int(lower == 0 || lower == 1) failed for 5th keyword lower_fblas.chpr2() 1st keyword (incx) can't be converted to int_fblas.chpr2() 3rd keyword (incy) can't be converted to int(incy>0||incy<0) failed for 3rd keyword incy_fblas.chpr2() 2nd keyword (offx) can't be converted to int_fblas.chpr2() 4th keyword (offy) can't be converted to int_fblas.chpr2() 2nd argument (alpha) can't be converted to complex_floatfailed in converting 3rd argument `x' of _fblas.chpr2 to C/Fortran arrayfailed in converting 4th argument `y' of _fblas.chpr2 to C/Fortran array(len(y)>offy+(n-1)*abs(incy)) failed for 4th argument y(offy>=0 && offy<len(y)) failed for 4th argument yfailed in converting 5th argument `ap' of _fblas.chpr2 to C/Fortran array(len(ap)>=(n*(n+1)/2)) failed for 5th argument ap_fblas.cspr() 1st argument (n) can't be converted to int_fblas.cspr() 3rd keyword (lower) can't be converted to int_fblas.cspr() 1st keyword (incx) can't be converted to int_fblas.cspr() 2nd keyword (offx) can't be converted to int_fblas.cspr() 2nd argument (alpha) can't be converted to complex_floatfailed in converting 3rd argument `x' of _fblas.cspr to C/Fortran arrayfailed in converting 4th argument `ap' of _fblas.cspr to C/Fortran array(len(ap)>=(n*(n+1)/2)) failed for 4th argument ap_fblas.cher2() 1st keyword (lower) can't be converted to int(lower == 0 || lower == 1) failed for 1st keyword lower_fblas.cher2() 1st argument (alpha) can't be converted to complex_float_fblas.cher2() 2nd keyword (incx) can't be converted to int_fblas.cher2() 3rd keyword (offx) can't be converted to int_fblas.cher2() 4th keyword (incy) can't be converted to int(incy>0||incy<0) failed for 4th keyword incy_fblas.cher2() 5th keyword (offy) can't be converted to intfailed in converting 2nd argument `x' of _fblas.cher2 to C/Fortran array(offx >= 0 && offx < len(x)) failed for 2nd argument xfailed in converting 3rd argument `y' of _fblas.cher2 to C/Fortran array(offy >= 0 && offy < len(y)) failed for 3rd argument y_fblas.cher2() 6th keyword (n) can't be converted to int(n <= (len(y)-1-offy)/abs(incy)+1) failed for 6th keyword n(n <= (len(x)-1-offx)/abs(incx)+1) failed for 6th keyword n(n>=0) failed for 6th keyword nfailed in converting 7th keyword `a' of _fblas.cher2 to C/Fortran array_fblas.cher() 1st keyword (lower) can't be converted to int_fblas.cher() 1st argument (alpha) can't be converted to complex_float_fblas.cher() 3rd keyword (offx) can't be converted to int_fblas.cher() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.cher to C/Fortran array_fblas.cher() 4th keyword (n) can't be converted to int(n <= (len(x)-1-offx)/abs(incx)+1) failed for 4th keyword n(n >= 0) failed for 4th keyword nfailed in converting 5th keyword `a' of _fblas.cher to C/Fortran array_fblas.csyr() 1st keyword (lower) can't be converted to int_fblas.csyr() 1st argument (alpha) can't be converted to complex_float_fblas.csyr() 3rd keyword (offx) can't be converted to int_fblas.csyr() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.csyr to C/Fortran array_fblas.csyr() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.csyr to C/Fortran array_fblas.chemv() 7th keyword (lower) can't be converted to int(lower==0||lower==1) failed for 7th keyword lower_fblas.chemv() 4th keyword (incx) can't be converted to int(incx>0||incx<0) failed for 4th keyword incx_fblas.chemv() 6th keyword (incy) can't be converted to int(incy>0||incy<0) failed for 6th keyword incy_fblas.chemv() 1st argument (alpha) can't be converted to complex_float_fblas.chemv() 1st keyword (beta) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.chemv to C/Fortran array_fblas.chemv() 3rd keyword (offx) can't be converted to int_fblas.chemv() 5th keyword (offy) can't be converted to intfailed in converting 3rd argument `x' of _fblas.chemv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.chemv to C/Fortran array(len(y)>offy+(n-1)*abs(incy)) failed for 2nd keyword y(offy>=0 && offy<len(y)) failed for 2nd keyword y_fblas.chpmv() 7th keyword (lower) can't be converted to int_fblas.chpmv() 1st argument (n) can't be converted to int_fblas.chpmv() 1st keyword (incx) can't be converted to int_fblas.chpmv() 5th keyword (incy) can't be converted to int_fblas.chpmv() 2nd keyword (offx) can't be converted to int_fblas.chpmv() 6th keyword (offy) can't be converted to int_fblas.chpmv() 2nd argument (alpha) can't be converted to complex_float_fblas.chpmv() 3rd keyword (beta) can't be converted to complex_floatfailed in converting 3rd argument `ap' of _fblas.chpmv to C/Fortran array(len(ap)>=(n*(n+1)/2)) failed for 3rd argument apfailed in converting 4th keyword `y' of _fblas.chpmv to C/Fortran array(len(y)>offy+(n-1)*abs(incy)) failed for 4th keyword y(offy>=0 && offy<len(y)) failed for 4th keyword yfailed in converting 4th argument `x' of _fblas.chpmv to C/Fortran array(len(x)>offx+(n-1)*abs(incx)) failed for 4th argument x(offx>=0 && offx<len(x)) failed for 4th argument x_fblas.cspmv() 7th keyword (lower) can't be converted to int_fblas.cspmv() 1st argument (n) can't be converted to int_fblas.cspmv() 1st keyword (incx) can't be converted to int_fblas.cspmv() 5th keyword (incy) can't be converted to int_fblas.cspmv() 2nd keyword (offx) can't be converted to int_fblas.cspmv() 6th keyword (offy) can't be converted to int_fblas.cspmv() 2nd argument (alpha) can't be converted to complex_float_fblas.cspmv() 3rd keyword (beta) can't be converted to complex_floatfailed in converting 3rd argument `ap' of _fblas.cspmv to C/Fortran arrayfailed in converting 4th keyword `y' of _fblas.cspmv to C/Fortran arrayfailed in converting 4th argument `x' of _fblas.cspmv to C/Fortran array_fblas.chbmv() 7th keyword (lower) can't be converted to int_fblas.chbmv() 1st keyword (incx) can't be converted to int_fblas.chbmv() 5th keyword (incy) can't be converted to int_fblas.chbmv() 2nd keyword (offx) can't be converted to int_fblas.chbmv() 6th keyword (offy) can't be converted to int_fblas.chbmv() 2nd argument (alpha) can't be converted to complex_float_fblas.chbmv() 3rd keyword (beta) can't be converted to complex_floatfailed in converting 3rd argument `a' of _fblas.chbmv to C/Fortran array_fblas.chbmv() 1st argument (k) can't be converted to intfailed in converting 4th keyword `y' of _fblas.chbmv to C/Fortran arrayfailed in converting 4th argument `x' of _fblas.chbmv to C/Fortran array_fblas.cgbmv() 7th keyword (trans) can't be converted to int(trans>=0 && trans <=2) failed for 7th keyword trans_fblas.cgbmv() 3rd argument (kl) can't be converted to int(kl>=0) failed for 3rd argument kl_fblas.cgbmv() 4th argument (ku) can't be converted to int(ku>=0) failed for 4th argument ku_fblas.cgbmv() 1st keyword (incx) can't be converted to int_fblas.cgbmv() 5th keyword (incy) can't be converted to int_fblas.cgbmv() 2nd keyword (offx) can't be converted to int_fblas.cgbmv() 6th keyword (offy) can't be converted to int_fblas.cgbmv() 5th argument (alpha) can't be converted to complex_float_fblas.cgbmv() 3rd keyword (beta) can't be converted to complex_floatfailed in converting 6th argument `a' of _fblas.cgbmv to C/Fortran array_fblas.cgbmv() 1st argument (m) can't be converted to int(m>=ku+kl+1) failed for 1st argument m_fblas.cgbmv() 2nd argument (n) can't be converted to int(n>=0&&n==shape(a,1)) failed for 2nd argument nfailed in converting 4th keyword `y' of _fblas.cgbmv to C/Fortran array(len(y)>offy+(trans==0?m-1:n-1)*abs(incy)) failed for 4th keyword yfailed in converting 7th argument `x' of _fblas.cgbmv to C/Fortran array(len(x)>offx+(trans==0?m-1:n-1)*abs(incx)) failed for 7th argument x(offx>=0 && offx<len(x)) failed for 7th argument x_fblas.cgemv() 7th keyword (trans) can't be converted to int_fblas.cgemv() 4th keyword (incx) can't be converted to int_fblas.cgemv() 6th keyword (incy) can't be converted to int_fblas.cgemv() 1st argument (alpha) can't be converted to complex_float_fblas.cgemv() 1st keyword (beta) can't be converted to complex_floatfailed in converting 2nd argument `a' of _fblas.cgemv to C/Fortran array_fblas.cgemv() 3rd keyword (offx) can't be converted to int_fblas.cgemv() 5th keyword (offy) can't be converted to intfailed in converting 3rd argument `x' of _fblas.cgemv to C/Fortran array(len(x)>offx+(cols-1)*abs(incx)) failed for 3rd argument xfailed in converting 2nd keyword `y' of _fblas.cgemv to C/Fortran array(len(y)>offy+(rows-1)*abs(incy)) failed for 2nd keyword yfailed in converting 1st argument `x' of _fblas.caxpy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.caxpy to C/Fortran array_fblas.caxpy() 2nd keyword (a) can't be converted to complex_float_fblas.caxpy() 4th keyword (incx) can't be converted to int_fblas.caxpy() 6th keyword (incy) can't be converted to int_fblas.caxpy() 3rd keyword (offx) can't be converted to int(offx>=0 && offx<len(x)) failed for 3rd keyword offx_fblas.caxpy() 5th keyword (offy) can't be converted to int(offy>=0 && offy<len(y)) failed for 5th keyword offy_fblas.caxpy() 1st keyword (n) can't be converted to int_fblas.cscal() 1st argument (a) can't be converted to complex_floatfailed in converting 2nd argument `x' of _fblas.cscal to C/Fortran array_fblas.cscal() 3rd keyword (incx) can't be converted to int_fblas.cscal() 2nd keyword (offx) can't be converted to int_fblas.cscal() 1st keyword (n) can't be converted to int_fblas.ztrmm() 1st keyword (side) can't be converted to int_fblas.ztrmm() 2nd keyword (lower) can't be converted to int_fblas.ztrmm() 3rd keyword (trans_a) can't be converted to int_fblas.ztrmm() 4th keyword (diag) can't be converted to int_fblas.ztrmm() 1st argument (alpha) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.ztrmm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.ztrmm to C/Fortran array_fblas.zher2k() 4th keyword (lower) can't be converted to int_fblas.zher2k() 3rd keyword (trans) can't be converted to int_fblas.zher2k() 1st argument (alpha) can't be converted to complex_double_fblas.zher2k() 1st keyword (beta) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.zher2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zher2k to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.zher2k to C/Fortran array_fblas.zsyr2k() 4th keyword (lower) can't be converted to int_fblas.zsyr2k() 3rd keyword (trans) can't be converted to int_fblas.zsyr2k() 1st argument (alpha) can't be converted to complex_double_fblas.zsyr2k() 1st keyword (beta) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.zsyr2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zsyr2k to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.zsyr2k to C/Fortran array_fblas.zherk() 4th keyword (lower) can't be converted to int_fblas.zherk() 3rd keyword (trans) can't be converted to int_fblas.zherk() 1st argument (alpha) can't be converted to complex_double_fblas.zherk() 1st keyword (beta) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.zherk to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.zherk to C/Fortran array_fblas.zsyrk() 4th keyword (lower) can't be converted to int_fblas.zsyrk() 3rd keyword (trans) can't be converted to int_fblas.zsyrk() 1st argument (alpha) can't be converted to complex_double_fblas.zsyrk() 1st keyword (beta) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.zsyrk to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.zsyrk to C/Fortran array_fblas.zhemm() 3rd keyword (side) can't be converted to int_fblas.zhemm() 4th keyword (lower) can't be converted to int_fblas.zhemm() 1st argument (alpha) can't be converted to complex_double_fblas.zhemm() 1st keyword (beta) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.zhemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zhemm to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.zhemm to C/Fortran array_fblas.zsymm() 3rd keyword (side) can't be converted to int_fblas.zsymm() 4th keyword (lower) can't be converted to int_fblas.zsymm() 1st argument (alpha) can't be converted to complex_double_fblas.zsymm() 1st keyword (beta) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.zsymm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zsymm to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.zsymm to C/Fortran array_fblas.zgemm() 3rd keyword (trans_a) can't be converted to int_fblas.zgemm() 4th keyword (trans_b) can't be converted to int_fblas.zgemm() 1st argument (alpha) can't be converted to complex_double_fblas.zgemm() 1st keyword (beta) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.zgemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zgemm to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.zgemm to C/Fortran array_fblas.zhpr2() 1st argument (n) can't be converted to int_fblas.zhpr2() 5th keyword (lower) can't be converted to int_fblas.zhpr2() 1st keyword (incx) can't be converted to int_fblas.zhpr2() 3rd keyword (incy) can't be converted to int_fblas.zhpr2() 2nd keyword (offx) can't be converted to int_fblas.zhpr2() 4th keyword (offy) can't be converted to int_fblas.zhpr2() 2nd argument (alpha) can't be converted to complex_doublefailed in converting 3rd argument `x' of _fblas.zhpr2 to C/Fortran arrayfailed in converting 4th argument `y' of _fblas.zhpr2 to C/Fortran arrayfailed in converting 5th argument `ap' of _fblas.zhpr2 to C/Fortran array_fblas.zspr() 1st argument (n) can't be converted to int_fblas.zspr() 3rd keyword (lower) can't be converted to int_fblas.zspr() 1st keyword (incx) can't be converted to int_fblas.zspr() 2nd keyword (offx) can't be converted to int_fblas.zspr() 2nd argument (alpha) can't be converted to complex_doublefailed in converting 3rd argument `x' of _fblas.zspr to C/Fortran arrayfailed in converting 4th argument `ap' of _fblas.zspr to C/Fortran array_fblas.zher2() 1st keyword (lower) can't be converted to int_fblas.zher2() 1st argument (alpha) can't be converted to complex_double_fblas.zher2() 2nd keyword (incx) can't be converted to int_fblas.zher2() 3rd keyword (offx) can't be converted to int_fblas.zher2() 4th keyword (incy) can't be converted to int_fblas.zher2() 5th keyword (offy) can't be converted to intfailed in converting 2nd argument `x' of _fblas.zher2 to C/Fortran arrayfailed in converting 3rd argument `y' of _fblas.zher2 to C/Fortran array_fblas.zher2() 6th keyword (n) can't be converted to intfailed in converting 7th keyword `a' of _fblas.zher2 to C/Fortran array_fblas.zher() 1st keyword (lower) can't be converted to int_fblas.zher() 1st argument (alpha) can't be converted to complex_double_fblas.zher() 3rd keyword (offx) can't be converted to int_fblas.zher() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.zher to C/Fortran array_fblas.zher() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.zher to C/Fortran array_fblas.zsyr() 1st keyword (lower) can't be converted to int_fblas.zsyr() 1st argument (alpha) can't be converted to complex_double_fblas.zsyr() 3rd keyword (offx) can't be converted to int_fblas.zsyr() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.zsyr to C/Fortran array_fblas.zsyr() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.zsyr to C/Fortran array_fblas.zhemv() 7th keyword (lower) can't be converted to int_fblas.zhemv() 4th keyword (incx) can't be converted to int_fblas.zhemv() 6th keyword (incy) can't be converted to int_fblas.zhemv() 1st argument (alpha) can't be converted to complex_double_fblas.zhemv() 1st keyword (beta) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.zhemv to C/Fortran array_fblas.zhemv() 3rd keyword (offx) can't be converted to int_fblas.zhemv() 5th keyword (offy) can't be converted to intfailed in converting 3rd argument `x' of _fblas.zhemv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.zhemv to C/Fortran array_fblas.zhpmv() 7th keyword (lower) can't be converted to int_fblas.zhpmv() 1st argument (n) can't be converted to int_fblas.zhpmv() 1st keyword (incx) can't be converted to int_fblas.zhpmv() 5th keyword (incy) can't be converted to int_fblas.zhpmv() 2nd keyword (offx) can't be converted to int_fblas.zhpmv() 6th keyword (offy) can't be converted to int_fblas.zhpmv() 2nd argument (alpha) can't be converted to complex_double_fblas.zhpmv() 3rd keyword (beta) can't be converted to complex_doublefailed in converting 3rd argument `ap' of _fblas.zhpmv to C/Fortran arrayfailed in converting 4th keyword `y' of _fblas.zhpmv to C/Fortran arrayfailed in converting 4th argument `x' of _fblas.zhpmv to C/Fortran array_fblas.zspmv() 7th keyword (lower) can't be converted to int_fblas.zspmv() 1st argument (n) can't be converted to int_fblas.zspmv() 1st keyword (incx) can't be converted to int_fblas.zspmv() 5th keyword (incy) can't be converted to int_fblas.zspmv() 2nd keyword (offx) can't be converted to int_fblas.zspmv() 6th keyword (offy) can't be converted to int_fblas.zspmv() 2nd argument (alpha) can't be converted to complex_double_fblas.zspmv() 3rd keyword (beta) can't be converted to complex_doublefailed in converting 3rd argument `ap' of _fblas.zspmv to C/Fortran arrayfailed in converting 4th keyword `y' of _fblas.zspmv to C/Fortran arrayfailed in converting 4th argument `x' of _fblas.zspmv to C/Fortran array_fblas.zhbmv() 7th keyword (lower) can't be converted to int_fblas.zhbmv() 1st keyword (incx) can't be converted to int_fblas.zhbmv() 5th keyword (incy) can't be converted to int_fblas.zhbmv() 2nd keyword (offx) can't be converted to int_fblas.zhbmv() 6th keyword (offy) can't be converted to int_fblas.zhbmv() 2nd argument (alpha) can't be converted to complex_double_fblas.zhbmv() 3rd keyword (beta) can't be converted to complex_doublefailed in converting 3rd argument `a' of _fblas.zhbmv to C/Fortran array_fblas.zhbmv() 1st argument (k) can't be converted to intfailed in converting 4th keyword `y' of _fblas.zhbmv to C/Fortran arrayfailed in converting 4th argument `x' of _fblas.zhbmv to C/Fortran array_fblas.zgbmv() 7th keyword (trans) can't be converted to int_fblas.zgbmv() 3rd argument (kl) can't be converted to int_fblas.zgbmv() 4th argument (ku) can't be converted to int_fblas.zgbmv() 1st keyword (incx) can't be converted to int_fblas.zgbmv() 5th keyword (incy) can't be converted to int_fblas.zgbmv() 2nd keyword (offx) can't be converted to int_fblas.zgbmv() 6th keyword (offy) can't be converted to int_fblas.zgbmv() 5th argument (alpha) can't be converted to complex_double_fblas.zgbmv() 3rd keyword (beta) can't be converted to complex_doublefailed in converting 6th argument `a' of _fblas.zgbmv to C/Fortran array_fblas.zgbmv() 1st argument (m) can't be converted to int_fblas.zgbmv() 2nd argument (n) can't be converted to intfailed in converting 4th keyword `y' of _fblas.zgbmv to C/Fortran arrayfailed in converting 7th argument `x' of _fblas.zgbmv to C/Fortran array_fblas.zgemv() 7th keyword (trans) can't be converted to int_fblas.zgemv() 4th keyword (incx) can't be converted to int_fblas.zgemv() 6th keyword (incy) can't be converted to int_fblas.zgemv() 1st argument (alpha) can't be converted to complex_double_fblas.zgemv() 1st keyword (beta) can't be converted to complex_doublefailed in converting 2nd argument `a' of _fblas.zgemv to C/Fortran array_fblas.zgemv() 3rd keyword (offx) can't be converted to int_fblas.zgemv() 5th keyword (offy) can't be converted to intfailed in converting 3rd argument `x' of _fblas.zgemv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.zgemv to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.zaxpy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.zaxpy to C/Fortran array_fblas.zaxpy() 2nd keyword (a) can't be converted to complex_double_fblas.zaxpy() 4th keyword (incx) can't be converted to int_fblas.zaxpy() 6th keyword (incy) can't be converted to int_fblas.zaxpy() 3rd keyword (offx) can't be converted to int_fblas.zaxpy() 5th keyword (offy) can't be converted to int_fblas.zaxpy() 1st keyword (n) can't be converted to int_fblas.zscal() 1st argument (a) can't be converted to complex_doublefailed in converting 2nd argument `x' of _fblas.zscal to C/Fortran array_fblas.zscal() 3rd keyword (incx) can't be converted to int_fblas.zscal() 2nd keyword (offx) can't be converted to int_fblas.zscal() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.zdotc to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.zdotc to C/Fortran array_fblas.zdotc() 3rd keyword (incx) can't be converted to int_fblas.zdotc() 5th keyword (incy) can't be converted to int_fblas.zdotc() 2nd keyword (offx) can't be converted to int_fblas.zdotc() 4th keyword (offy) can't be converted to int_fblas.zdotc() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.cdotc to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.cdotc to C/Fortran array_fblas.cdotc() 3rd keyword (incx) can't be converted to int_fblas.cdotc() 5th keyword (incy) can't be converted to int_fblas.cdotc() 2nd keyword (offx) can't be converted to int_fblas.cdotc() 4th keyword (offy) can't be converted to int_fblas.cdotc() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.zdotu to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.zdotu to C/Fortran array_fblas.zdotu() 3rd keyword (incx) can't be converted to int_fblas.zdotu() 5th keyword (incy) can't be converted to int_fblas.zdotu() 2nd keyword (offx) can't be converted to int_fblas.zdotu() 4th keyword (offy) can't be converted to int_fblas.zdotu() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.cdotu to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.cdotu to C/Fortran array_fblas.cdotu() 3rd keyword (incx) can't be converted to int_fblas.cdotu() 5th keyword (incy) can't be converted to int_fblas.cdotu() 2nd keyword (offx) can't be converted to int_fblas.cdotu() 4th keyword (offy) can't be converted to int_fblas.cdotu() 1st keyword (n) can't be converted to int_fblas.dtrsm() 1st keyword (side) can't be converted to int_fblas.dtrsm() 2nd keyword (lower) can't be converted to int_fblas.dtrsm() 3rd keyword (trans_a) can't be converted to int_fblas.dtrsm() 4th keyword (diag) can't be converted to int_fblas.dtrsm() 1st argument (alpha) can't be converted to doublefailed in converting 3rd argument `b' of _fblas.dtrsm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.dtrsm to C/Fortran array_fblas.strsm() 1st keyword (side) can't be converted to int_fblas.strsm() 2nd keyword (lower) can't be converted to int_fblas.strsm() 3rd keyword (trans_a) can't be converted to int_fblas.strsm() 4th keyword (diag) can't be converted to int_fblas.strsm() 1st argument (alpha) can't be converted to floatfailed in converting 3rd argument `b' of _fblas.strsm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.strsm to C/Fortran array_fblas.strmm() 1st keyword (side) can't be converted to int_fblas.strmm() 2nd keyword (lower) can't be converted to int_fblas.strmm() 3rd keyword (trans_a) can't be converted to int_fblas.strmm() 4th keyword (diag) can't be converted to int_fblas.strmm() 1st argument (alpha) can't be converted to floatfailed in converting 2nd argument `a' of _fblas.strmm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.strmm to C/Fortran array_fblas.ssyr2k() 4th keyword (lower) can't be converted to int_fblas.ssyr2k() 3rd keyword (trans) can't be converted to int_fblas.ssyr2k() 1st argument (alpha) can't be converted to float_fblas.ssyr2k() 1st keyword (beta) can't be converted to floatfailed in converting 2nd argument `a' of _fblas.ssyr2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.ssyr2k to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.ssyr2k to C/Fortran array_fblas.ssyrk() 4th keyword (lower) can't be converted to int_fblas.ssyrk() 3rd keyword (trans) can't be converted to int_fblas.ssyrk() 1st argument (alpha) can't be converted to float_fblas.ssyrk() 1st keyword (beta) can't be converted to floatfailed in converting 2nd argument `a' of _fblas.ssyrk to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.ssyrk to C/Fortran array_fblas.ssymm() 3rd keyword (side) can't be converted to int_fblas.ssymm() 4th keyword (lower) can't be converted to int_fblas.ssymm() 1st argument (alpha) can't be converted to float_fblas.ssymm() 1st keyword (beta) can't be converted to floatfailed in converting 2nd argument `a' of _fblas.ssymm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.ssymm to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.ssymm to C/Fortran array_fblas.sgemm() 3rd keyword (trans_a) can't be converted to int_fblas.sgemm() 4th keyword (trans_b) can't be converted to int_fblas.sgemm() 1st argument (alpha) can't be converted to float_fblas.sgemm() 1st keyword (beta) can't be converted to floatfailed in converting 2nd argument `a' of _fblas.sgemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.sgemm to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.sgemm to C/Fortran array_fblas.sspr2() 1st argument (n) can't be converted to int_fblas.sspr2() 5th keyword (lower) can't be converted to int_fblas.sspr2() 1st keyword (incx) can't be converted to int_fblas.sspr2() 3rd keyword (incy) can't be converted to int_fblas.sspr2() 2nd keyword (offx) can't be converted to int_fblas.sspr2() 4th keyword (offy) can't be converted to int_fblas.sspr2() 2nd argument (alpha) can't be converted to floatfailed in converting 3rd argument `x' of _fblas.sspr2 to C/Fortran arrayfailed in converting 4th argument `y' of _fblas.sspr2 to C/Fortran arrayfailed in converting 5th argument `ap' of _fblas.sspr2 to C/Fortran array_fblas.chpr() 1st argument (n) can't be converted to int_fblas.chpr() 3rd keyword (lower) can't be converted to int_fblas.chpr() 1st keyword (incx) can't be converted to int_fblas.chpr() 2nd keyword (offx) can't be converted to int_fblas.chpr() 2nd argument (alpha) can't be converted to floatfailed in converting 3rd argument `x' of _fblas.chpr to C/Fortran arrayfailed in converting 4th argument `ap' of _fblas.chpr to C/Fortran array_fblas.sspr() 1st argument (n) can't be converted to int_fblas.sspr() 3rd keyword (lower) can't be converted to int_fblas.sspr() 1st keyword (incx) can't be converted to int_fblas.sspr() 2nd keyword (offx) can't be converted to int_fblas.sspr() 2nd argument (alpha) can't be converted to floatfailed in converting 3rd argument `x' of _fblas.sspr to C/Fortran arrayfailed in converting 4th argument `ap' of _fblas.sspr to C/Fortran array_fblas.ssyr2() 1st keyword (lower) can't be converted to int_fblas.ssyr2() 1st argument (alpha) can't be converted to float_fblas.ssyr2() 2nd keyword (incx) can't be converted to int_fblas.ssyr2() 3rd keyword (offx) can't be converted to int_fblas.ssyr2() 4th keyword (incy) can't be converted to int_fblas.ssyr2() 5th keyword (offy) can't be converted to intfailed in converting 2nd argument `x' of _fblas.ssyr2 to C/Fortran arrayfailed in converting 3rd argument `y' of _fblas.ssyr2 to C/Fortran array_fblas.ssyr2() 6th keyword (n) can't be converted to intfailed in converting 7th keyword `a' of _fblas.ssyr2 to C/Fortran array_fblas.ssyr() 1st keyword (lower) can't be converted to int_fblas.ssyr() 1st argument (alpha) can't be converted to float_fblas.ssyr() 3rd keyword (offx) can't be converted to int_fblas.ssyr() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.ssyr to C/Fortran array_fblas.ssyr() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.ssyr to C/Fortran array_fblas.ssymv() 7th keyword (lower) can't be converted to int_fblas.ssymv() 4th keyword (incx) can't be converted to int_fblas.ssymv() 6th keyword (incy) can't be converted to int_fblas.ssymv() 1st argument (alpha) can't be converted to float_fblas.ssymv() 1st keyword (beta) can't be converted to floatfailed in converting 2nd argument `a' of _fblas.ssymv to C/Fortran array_fblas.ssymv() 3rd keyword (offx) can't be converted to int_fblas.ssymv() 5th keyword (offy) can't be converted to intfailed in converting 3rd argument `x' of _fblas.ssymv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.ssymv to C/Fortran array_fblas.sspmv() 7th keyword (lower) can't be converted to int_fblas.sspmv() 1st argument (n) can't be converted to int_fblas.sspmv() 1st keyword (incx) can't be converted to int_fblas.sspmv() 5th keyword (incy) can't be converted to int_fblas.sspmv() 2nd keyword (offx) can't be converted to int_fblas.sspmv() 6th keyword (offy) can't be converted to int_fblas.sspmv() 2nd argument (alpha) can't be converted to float_fblas.sspmv() 3rd keyword (beta) can't be converted to floatfailed in converting 3rd argument `ap' of _fblas.sspmv to C/Fortran arrayfailed in converting 4th keyword `y' of _fblas.sspmv to C/Fortran arrayfailed in converting 4th argument `x' of _fblas.sspmv to C/Fortran array_fblas.ssbmv() 7th keyword (lower) can't be converted to int_fblas.ssbmv() 1st keyword (incx) can't be converted to int_fblas.ssbmv() 5th keyword (incy) can't be converted to int_fblas.ssbmv() 2nd keyword (offx) can't be converted to int_fblas.ssbmv() 6th keyword (offy) can't be converted to int_fblas.ssbmv() 2nd argument (alpha) can't be converted to float_fblas.ssbmv() 3rd keyword (beta) can't be converted to floatfailed in converting 3rd argument `a' of _fblas.ssbmv to C/Fortran array_fblas.ssbmv() 1st argument (k) can't be converted to intfailed in converting 4th keyword `y' of _fblas.ssbmv to C/Fortran arrayfailed in converting 4th argument `x' of _fblas.ssbmv to C/Fortran array_fblas.sgbmv() 7th keyword (trans) can't be converted to int_fblas.sgbmv() 3rd argument (kl) can't be converted to int_fblas.sgbmv() 4th argument (ku) can't be converted to int_fblas.sgbmv() 1st keyword (incx) can't be converted to int_fblas.sgbmv() 5th keyword (incy) can't be converted to int_fblas.sgbmv() 2nd keyword (offx) can't be converted to int_fblas.sgbmv() 6th keyword (offy) can't be converted to int_fblas.sgbmv() 5th argument (alpha) can't be converted to float_fblas.sgbmv() 3rd keyword (beta) can't be converted to floatfailed in converting 6th argument `a' of _fblas.sgbmv to C/Fortran array_fblas.sgbmv() 1st argument (m) can't be converted to int_fblas.sgbmv() 2nd argument (n) can't be converted to intfailed in converting 4th keyword `y' of _fblas.sgbmv to C/Fortran arrayfailed in converting 7th argument `x' of _fblas.sgbmv to C/Fortran array_fblas.sgemv() 7th keyword (trans) can't be converted to int_fblas.sgemv() 4th keyword (incx) can't be converted to int_fblas.sgemv() 6th keyword (incy) can't be converted to int_fblas.sgemv() 1st argument (alpha) can't be converted to float_fblas.sgemv() 1st keyword (beta) can't be converted to floatfailed in converting 2nd argument `a' of _fblas.sgemv to C/Fortran array_fblas.sgemv() 3rd keyword (offx) can't be converted to int_fblas.sgemv() 5th keyword (offy) can't be converted to intfailed in converting 3rd argument `x' of _fblas.sgemv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.sgemv to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.saxpy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.saxpy to C/Fortran array_fblas.saxpy() 2nd keyword (a) can't be converted to float_fblas.saxpy() 4th keyword (incx) can't be converted to int_fblas.saxpy() 6th keyword (incy) can't be converted to int_fblas.saxpy() 3rd keyword (offx) can't be converted to int_fblas.saxpy() 5th keyword (offy) can't be converted to int_fblas.saxpy() 1st keyword (n) can't be converted to int_fblas.csscal() 1st argument (a) can't be converted to floatfailed in converting 2nd argument `x' of _fblas.csscal to C/Fortran array_fblas.csscal() 3rd keyword (incx) can't be converted to int_fblas.csscal() 2nd keyword (offx) can't be converted to int_fblas.csscal() 1st keyword (n) can't be converted to int_fblas.sscal() 1st argument (a) can't be converted to floatfailed in converting 2nd argument `x' of _fblas.sscal to C/Fortran array_fblas.sscal() 3rd keyword (incx) can't be converted to int_fblas.sscal() 2nd keyword (offx) can't be converted to int_fblas.sscal() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.csrot to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.csrot to C/Fortran array_fblas.csrot() 3rd argument (c) can't be converted to float_fblas.csrot() 4th argument (s) can't be converted to float_fblas.csrot() 3rd keyword (incx) can't be converted to int_fblas.csrot() 5th keyword (incy) can't be converted to int_fblas.csrot() 2nd keyword (offx) can't be converted to int_fblas.csrot() 4th keyword (offy) can't be converted to int_fblas.csrot() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.srot to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.srot to C/Fortran array_fblas.srot() 3rd argument (c) can't be converted to float_fblas.srot() 4th argument (s) can't be converted to float_fblas.srot() 3rd keyword (incx) can't be converted to int_fblas.srot() 5th keyword (incy) can't be converted to int_fblas.srot() 2nd keyword (offx) can't be converted to int_fblas.srot() 4th keyword (offy) can't be converted to int_fblas.srot() 1st keyword (n) can't be converted to int_fblas.srotmg() 1st argument (d1) can't be converted to float_fblas.srotmg() 2nd argument (d2) can't be converted to float_fblas.srotmg() 3rd argument (x1) can't be converted to float_fblas.srotmg() 4th argument (y1) can't be converted to floatfailed in converting hidden `param' of _fblas.srotmg to C/Fortran array_fblas.srotg() 1st argument (a) can't be converted to float_fblas.srotg() 2nd argument (b) can't be converted to float_fblas.dtrmm() 1st keyword (side) can't be converted to int_fblas.dtrmm() 2nd keyword (lower) can't be converted to int_fblas.dtrmm() 3rd keyword (trans_a) can't be converted to int_fblas.dtrmm() 4th keyword (diag) can't be converted to int_fblas.dtrmm() 1st argument (alpha) can't be converted to doublefailed in converting 2nd argument `a' of _fblas.dtrmm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.dtrmm to C/Fortran array_fblas.dsyr2k() 4th keyword (lower) can't be converted to int_fblas.dsyr2k() 3rd keyword (trans) can't be converted to int_fblas.dsyr2k() 1st argument (alpha) can't be converted to double_fblas.dsyr2k() 1st keyword (beta) can't be converted to doublefailed in converting 2nd argument `a' of _fblas.dsyr2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.dsyr2k to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.dsyr2k to C/Fortran array_fblas.dsyrk() 4th keyword (lower) can't be converted to int_fblas.dsyrk() 3rd keyword (trans) can't be converted to int_fblas.dsyrk() 1st argument (alpha) can't be converted to double_fblas.dsyrk() 1st keyword (beta) can't be converted to doublefailed in converting 2nd argument `a' of _fblas.dsyrk to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.dsyrk to C/Fortran array_fblas.dsymm() 3rd keyword (side) can't be converted to int_fblas.dsymm() 4th keyword (lower) can't be converted to int_fblas.dsymm() 1st argument (alpha) can't be converted to double_fblas.dsymm() 1st keyword (beta) can't be converted to doublefailed in converting 2nd argument `a' of _fblas.dsymm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.dsymm to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.dsymm to C/Fortran array_fblas.dgemm() 3rd keyword (trans_a) can't be converted to int_fblas.dgemm() 4th keyword (trans_b) can't be converted to int_fblas.dgemm() 1st argument (alpha) can't be converted to double_fblas.dgemm() 1st keyword (beta) can't be converted to doublefailed in converting 2nd argument `a' of _fblas.dgemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.dgemm to C/Fortran arrayfailed in converting 2nd keyword `c' of _fblas.dgemm to C/Fortran array_fblas.dspr2() 1st argument (n) can't be converted to int_fblas.dspr2() 5th keyword (lower) can't be converted to int_fblas.dspr2() 1st keyword (incx) can't be converted to int_fblas.dspr2() 3rd keyword (incy) can't be converted to int_fblas.dspr2() 2nd keyword (offx) can't be converted to int_fblas.dspr2() 4th keyword (offy) can't be converted to int_fblas.dspr2() 2nd argument (alpha) can't be converted to doublefailed in converting 3rd argument `x' of _fblas.dspr2 to C/Fortran arrayfailed in converting 4th argument `y' of _fblas.dspr2 to C/Fortran arrayfailed in converting 5th argument `ap' of _fblas.dspr2 to C/Fortran array_fblas.zhpr() 1st argument (n) can't be converted to int_fblas.zhpr() 3rd keyword (lower) can't be converted to int_fblas.zhpr() 1st keyword (incx) can't be converted to int_fblas.zhpr() 2nd keyword (offx) can't be converted to int_fblas.zhpr() 2nd argument (alpha) can't be converted to doublefailed in converting 3rd argument `x' of _fblas.zhpr to C/Fortran arrayfailed in converting 4th argument `ap' of _fblas.zhpr to C/Fortran array_fblas.dspr() 1st argument (n) can't be converted to int_fblas.dspr() 3rd keyword (lower) can't be converted to int_fblas.dspr() 1st keyword (incx) can't be converted to int_fblas.dspr() 2nd keyword (offx) can't be converted to int_fblas.dspr() 2nd argument (alpha) can't be converted to doublefailed in converting 3rd argument `x' of _fblas.dspr to C/Fortran arrayfailed in converting 4th argument `ap' of _fblas.dspr to C/Fortran array_fblas.dsyr2() 1st keyword (lower) can't be converted to int_fblas.dsyr2() 1st argument (alpha) can't be converted to double_fblas.dsyr2() 2nd keyword (incx) can't be converted to int_fblas.dsyr2() 3rd keyword (offx) can't be converted to int_fblas.dsyr2() 4th keyword (incy) can't be converted to int_fblas.dsyr2() 5th keyword (offy) can't be converted to intfailed in converting 2nd argument `x' of _fblas.dsyr2 to C/Fortran arrayfailed in converting 3rd argument `y' of _fblas.dsyr2 to C/Fortran array_fblas.dsyr2() 6th keyword (n) can't be converted to intfailed in converting 7th keyword `a' of _fblas.dsyr2 to C/Fortran array_fblas.dsyr() 1st keyword (lower) can't be converted to int_fblas.dsyr() 1st argument (alpha) can't be converted to double_fblas.dsyr() 3rd keyword (offx) can't be converted to int_fblas.dsyr() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.dsyr to C/Fortran array_fblas.dsyr() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.dsyr to C/Fortran array_fblas.dsymv() 7th keyword (lower) can't be converted to int_fblas.dsymv() 4th keyword (incx) can't be converted to int_fblas.dsymv() 6th keyword (incy) can't be converted to int_fblas.dsymv() 1st argument (alpha) can't be converted to double_fblas.dsymv() 1st keyword (beta) can't be converted to doublefailed in converting 2nd argument `a' of _fblas.dsymv to C/Fortran array_fblas.dsymv() 3rd keyword (offx) can't be converted to int_fblas.dsymv() 5th keyword (offy) can't be converted to intfailed in converting 3rd argument `x' of _fblas.dsymv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.dsymv to C/Fortran array_fblas.dspmv() 7th keyword (lower) can't be converted to int_fblas.dspmv() 1st argument (n) can't be converted to int_fblas.dspmv() 1st keyword (incx) can't be converted to int_fblas.dspmv() 5th keyword (incy) can't be converted to int_fblas.dspmv() 2nd keyword (offx) can't be converted to int_fblas.dspmv() 6th keyword (offy) can't be converted to int_fblas.dspmv() 2nd argument (alpha) can't be converted to double_fblas.dspmv() 3rd keyword (beta) can't be converted to doublefailed in converting 3rd argument `ap' of _fblas.dspmv to C/Fortran arrayfailed in converting 4th keyword `y' of _fblas.dspmv to C/Fortran arrayfailed in converting 4th argument `x' of _fblas.dspmv to C/Fortran array_fblas.dsbmv() 7th keyword (lower) can't be converted to int_fblas.dsbmv() 1st keyword (incx) can't be converted to int_fblas.dsbmv() 5th keyword (incy) can't be converted to int_fblas.dsbmv() 2nd keyword (offx) can't be converted to int_fblas.dsbmv() 6th keyword (offy) can't be converted to int_fblas.dsbmv() 2nd argument (alpha) can't be converted to double_fblas.dsbmv() 3rd keyword (beta) can't be converted to doublefailed in converting 3rd argument `a' of _fblas.dsbmv to C/Fortran array_fblas.dsbmv() 1st argument (k) can't be converted to intfailed in converting 4th keyword `y' of _fblas.dsbmv to C/Fortran arrayfailed in converting 4th argument `x' of _fblas.dsbmv to C/Fortran array_fblas.dgbmv() 7th keyword (trans) can't be converted to int_fblas.dgbmv() 3rd argument (kl) can't be converted to int_fblas.dgbmv() 4th argument (ku) can't be converted to int_fblas.dgbmv() 1st keyword (incx) can't be converted to int_fblas.dgbmv() 5th keyword (incy) can't be converted to int_fblas.dgbmv() 2nd keyword (offx) can't be converted to int_fblas.dgbmv() 6th keyword (offy) can't be converted to int_fblas.dgbmv() 5th argument (alpha) can't be converted to double_fblas.dgbmv() 3rd keyword (beta) can't be converted to doublefailed in converting 6th argument `a' of _fblas.dgbmv to C/Fortran array_fblas.dgbmv() 1st argument (m) can't be converted to int_fblas.dgbmv() 2nd argument (n) can't be converted to intfailed in converting 4th keyword `y' of _fblas.dgbmv to C/Fortran arrayfailed in converting 7th argument `x' of _fblas.dgbmv to C/Fortran array_fblas.dgemv() 7th keyword (trans) can't be converted to int_fblas.dgemv() 4th keyword (incx) can't be converted to int_fblas.dgemv() 6th keyword (incy) can't be converted to int_fblas.dgemv() 1st argument (alpha) can't be converted to double_fblas.dgemv() 1st keyword (beta) can't be converted to doublefailed in converting 2nd argument `a' of _fblas.dgemv to C/Fortran array_fblas.dgemv() 3rd keyword (offx) can't be converted to int_fblas.dgemv() 5th keyword (offy) can't be converted to intfailed in converting 3rd argument `x' of _fblas.dgemv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.dgemv to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.daxpy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.daxpy to C/Fortran array_fblas.daxpy() 2nd keyword (a) can't be converted to double_fblas.daxpy() 4th keyword (incx) can't be converted to int_fblas.daxpy() 6th keyword (incy) can't be converted to int_fblas.daxpy() 3rd keyword (offx) can't be converted to int_fblas.daxpy() 5th keyword (offy) can't be converted to int_fblas.daxpy() 1st keyword (n) can't be converted to int_fblas.zdscal() 1st argument (a) can't be converted to doublefailed in converting 2nd argument `x' of _fblas.zdscal to C/Fortran array_fblas.zdscal() 3rd keyword (incx) can't be converted to int_fblas.zdscal() 2nd keyword (offx) can't be converted to int_fblas.zdscal() 1st keyword (n) can't be converted to int_fblas.dscal() 1st argument (a) can't be converted to doublefailed in converting 2nd argument `x' of _fblas.dscal to C/Fortran array_fblas.dscal() 3rd keyword (incx) can't be converted to int_fblas.dscal() 2nd keyword (offx) can't be converted to int_fblas.dscal() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.zdrot to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.zdrot to C/Fortran array_fblas.zdrot() 3rd argument (c) can't be converted to double_fblas.zdrot() 4th argument (s) can't be converted to double_fblas.zdrot() 3rd keyword (incx) can't be converted to int_fblas.zdrot() 5th keyword (incy) can't be converted to int_fblas.zdrot() 2nd keyword (offx) can't be converted to int_fblas.zdrot() 4th keyword (offy) can't be converted to int_fblas.zdrot() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.drot to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.drot to C/Fortran array_fblas.drot() 3rd argument (c) can't be converted to double_fblas.drot() 4th argument (s) can't be converted to double_fblas.drot() 3rd keyword (incx) can't be converted to int_fblas.drot() 5th keyword (incy) can't be converted to int_fblas.drot() 2nd keyword (offx) can't be converted to int_fblas.drot() 4th keyword (offy) can't be converted to int_fblas.drot() 1st keyword (n) can't be converted to int_fblas.drotmg() 1st argument (d1) can't be converted to double_fblas.drotmg() 2nd argument (d2) can't be converted to double_fblas.drotmg() 3rd argument (x1) can't be converted to double_fblas.drotmg() 4th argument (y1) can't be converted to doublefailed in converting hidden `param' of _fblas.drotmg to C/Fortran array_fblas.drotg() 1st argument (a) can't be converted to double_fblas.drotg() 2nd argument (b) can't be converted to double_fblas.sger() 1st argument (alpha) can't be converted to floatfailed in converting 2nd argument `x' of _fblas.sger to C/Fortran array_fblas.sger() 1st keyword (incx) can't be converted to int(incx==1||incx==-1) failed for 1st keyword incxfailed in converting 3rd argument `y' of _fblas.sger to C/Fortran array_fblas.sger() 2nd keyword (incy) can't be converted to int(incy==1||incy==-1) failed for 2nd keyword incyfailed in converting 3rd keyword `a' of _fblas.sger to C/Fortran arrayInitialization of 3rd keyword a failed (initforcomb)._fblas.dger() 1st argument (alpha) can't be converted to doublefailed in converting 2nd argument `x' of _fblas.dger to C/Fortran array_fblas.dger() 1st keyword (incx) can't be converted to intfailed in converting 3rd argument `y' of _fblas.dger to C/Fortran array_fblas.dger() 2nd keyword (incy) can't be converted to intfailed in converting 3rd keyword `a' of _fblas.dger to C/Fortran array_fblas.cgeru() 1st argument (alpha) can't be converted to complex_floatfailed in converting 2nd argument `x' of _fblas.cgeru to C/Fortran array_fblas.cgeru() 1st keyword (incx) can't be converted to intfailed in converting 3rd argument `y' of _fblas.cgeru to C/Fortran array_fblas.cgeru() 2nd keyword (incy) can't be converted to intfailed in converting 3rd keyword `a' of _fblas.cgeru to C/Fortran array_fblas.zgeru() 1st argument (alpha) can't be converted to complex_doublefailed in converting 2nd argument `x' of _fblas.zgeru to C/Fortran array_fblas.zgeru() 1st keyword (incx) can't be converted to intfailed in converting 3rd argument `y' of _fblas.zgeru to C/Fortran array_fblas.zgeru() 2nd keyword (incy) can't be converted to intfailed in converting 3rd keyword `a' of _fblas.zgeru to C/Fortran array_fblas.cgerc() 1st argument (alpha) can't be converted to complex_floatfailed in converting 2nd argument `x' of _fblas.cgerc to C/Fortran array_fblas.cgerc() 1st keyword (incx) can't be converted to intfailed in converting 3rd argument `y' of _fblas.cgerc to C/Fortran array_fblas.cgerc() 2nd keyword (incy) can't be converted to intfailed in converting 3rd keyword `a' of _fblas.cgerc to C/Fortran array_fblas.zgerc() 1st argument (alpha) can't be converted to complex_doublefailed in converting 2nd argument `x' of _fblas.zgerc to C/Fortran array_fblas.zgerc() 1st keyword (incx) can't be converted to intfailed in converting 3rd argument `y' of _fblas.zgerc to C/Fortran array_fblas.zgerc() 2nd keyword (incy) can't be converted to intfailed in converting 3rd keyword `a' of _fblas.zgerc to C/Fortran arraynumpy.core.multiarray failed to import_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%xFATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimecan't initialize module _fblas (failed to import numpy)This module '_fblas' is auto-generated with f2py (version:2).
Functions:
  c,s = srotg(a,b)
  c,s = drotg(a,b)
  c,s = crotg(a,b)
  c,s = zrotg(a,b)
  param = srotmg(d1,d2,x1,y1)
  param = drotmg(d1,d2,x1,y1)
  x,y = srot(x,y,c,s,n=(len(x)-1-offx)/abs(incx)+1,offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = drot(x,y,c,s,n=(len(x)-1-offx)/abs(incx)+1,offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = csrot(x,y,c,s,n=(len(x)-1-offx)/abs(incx)+1,offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = zdrot(x,y,c,s,n=(len(x)-1-offx)/abs(incx)+1,offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = srotm(x,y,param,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = drotm(x,y,param,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = sswap(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  x,y = dswap(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  x,y = cswap(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  x,y = zswap(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  x = sscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  x = dscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  x = cscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  x = zscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  x = csscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1,overwrite_x=0)
  x = zdscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1,overwrite_x=0)
  y = scopy(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  y = dcopy(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  y = ccopy(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  y = zcopy(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  z = saxpy(x,y,n=(len(x)-offx)/abs(incx),a=1.0,offx=0,incx=1,offy=0,incy=1)
  z = daxpy(x,y,n=(len(x)-offx)/abs(incx),a=1.0,offx=0,incx=1,offy=0,incy=1)
  z = caxpy(x,y,n=(len(x)-offx)/abs(incx),a=(1.0, 0.0),offx=0,incx=1,offy=0,incy=1)
  z = zaxpy(x,y,n=(len(x)-offx)/abs(incx),a=(1.0, 0.0),offx=0,incx=1,offy=0,incy=1)
  xy = sdot(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = ddot(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = cdotu(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = zdotu(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = cdotc(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = zdotc(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  n2 = snrm2(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  n2 = scnrm2(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  n2 = dnrm2(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  n2 = dznrm2(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  s = sasum(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  s = scasum(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  s = dasum(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  s = dzasum(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  k = isamax(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  k = idamax(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  k = icamax(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  k = izamax(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  y = sgemv(alpha,a,x,beta=0.0,y=,offx=0,incx=1,offy=0,incy=1,trans=0,overwrite_y=0)
  y = dgemv(alpha,a,x,beta=0.0,y=,offx=0,incx=1,offy=0,incy=1,trans=0,overwrite_y=0)
  y = cgemv(alpha,a,x,beta=(0.0, 0.0),y=,offx=0,incx=1,offy=0,incy=1,trans=0,overwrite_y=0)
  y = zgemv(alpha,a,x,beta=(0.0, 0.0),y=,offx=0,incx=1,offy=0,incy=1,trans=0,overwrite_y=0)
  yout = sgbmv(m,n,kl,ku,alpha,a,x,incx=1,offx=0,beta=0.0,y=,incy=1,offy=0,trans=0,overwrite_y=0)
  yout = dgbmv(m,n,kl,ku,alpha,a,x,incx=1,offx=0,beta=0.0,y=,incy=1,offy=0,trans=0,overwrite_y=0)
  yout = cgbmv(m,n,kl,ku,alpha,a,x,incx=1,offx=0,beta=(0.0, 0.0),y=,incy=1,offy=0,trans=0,overwrite_y=0)
  yout = zgbmv(m,n,kl,ku,alpha,a,x,incx=1,offx=0,beta=(0.0, 0.0),y=,incy=1,offy=0,trans=0,overwrite_y=0)
  yout = ssbmv(k,alpha,a,x,incx=1,offx=0,beta=0.0,y=,incy=1,offy=0,lower=0,overwrite_y=0)
  yout = dsbmv(k,alpha,a,x,incx=1,offx=0,beta=0.0,y=,incy=1,offy=0,lower=0,overwrite_y=0)
  yout = chbmv(k,alpha,a,x,incx=1,offx=0,beta=(0.0, 0.0),y=,incy=1,offy=0,lower=0,overwrite_y=0)
  yout = zhbmv(k,alpha,a,x,incx=1,offx=0,beta=(0.0, 0.0),y=,incy=1,offy=0,lower=0,overwrite_y=0)
  yout = sspmv(n,alpha,ap,x,incx=1,offx=0,beta=0.0,y=,incy=1,offy=0,lower=0,overwrite_y=0)
  yout = dspmv(n,alpha,ap,x,incx=1,offx=0,beta=0.0,y=,incy=1,offy=0,lower=0,overwrite_y=0)
  yout = cspmv(n,alpha,ap,x,incx=1,offx=0,beta=(0.0, 0.0),y=,incy=1,offy=0,lower=0,overwrite_y=0)
  yout = zspmv(n,alpha,ap,x,incx=1,offx=0,beta=(0.0, 0.0),y=,incy=1,offy=0,lower=0,overwrite_y=0)
  yout = chpmv(n,alpha,ap,x,incx=1,offx=0,beta=(0.0, 0.0),y=,incy=1,offy=0,lower=0,overwrite_y=0)
  yout = zhpmv(n,alpha,ap,x,incx=1,offx=0,beta=(0.0, 0.0),y=,incy=1,offy=0,lower=0,overwrite_y=0)
  y = ssymv(alpha,a,x,beta=0.0,y=,offx=0,incx=1,offy=0,incy=1,lower=0,overwrite_y=0)
  y = dsymv(alpha,a,x,beta=0.0,y=,offx=0,incx=1,offy=0,incy=1,lower=0,overwrite_y=0)
  y = chemv(alpha,a,x,beta=(0.0, 0.0),y=,offx=0,incx=1,offy=0,incy=1,lower=0,overwrite_y=0)
  y = zhemv(alpha,a,x,beta=(0.0, 0.0),y=,offx=0,incx=1,offy=0,incy=1,lower=0,overwrite_y=0)
  a = sger(alpha,x,y,incx=1,incy=1,a=0.0,overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = dger(alpha,x,y,incx=1,incy=1,a=0.0,overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = cgeru(alpha,x,y,incx=1,incy=1,a=(0.0,0.0),overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = zgeru(alpha,x,y,incx=1,incy=1,a=(0.0,0.0),overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = cgerc(alpha,x,y,incx=1,incy=1,a=(0.0,0.0),overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = zgerc(alpha,x,y,incx=1,incy=1,a=(0.0,0.0),overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = ssyr(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = dsyr(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = csyr(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = zsyr(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = cher(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = zher(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = ssyr2(alpha,x,y,lower=0,incx=1,offx=0,incy=1,offy=0,n=((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1),a=,overwrite_a=0)
  a = dsyr2(alpha,x,y,lower=0,incx=1,offx=0,incy=1,offy=0,n=((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1),a=,overwrite_a=0)
  a = cher2(alpha,x,y,lower=0,incx=1,offx=0,incy=1,offy=0,n=((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1),a=,overwrite_a=0)
  a = zher2(alpha,x,y,lower=0,incx=1,offx=0,incy=1,offy=0,n=((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1),a=,overwrite_a=0)
  apu = sspr(n,alpha,x,ap,incx=1,offx=0,lower=0,overwrite_ap=0)
  apu = dspr(n,alpha,x,ap,incx=1,offx=0,lower=0,overwrite_ap=0)
  apu = cspr(n,alpha,x,ap,incx=1,offx=0,lower=0,overwrite_ap=0)
  apu = zspr(n,alpha,x,ap,incx=1,offx=0,lower=0,overwrite_ap=0)
  apu = chpr(n,alpha,x,ap,incx=1,offx=0,lower=0,overwrite_ap=0)
  apu = zhpr(n,alpha,x,ap,incx=1,offx=0,lower=0,overwrite_ap=0)
  apu = sspr2(n,alpha,x,y,ap,incx=1,offx=0,incy=1,offy=0,lower=0,overwrite_ap=0)
  apu = dspr2(n,alpha,x,y,ap,incx=1,offx=0,incy=1,offy=0,lower=0,overwrite_ap=0)
  apu = chpr2(n,alpha,x,y,ap,incx=1,offx=0,incy=1,offy=0,lower=0,overwrite_ap=0)
  apu = zhpr2(n,alpha,x,y,ap,incx=1,offx=0,incy=1,offy=0,lower=0,overwrite_ap=0)
  xout = stbsv(k,a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = dtbsv(k,a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ctbsv(k,a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ztbsv(k,a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = stpsv(n,ap,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = dtpsv(n,ap,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ctpsv(n,ap,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ztpsv(n,ap,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  x = strmv(a,x,offx=0,incx=1,lower=0,trans=0,diag=0,overwrite_x=0)
  x = dtrmv(a,x,offx=0,incx=1,lower=0,trans=0,diag=0,overwrite_x=0)
  x = ctrmv(a,x,offx=0,incx=1,lower=0,trans=0,diag=0,overwrite_x=0)
  x = ztrmv(a,x,offx=0,incx=1,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = strsv(a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = dtrsv(a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ctrsv(a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ztrsv(a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = stbmv(k,a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = dtbmv(k,a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ctbmv(k,a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ztbmv(k,a,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = stpmv(n,ap,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = dtpmv(n,ap,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ctpmv(n,ap,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  xout = ztpmv(n,ap,x,incx=1,offx=0,lower=0,trans=0,diag=0,overwrite_x=0)
  c = sgemm(alpha,a,b,beta=0.0,c=,trans_a=0,trans_b=0,overwrite_c=0)
  c = dgemm(alpha,a,b,beta=0.0,c=,trans_a=0,trans_b=0,overwrite_c=0)
  c = cgemm(alpha,a,b,beta=(0.0, 0.0),c=,trans_a=0,trans_b=0,overwrite_c=0)
  c = zgemm(alpha,a,b,beta=(0.0, 0.0),c=,trans_a=0,trans_b=0,overwrite_c=0)
  c = ssymm(alpha,a,b,beta=0.0,c=,side=0,lower=0,overwrite_c=0)
  c = dsymm(alpha,a,b,beta=0.0,c=,side=0,lower=0,overwrite_c=0)
  c = csymm(alpha,a,b,beta=(0.0, 0.0),c=,side=0,lower=0,overwrite_c=0)
  c = zsymm(alpha,a,b,beta=(0.0, 0.0),c=,side=0,lower=0,overwrite_c=0)
  c = chemm(alpha,a,b,beta=(0.0, 0.0),c=,side=0,lower=0,overwrite_c=0)
  c = zhemm(alpha,a,b,beta=(0.0, 0.0),c=,side=0,lower=0,overwrite_c=0)
  c = ssyrk(alpha,a,beta=0.0,c=,trans=0,lower=0,overwrite_c=0)
  c = dsyrk(alpha,a,beta=0.0,c=,trans=0,lower=0,overwrite_c=0)
  c = csyrk(alpha,a,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = zsyrk(alpha,a,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = cherk(alpha,a,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = zherk(alpha,a,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = ssyr2k(alpha,a,b,beta=0.0,c=,trans=0,lower=0,overwrite_c=0)
  c = dsyr2k(alpha,a,b,beta=0.0,c=,trans=0,lower=0,overwrite_c=0)
  c = csyr2k(alpha,a,b,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = zsyr2k(alpha,a,b,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = cher2k(alpha,a,b,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = zher2k(alpha,a,b,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  b = strmm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  b = dtrmm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  b = ctrmm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  b = ztrmm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  x = strsm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  x = dtrsm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  x = ctrsm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  x = ztrsm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
.ð?<fortran %U><fortran object>array(%ld,%ld %ld ], arr.dims=[ ]
no function to callError loading %s
%ld, -- input not %d-alignedover-writing fortran routine__dict__%s - no docs available'%c'-fortran%d-th dimension must be fixed to %ld but got %ld
%d-th dimension must be %ld but got 0 (not defined).
unexpected array size: new_size=%ld, got array with arr_size=%ld (maybe too many free indices)
unexpected array size: new_size=%ld, got array with arr_size=%ld
too many axes: %d (effrank=%d), expected rank=%d
%d-th dimension must be fixed to %ld but got %ld (real index=%d)
unexpected array size: size=%ld, arr_size=%ld, rank=%d, effrank=%d, arr.nd=%d, dims=[this fortran object is not callable -- expected at least elsize=%d but got %ld -- expected elsize=%d but got %ld -- input '%c' not compatible to '%c'failed to initialize intent(inout|inplace|cache) array, input not an arraydelete non-existing fortran attributefortranobject.c: fortran_doc: len(p)=%zd>%zd=size: too long docstring required, increase size
;ÂÀùúÿ8 ýúÿ` þúÿx0ûÿûÿ0Àûÿh€ûÿ˜ðûÿèP
ûÿ`°ûÿØûÿP	pûÿÈ	@#ûÿ`
)ûÿø
à.ûÿ°4ûÿ(:ûÿ¨P?ûÿ(
 Dûÿ¨
ðIûÿ(`Oûÿ¨ÀTûÿ( Zûÿ¨€_ûÿ(àdûÿ @jûÿ oûÿuûÿÐzûÿ  €ûÿ8p†ûÿÐ@Œûÿh€ûÿ¸ûÿ–ûÿX@™ûÿ¨œûÿøàŸûÿH@£ûÿ˜ ¦ûÿèð©ûÿ8@­ûÿˆ °ûÿØ´ûÿ(@¹ûÿ¾ûÿø°Ãûÿ`ÀÈûÿÈÐÍûÿ0àÒûÿ˜ð×ûÿðÜûÿhðáûÿÐðæûÿ8ðìûÿ°ðòûÿ(0øûÿÀýûÿPüÿàpüÿhPüÿð@üÿp 0üÿð üÿx!ð#üÿ"`*üÿ"P1üÿ#6üÿ€#P=üÿ$PBüÿ $PGüÿ0%°NüÿÀ%VüÿP&p^üÿà& füÿx'`püÿ(( xüÿÀ(à}üÿ0)Püÿˆ) †üÿ *‹üÿ¨*‘üÿ0+P•üÿÀ+ ™üÿP,ŸüÿØ,`¤üÿ`-@ªüÿð-ð°üÿx.€µüÿè. ¼üÿx/@Áüÿ0àÅüÿ˜0°Ìüÿ(1Ôüÿ¸1pÛüÿH2 ãüÿà2pìüÿ3 óüÿ(40ùüÿ˜4€üüÿð4ÐýÿX5 ýÿÀ5pýÿ(6Àýÿ6@ýÿà6pýÿx7Àýÿ8°"ýÿ˜8P(ýÿ 9à,ýÿ 9p2ýÿ(:`8ýÿ¸:@?ýÿ@;ðCýÿ¨; Hýÿ<ÐOýÿ <ÀTýÿ0=°[ýÿÀ=PcýÿP> kýÿè> týÿ˜? |ýÿ0@ýÿ @…ýÿA€ˆýÿXA°ŽýÿàAà”ýÿhB`—ýÿ°Bð˜ýÿàB°ýÿxC0£ýÿD€§ýÿDð¬ýÿEà²ýÿ¨E ¹ýÿ0F0¾ýÿ FÀÂýÿGàÉýÿ G Îýÿ0HpÕýÿÀHàÜýÿPI äýÿèIîýÿ˜J@õýÿ0KÀúýÿ K þýÿL`þÿXLpþÿàL€
þÿhM€þÿÈM°þÿN`þÿ8N þÿÀNþÿHO€!þÿÐOà&þÿXPP,þÿàP°1þÿhQ 9þÿ°QP9þÿÈQà9þÿøQà:þÿ`R;þÿ€R€@þÿ`Sð@þÿ€S@Aþÿ˜SAþÿÈSpCþÿ@T°Nþÿ¸T RþÿU@Rþÿ U€Rþÿ@UXþÿ¸UÀXþÿØUàXþÿðUðXþÿVYþÿ VYþÿ8V YþÿPV0YþÿhV@Yþÿ€VpYþÿ¨V YþÿÐVðYþÿøV0Zþÿ W€ZþÿHWÀZþÿpWàZþÿW[þÿ°W [þÿÐW@[þÿðW`[þÿX€[þÿ0X [þÿPXzRx$€óúÿ`FJw€?;*3$"D¸öúÿx„\ øúÿŒBŽBE ŒA(†D0ƒJ`§
0D(A BBBFß
0A(A BBBIa
0A(A BBBGy
0A(A BBBG,ä(ûúÿUTƒAÃKƒ³
ÃExÃ4Xüúÿ,BŒA†D ƒX€l
 DABF,LPýúÿ¿A†AƒT€“
DABL|àþúÿlBBŒD †A(ƒG0|
(A ABBFP
(F ABBEtÌûÿZBŽBI ŒA(†D0ƒ[¸‹ÀIÈIÐIØIàIèIðX°«
0D(A BBBDó¸FÀK¸A°tDèûÿWBŽBI ŒA(†D0ƒ[¸‹ÀIÈIÐIØIàIèIðX°«
0D(A BBBDð¸FÀK¸A°t¼Ð	ûÿWBŽBI ŒA(†D0ƒ[¸‹ÀIÈIÐIØIàIèIðX°«
0D(A BBBDð¸FÀK¸A°t4¸ûÿWBŽBI ŒA(†D0ƒ[¸‹ÀIÈIÐIØIàIèIðX°«
0D(A BBBDð¸FÀK¸A°”¬ ûÿÅBŽBI ŒA(†D0ƒ[ȦÐIØIàIèIðIøI€XÀx
0A(A BBBGŸ
0C(A BBBGßÈGÐAØIàFÀ”DØûÿÂBŽBI ŒA(†D0ƒ[ȦÐIØIàIèIðIøI€XÀx
0A(A BBBGŸ
0C(A BBBGÜÈFÐBØIàFÀ”ÜûÿÂBŽBI ŒA(†D0ƒ[ȦÐIØIàIèIðIøI€XÀx
0A(A BBBGŸ
0C(A BBBGÜÈFÐBØIàFÀ”tH#ûÿÂBŽBI ŒA(†D0ƒ[ȦÐIØIàIèIðIøI€XÀx
0A(A BBBGŸ
0C(A BBBGÜÈFÐBØIàFÀ|€(ûÿDBBŒH †A(ƒW°—¸FÀFÈFÐFØFàU°x
(A ABBDŸ
(C ABBI.¸AÀS¸A°|ŒP-ûÿABBŒH †A(ƒW°—¸FÀFÈFÐFØFàU°x
(A ABBDŸ
(C ABBI*¸BÀS¸A°| 2ûÿABBŒH †A(ƒW°—¸FÀFÈFÐFØFàU°x
(A ABBDŸ
(C ABBI*¸BÀS¸A°|Œð6ûÿABBŒH †A(ƒW°—¸FÀFÈFÐFØFàU°x
(A ABBDŸ
(C ABBI*¸BÀS¸A°|À;ûÿbBBŽI B(ŒD0†A8ƒ[ÀˆÈFÐFØFàFèFðUÀD
8A0A(B BBBH.ÈBÐKÈAÀ|Œ°@ûÿ_BBŽI B(ŒD0†A8ƒ[ÀˆÈFÐFØFàFèFðUÀD
8A0A(B BBBH(ÈBÐNÈAÀ|	Eûÿ_BBŽI B(ŒD0†A8ƒ[ÀˆÈFÐFØFàFèFðUÀD
8A0A(B BBBH(ÈBÐNÈAÀ|Œ	pJûÿ_BBŽI B(ŒD0†A8ƒ[ÀˆÈFÐFØFàFèFðUÀD
8A0A(B BBBH(ÈBÐNÈAÀt
POûÿZBŽBI ŒA(†D0ƒ[¸‹ÀIÈIÐIØIàIèIðX°«
0D(A BBBDó¸FÀK¸A°t„
8TûÿWBŽBI ŒA(†D0ƒ[¸‹ÀIÈIÐIØIàIèIðX°«
0D(A BBBDð¸FÀK¸A°tü
 YûÿWBŽBI ŒA(†D0ƒ[¸‹ÀIÈIÐIØIàIèIðX°«
0D(A BBBDð¸FÀK¸A°tt^ûÿWBŽBI ŒA(†D0ƒ[¸‹ÀIÈIÐIØIàIèIðX°«
0D(A BBBDð¸FÀK¸A°”ìðbûÿÅBŽBI ŒA(†D0ƒ[ȦÐIØIàIèIðIøI€XÀx
0A(A BBBGŸ
0C(A BBBGßÈGÐAØIàFÀ”„(hûÿÂBŽBI ŒA(†D0ƒ[ȦÐIØIàIèIðIøI€XÀx
0A(A BBBGŸ
0C(A BBBGÜÈFÐBØIàFÀ”
`mûÿÂBŽBI ŒA(†D0ƒ[ȦÐIØIàIèIðIøI€XÀx
0A(A BBBGŸ
0C(A BBBGÜÈFÐBØIàFÀ”´
˜rûÿÂBŽBI ŒA(†D0ƒ[ȦÐIØIàIèIðIøI€XÀx
0A(A BBBGŸ
0C(A BBBGÜÈFÐBØIàFÀLLÐwûÿ5BBŒD †A(ƒ[ðRøF€RøEð|
(D ABBHLœÀzûÿ3BBŒD †A(ƒ[ðRøF€RøEð|
(D ABBHLì°}ûÿ3BBŒD †A(ƒ[ðRøF€RøEð|
(D ABBHL< €ûÿ3BBŒD †A(ƒ[ðRøF€RøEð|
(D ABBHLŒƒûÿPBBŒD †A(ƒ[€\ˆFRˆE€~
(D ABBDLܐ†ûÿNBBŒD †A(ƒ[€\ˆFRˆE€~
(D ABBDL,‰ûÿRBBŒD †A(ƒ[€[ˆFRˆE€~
(D ABBEL| ŒûÿRBBŒD †A(ƒ[€[ˆFRˆE€~
(D ABBELÌ°ûÿPBBŒD †A(ƒ[€\ˆFRˆE€~
(D ABBDL°’ûÿNBBŒD †A(ƒ[€\ˆFRˆE€~
(D ABBDLl°•ûÿRBBŒD †A(ƒ[€[ˆFRˆE€~
(D ABBEL¼ûÿRBBŒD †A(ƒ[€[ˆFRˆE€~
(D ABBEdЛûÿ4BBŽI B(ŒD0†A8ƒ[¸|ÀFÈFÐFØFàX°Š
8D0A(B BBBFdt¨ ûÿEBBŽI B(ŒD0†A8ƒ[¸{ÀFÈFÐFØFàX°›
8D0A(B BBBFdܐ¥ûÿBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°‰
8D0A(B BBBHdDHªûÿBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°
8D0A(B BBBHd¬ð®ûÿBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°
8D0A(B BBBHd˜³ûÿBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°
8D0A(B BBBHd|@¸ûÿBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°
8D0A(B BBBBdäè¼ûÿþBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°o
8D0A(B BBBBdL€ÁûÿþBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°o
8D0A(B BBBBd´ÆûÿþBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°o
8D0A(B BBBBt°ÊûÿöBBŽI B(ŒD0†A8ƒ[ГØFàIèIðFøF€FˆI[Щ
8A0A(B BBBEt”8ÐûÿöBBŽI B(ŒD0†A8ƒ[ГØFàIèIðFøF€FˆI[Щ
8A0A(B BBBE”ÀÕûÿ3BŽBI ŒA(†D0ƒ[À£ÈFÐFØFàFèFðUÀx
0A(A BBBE
0C(A BBBG
ÈFÐBØFàBèBðPÀŒ¤hÚûÿZBBŒH †A(ƒWÀ©ÈFÐFØFàFèFðUÀv
(A ABBD
(C ABBADÈFÐBØFàBèIðPÀŒ48ßûÿôBBŒH †A(ƒWÀ©ÈFÐFØFàFèFðUÀv
(A ABBD
(C ABBA¦ÈFÐBØFàBèIðPÀ„ĨãûÿàBBŽI B(ŒD0†A8ƒ[ð©øF€FˆFF˜F Uðx
8A0A(B BBBCøE€MˆFB˜F Nð„LéûÿàBBŽI B(ŒD0†A8ƒ[ð©øF€FˆFF˜F Uðx
8A0A(B BBBCøE€MˆFB˜F Nð|ÔXîûÿâBBŒH †A(ƒWØ“àFèFðFøF€UÐx
(A ABBF_
(C ABBAhØDàMèFðNÐ|TÈòûÿâBBŒH †A(ƒWØ“àFèFðFøF€UÐx
(A ABBF_
(C ABBAhØDàMèFðNЄÔ8÷ûÿÒBBŽI B(ŒD0†A8ƒ[ð©øF€FˆFF˜F Uðx
8A0A(B BBBCøE€MˆFB˜F Nð„\üûÿÒBBŽI B(ŒD0†A8ƒ[ð©øF€FˆFF˜F Uðx
8A0A(B BBBCøE€MˆFB˜F NðŒäèüÿdBBŽI B(ŒD0†A8ƒ[€±ˆII˜I I¨I°X€D
8A0A(B BBBE5ˆAE˜I F¨B°F¸BÀS€„tÈüÿëBBŽI B(ŒD0†A8ƒ[ø©€IˆII˜I I¨I°I¸IÀ[ð¶
8D0A(B BBBBbøF€SøAðdü0üÿ¦BŽBI ŒA(†D0ƒ[ r¨F°F¸FÀFÈFÐU §
0D(A BBBDŒdxüÿKBBŽI B(ŒD0†A8ƒ[ø®€IˆII˜I I¨I°I¸IÀ[ðx
8A0A(B BBBFSøA€CˆGTðŒô8üÿþBŽBI ŒA(†D0ƒ[°x¸FÀFÈFÐFØFàU°x
0A(A BBBH
0C(A BBBGW¸AÀP¸A°Œ„¨üÿþBŽBI ŒA(†D0ƒ[°x¸FÀFÈFÐFØFàU°x
0A(A BBBH
0C(A BBBGW¸AÀP¸A°Œ"üÿYBBŽI B(ŒD0†A8ƒ[ˆ±I˜I I¨I°I¸IÀIÈIÐ[€{
8A0A(B BBBHòˆAP˜F I€Œ¤è(üÿÚBBŽI B(ŒD0†A8ƒ[€®ˆII˜I I¨I°I¸IÀIÈIÐ[€{
8A0A(B BBBB©ˆGA˜P P€Œ4 80üÿÚBBŽI B(ŒD0†A8ƒ[€®ˆII˜I I¨I°I¸IÀIÈIÐ[€{
8A0A(B BBBB©ˆGA˜P P€”Ä ˆ7üÿ#BBŽI B(ŒD0†A8ƒ[É˜I I¨I°I¸IÀIÈIÐIØIà[{
8A0A(B BBBGϘF B¨I°F¸AÀS¬\! ?üÿ»	BBŽI B(ŒD0†A8ƒ[ÈýÐIØIàIèIðIøI€IˆII˜I I¨I°[À{
8A0A(B BBBHÈLÐAØIàFèAðFøD€XÀ”"0Hüÿ¼BBŽI B(ŒD0†A8ƒ[ˆ¹I˜I I¨I°I¸IÀIÈIÐ[€G
8A0A(B BBBD]ˆIB˜I F¨B°I€l¤"XOüÿ¿BBŽI B(ŒD0†A8ƒ[ÀxÈFÐFØFàFèFðXÀÊ
8D0A(B BBBDT#¨TüÿeBŽBE ŒA(†D0ƒXˆXF˜F U€N
0D(A BBBH”l#ÀWüÿÍBŽBI ŒA(†D0ƒ[À£ÈFÐFØFàFèFðUÀx
0A(A BBBE
0C(A BBBGlÈFÐBØFàBèBðPÀ„$ø[üÿbBBŽI B(ŒD0†A8ƒ[€©ˆFF˜F F¨F°U€x
8A0A(B BBBCˆDU˜F B¨F°F€„Œ$à`üÿbBBŽI B(ŒD0†A8ƒ[€©ˆFF˜F F¨F°U€x
8A0A(B BBBCˆDU˜F B¨F°F€Œ%ÈeüÿPBŽBI ŒA(†D0ƒ[ȉÐFØFàFèFðUÀx
0A(A BBBEÏ
0C(A BBBAiÈDÐPØFàFÀŒ¤%ˆiüÿPBŽBI ŒA(†D0ƒ[ȉÐFØFàFèFðUÀx
0A(A BBBEÏ
0C(A BBBAiÈDÐPØFàFÀ„4&HmüÿTBBŽI B(ŒD0†A8ƒ[€©ˆFF˜F F¨F°U€x
8A0A(B BBBCˆDR˜F B¨F°F€„¼& rüÿTBBŽI B(ŒD0†A8ƒ[€©ˆFF˜F F¨F°U€x
8A0A(B BBBCˆDR˜F B¨F°F€ŒD'øvüÿÖBBŽI B(ŒD0†A8ƒ[±˜I I¨I°I¸IÀXD
8A0A(B BBBE£˜D D¨N°F¸BÀFÈBÐK„Ô'H|üÿ¡BBŽI B(ŒD0†A8ƒ[è¦ðIøI€IˆII˜I I¨I°[à¹
8D0A(B BBBBèPðSèAàl\(p‚üÿ†BBŽI B(ŒD0†A8ƒ[°s¸FÀFÈFÐIØFàU°©
8D0A(B BBBBŒÌ(†üÿ BBŽI B(ŒD0†A8ƒ[ˆ±I˜I I¨I°I¸IÀIÈIÐ[€x
8A0A(B BBBKüˆAD˜F N€Œ\) üÿŸBŽBI ŒA(†D0ƒ[°w¸FÀFÈFÐFØFàU°v
0A(A BBBK·
0C(A BBBGZ¸AÀP¸A°Œì)0‘üÿŸBŽBI ŒA(†D0ƒ[°w¸FÀFÈFÐFØFàU°v
0A(A BBBK·
0C(A BBBGZ¸AÀP¸A°Œ|*@•üÿÆBBŽI B(ŒD0†A8ƒ[ˆ±I˜I I¨I°I¸IÀIÈIÐ[€{
8A0A(B BBBHaˆAI˜F N€Œ+€›üÿTBBŽI B(ŒD0†A8ƒ[€®ˆII˜I I¨I°I¸IÀIÈIÐ[€{
8A0A(B BBBB(ˆFA˜L P€Œœ+P¢üÿTBBŽI B(ŒD0†A8ƒ[€®ˆII˜I I¨I°I¸IÀIÈIÐ[€{
8A0A(B BBBB(ˆFA˜L P€”,, ©üÿ©BBŽI B(ŒD0†A8ƒ[ É¨I°I¸IÀIÈIÐIØIàIèIð[ {
8A0A(B BBBGS¨F°A¸LÀFÈAÐS ¬Ä,8°üÿC	BBŽI B(ŒD0†A8ƒ[èðIøI€IˆII˜I I¨I°I¸IÀIÈIÐ[à{
8A0A(B BBBBŽèIðAøL€FˆAF˜D Uà”t-ظüÿ*BBŽI B(ŒD0†A8ƒ[ˆ¹I˜I I¨I°I¸IÀIÈIÐ[€G
8A0A(B BBBDˆJA˜I F¨A°N€l.p¿üÿ‰BBŽI B(ŒD0†A8ƒ[ÀwÈFÐFØFàFèFðXÀ{
8D0A(B BBBDT|.ÄüÿHBŽBE ŒA(†D0ƒX˜X F¨F°U|
0D(A BBBJdÔ.ˆÇüÿNBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°³
8D0A(B BBBFd</pÌüÿEBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°£
8D0A(B BBBFd¤/XÑüÿNBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°³
8D0A(B BBBFd0@ÖüÿEBBŽI B(ŒD0†A8ƒ[¸sÀFÈFÐFØFàX°£
8D0A(B BBBFLt0(ÛüÿtBBŒD †A(ƒG0~
(A ABBDR
(F ABBK”Ä0XÜüÿ&BŽBI ŒA(†D0ƒ[À«ÈFÐFØFàFèFðUÀv
0A(A BBBG
0C(A BBBGÿÈFÐBØFàBèBðPÀŒ\1ðàüÿPBBŒH †A(ƒWÀ²ÈFÐFØFàFèFðUÀx
(A ABBI
(C ABBA+ÈFÐBØFàBèFðPÀŒì1°åüÿêBBŒH †A(ƒWÀ²ÈFÐFØFàFèFðUÀx
(A ABBI
(C ABBAÈFÐBØFàBèFðPÀ„|2êüÿ’BBŽI B(ŒD0†A8ƒ[à³èFðFøF€FˆFUàx
8A0A(B BBBIEèEðJøF€BˆFKà|3(ïüÿ„BBŒH †A(ƒW¸šÀFÈFÐFØFàU°x
(A ABBG
(C ABBA`¸DÀJÈFÐK°„„38óüÿŒBBŽI B(ŒD0†A8ƒ[à³èFðFøF€FˆFUàx
8A0A(B BBBI?èEðJøF€BˆFKàŒ4@øüÿðBBŽI B(ŒD0†A8ƒ[à»èFðFøF€FˆFUàD
8A0A(B BBBEÏèAðEøF€FˆBF˜B Pà„œ4 ýüÿÖBBŽI B(ŒD0†A8ƒ[ø´€IˆII˜I I¨I°I¸IÀ[ð»
8D0A(B BBBB=øF€SøAðd$5øýÿ¦BŽBI ŒA(†D0ƒ[ {¨F°F¸FÀIÈFÐU «
0D(A BBBDdŒ5@ýÿ¦BŽBI ŒA(†D0ƒ[ {¨F°F¸FÀIÈFÐU «
0D(A BBBDŒô5ˆýÿ(BBŽI B(ŒD0†A8ƒ[ø¹€IˆII˜I I¨I°I¸IÀ[ðx
8A0A(B BBBC(øA€CˆGTðŒ„6(ýÿæBŽBI ŒA(†D0ƒ[°€¸FÀFÈFÐFØFàU°x
0A(A BBBHÿ
0C(A BBBGW¸AÀP¸A°Œ7ˆýÿéBBŽI B(ŒD0†A8ƒ[è»ðIøI€IˆII˜I I¨I°[ày
8A0A(B BBBHèAðMøF€IàŒ¤7èýÿ–BBŽI B(ŒD0†A8ƒ[ð¾øI€IˆII˜I I¨I°I¸IÀ[ð{
8A0A(B BBBBXøG€AˆMPð”48ø$ýÿÏBBŽI B(ŒD0†A8ƒ[€ÙˆII˜I I¨I°I¸IÀIÈIÐ[€{
8A0A(B BBBGnˆFB˜F F¨A°S€¬Ì80,ýÿw	BBŽI B(ŒD0†A8ƒ[¸
ÀIÈIÐIØIàIèIðIøI€IˆII˜I [°{
8A0A(B BBBHµ¸LÀAÈFÐFØAàFèDðU°”|95ýÿ€BBŽI B(ŒD0†A8ƒ[ˆÏI˜I I¨I°I¸IÀIÈIÐ[€G
8A0A(B BBBFˆIB˜F F¨B°I€l:è;ýÿŸBBŽI B(ŒD0†A8ƒ[À€ÈFÐFØFàFèFðXÀª
8D0A(B BBBD\„:AýÿIBŽBE ŒA(†D0ƒX€gˆFF˜F U€Í
0D(A BBBDTä:DýÿgBŽBE ŒA(†D0ƒXˆ`F˜F U€I
0D(A BBBE„<; Gýÿ0BBŽI B(ŒD0†A8ƒQè¶ðFøI€IˆII˜I I¨I°[àÅ
8A0A(B BBBFÃèFðVèAà„Ä;ÈLýÿ0BBŽI B(ŒD0†A8ƒQè¶ðFøI€IˆII˜I I¨I°[àÅ
8A0A(B BBBFÃèFðVèAàDL<pRýÿuBŒA†D ƒUpZxF€RxEpB
 DABD,”<¨Týÿ†A†AƒN`¢
DAI”Ä<VýÿÀBŽBI ŒA(†D0ƒ[À«ÈFÐFØFàFèFðUÀv
0A(A BBBG
0C(A BBBGaÈFÐBØFàBèBðPÀ„\=0ZýÿrBBŽI B(ŒD0†A8ƒ[ð»øI€IˆII˜F Uðx
8A0A(B BBBEøD€RˆFB˜F FðŒä=(_ýÿPBŽBI ŒA(†D0ƒ[È›ÐFØFàFèFðUÀx
0A(A BBBKÇ
0C(A BBBA\ÈDÐMØFàFÀ„t>èbýÿdBBŽI B(ŒD0†A8ƒ[ð»øI€IˆII˜F Uðx
8A0A(B BBBEøD€OˆFB˜F FðŒü>ÐgýÿáBBŽI B(ŒD0†A8ƒ[€ÉˆII˜I I¨I°[€G
8A0A(B BBBGŽˆDD˜N F¨B°F¸BÀK€„Œ?0mýÿºBBŽI B(ŒD0†A8ƒ[øµ€IˆII˜I I¨I°I¸IÀ[ðº
8D0A(B BBBBø\€PøDðl@hsýÿ†BBŽI B(ŒD0†A8ƒ[°{¸FÀFÈFÐIØFàU°©
8D0A(B BBBJl„@ˆwýÿ†BBŽI B(ŒD0†A8ƒ[°{¸FÀFÈFÐIØFàU°©
8D0A(B BBBJŒô@¨{ýÿBBŽI B(ŒD0†A8ƒ[øº€IˆII˜I I¨I°I¸IÀ[ðx
8A0A(B BBBBÞøA€DˆKWðŒ„A8‚ýÿ´BŽBI ŒA(†D0ƒ[°¸FÀFÈFÐFØFàU°x
0A(A BBBG¿
0C(A BBBG]¸AÀP¸A°ŒBh†ýÿÏBBŽI B(ŒD0†A8ƒ[ˆÉI˜I I¨I°I¸IÀIÈIÐ[€{
8A0A(B BBBHUˆAF˜F N€Œ¤B¨ŒýÿfBBŽI B(ŒD0†A8ƒ[€ÆˆII˜I I¨I°I¸IÀIÈIÐ[€{
8A0A(B BBBJˆJA˜I P€”4Cˆ“ýÿ¼BBŽI B(ŒD0†A8ƒ[á˜I I¨I°I¸IÀIÈIÐIØIà[{
8A0A(B BBBGN˜F A¨L°F¸AÀS¬ÌC°šýÿV	BBŽI B(ŒD0†A8ƒ[ØàIèIðIøI€IˆII˜I I¨I°I¸IÀ[Ð{
8A0A(B BBBJØLàAèIðFøA€FˆDUД|D`£ýÿ@BBŽI B(ŒD0†A8ƒ[ˆÑI˜I I¨I°I¸IÀIÈIÐ[€G
8A0A(B BBBDÀˆIB˜I F¨A°N€lEªýÿBBŽI B(ŒD0†A8ƒ[ÀÈFÐFØFàFèFðXÀ
8D0A(B BBBD\„E¯ýÿQBŽBE ŒA(†D0ƒXi˜F F¨F°U»
0D(A BBBDTäE²ýÿ3BŽBE ŒA(†D0ƒXˆaF˜F U€z
0D(A BBBC„<Fµýÿ	BBŽI B(ŒD0†A8ƒQè¶ðFøI€IˆII˜F I¨I°[à´
8A0A(B BBBJ«èDðQèAà„ÄFˆºýÿBBŽI B(ŒD0†A8ƒQè¶ðFøI€IˆII˜F I¨I°[à´
8A0A(B BBBJ¦èDðQèAà\LGÀýÿñBBŽE B(ŒD0†A8ƒR Z¨F°R¨E u
8D0A(B BBBE4¬G°Áýÿ(BŒA†D ƒU`‹
 DABB4äG¨Âýÿ¯BŒA†A ƒ›
ABFACB„H Ãýÿ<BBŽI B(ŒD0†A8ƒ[Ø¡àFèFðIøI€IˆI[ÐÞØMàDèFðPÐg
8D0A(B BBBD„¤HØÇýÿcBBŽI B(ŒD0†A8ƒ[ø®€FˆFI˜I I¨I°[ðÆøP€DˆFQðn
8D0A(B BBBD„,IÀÌýÿlBBŽI B(ŒD0†A8ƒ[èœðFøF€IˆII˜I [à
èMðDøF€Pàp
8D0A(B BBBD„´I¨Ñýÿ[BBŽI B(ŒD0†A8ƒ[øŸ€FˆFI˜I I¨I°[ðÀøP€DˆFQðs
8D0A(B BBBD„<J€ÖýÿlBBŽI B(ŒD0†A8ƒ[èœðFøF€IˆII˜I [à
èMðDøF€Pàp
8D0A(B BBBD„ÄJhÛýÿ[BBŽI B(ŒD0†A8ƒ[øŸ€FˆFI˜I I¨I°[ðÀøP€DˆFQðs
8D0A(B BBBDDLK@àýÿeBŒH†A ƒ¤
ABF±
ABD
ABA”Khçýÿ(,¬K€çýÿ‰AƒK O
AD\HdÜKàçýÿöBBŽI B(ŒC0†A8ƒJ@t
8H0A(B BBBF\
8D0A(B BBBADLxèýÿ!Aƒ[ÜdLˆèýÿjBBŽB B(ŒD0†A8ƒI@KHHP\HA@
8F0A(B BBBFv
8F0A(B BBBC
8F0A(B BBBE~
8A0A(B BBBAD
8C0A(B BBBAR
8F0A(B BBBAoHHPWHA@DMíýÿiDa
K^
AdMhíýÿMTx,|M íýÿDA†AƒG t
AAAt¬MÀíýÿÛBŽBB ŒA(†A0ƒG@ŒHPPEXB`M@nHXPEXA`R@Y
0A(A BBBBM
0A(A BBBAt$N(ïýÿ1BBŽE B(ŒD0†A8ƒL°
8D0A(B BBBBH¸^ÀAÈBÐM°|¸bÀAÈBÐM°LœNðùýÿgBBŽE B(ŒA0†A8ƒG Û
8D0A(B BBBDìNýýÿOýýÿ4D S
ISt$O8ýýÿBBŽB B(ŒA0†A8ƒMðb
8D0A(B BBBJäøW€EˆBJð©àeð‰àeðœOÐþÿ,D P
DS¼OàþÿÔOèþÿìOàþÿPØþÿPÐþÿ4PÈþÿLPÀþÿ$dP¸þÿ/AƒSI KEA$ŒPÀþÿ/AƒSI KEA$´PÈþÿHAƒS(I0iA$ÜPðþÿ4AƒSI KJA$QþÿHAƒS(I0iA$,Q0þÿ4AƒSI KJATQHþÿAƒ[tQHþÿAƒ[”QHþÿAƒ[´QHþÿAƒ[ÔQHþÿAƒ[ôQHþÿAƒ[RHþÿAƒ[4RHþÿAƒ[pÛ0Û˜§·ÅÓäîü
	¨Ö
À8È<&Ð<&õþÿoð 
.	@&ø°Ñ¸!ø¯	þÿÿoˆ!ÿÿÿoðÿÿoÎùÿÿo±à<&ÖÖæÖöÖ××&×6×F×V×f×v׆זצ׶×Æ×Ö×æ×ö×ØØ&Ø6ØFØVØfØv؆ؖئضØÆØÖØæØöØÙÙ&Ù6ÙFÙVÙfÙvنٖ٦ٶÙÆÙÖÙæÙöÙÚÚÀA&x = ztrsm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``ztrsm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,*)
b : input rank-2 array('D') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
x : rank-2 array('D') with bounds (ldb,n) and b storagex = ctrsm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``ctrsm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,*)
b : input rank-2 array('F') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
x : rank-2 array('F') with bounds (ldb,n) and b storagex = dtrsm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``dtrsm``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,*)
b : input rank-2 array('d') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
x : rank-2 array('d') with bounds (ldb,n) and b storagex = strsm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``strsm``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,*)
b : input rank-2 array('f') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
x : rank-2 array('f') with bounds (ldb,n) and b storageb = ztrmm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``ztrmm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,k)
b : input rank-2 array('D') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
b : rank-2 array('D') with bounds (ldb,n)b = ctrmm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``ctrmm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,k)
b : input rank-2 array('F') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
b : rank-2 array('F') with bounds (ldb,n)b = dtrmm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``dtrmm``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,k)
b : input rank-2 array('d') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
b : rank-2 array('d') with bounds (ldb,n)b = strmm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``strmm``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,k)
b : input rank-2 array('f') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
b : rank-2 array('f') with bounds (ldb,n)c = zher2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``zher2k``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (n,n)c = cher2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``cher2k``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (n,n)c = zsyr2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``zsyr2k``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (n,n)c = csyr2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``csyr2k``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (n,n)c = dsyr2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``dsyr2k``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,ka)
b : input rank-2 array('d') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('d') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('d') with bounds (n,n)c = ssyr2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``ssyr2k``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,ka)
b : input rank-2 array('f') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('f') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('f') with bounds (n,n)c = zherk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``zherk``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (n,n)c = cherk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``cherk``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (n,n)c = zsyrk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``zsyrk``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (n,n)c = csyrk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``csyrk``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (n,n)c = dsyrk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``dsyrk``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,ka)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('d') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('d') with bounds (n,n)c = ssyrk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``ssyrk``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,ka)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('f') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('f') with bounds (n,n)c = zhemm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``zhemm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (m,n)c = chemm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``chemm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (m,n)c = zsymm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``zsymm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (m,n)c = csymm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``csymm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (m,n)c = dsymm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``dsymm``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,ka)
b : input rank-2 array('d') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('d') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('d') with bounds (m,n)c = ssymm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``ssymm``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,ka)
b : input rank-2 array('f') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('f') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('f') with bounds (m,n)c = zgemm(alpha,a,b,[beta,c,trans_a,trans_b,overwrite_c])

Wrapper for ``zgemm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
trans_b : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (m,n)c = cgemm(alpha,a,b,[beta,c,trans_a,trans_b,overwrite_c])

Wrapper for ``cgemm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
trans_b : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (m,n)c = dgemm(alpha,a,b,[beta,c,trans_a,trans_b,overwrite_c])

Wrapper for ``dgemm``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,ka)
b : input rank-2 array('d') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('d') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
trans_b : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('d') with bounds (m,n)c = sgemm(alpha,a,b,[beta,c,trans_a,trans_b,overwrite_c])

Wrapper for ``sgemm``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,ka)
b : input rank-2 array('f') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('f') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
trans_b : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('f') with bounds (m,n)xout = ztpmv(n,ap,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ztpmv``.

Parameters
----------
n : input int
ap : input rank-1 array('D') with bounds (*)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('D') with bounds (*) and x storagexout = ctpmv(n,ap,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ctpmv``.

Parameters
----------
n : input int
ap : input rank-1 array('F') with bounds (*)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('F') with bounds (*) and x storagexout = dtpmv(n,ap,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``dtpmv``.

Parameters
----------
n : input int
ap : input rank-1 array('d') with bounds (*)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('d') with bounds (*) and x storagexout = stpmv(n,ap,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``stpmv``.

Parameters
----------
n : input int
ap : input rank-1 array('f') with bounds (*)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('f') with bounds (*) and x storagexout = ztbmv(k,a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ztbmv``.

Parameters
----------
k : input int
a : input rank-2 array('D') with bounds (lda,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('D') with bounds (*) and x storagexout = ctbmv(k,a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ctbmv``.

Parameters
----------
k : input int
a : input rank-2 array('F') with bounds (lda,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('F') with bounds (*) and x storagexout = dtbmv(k,a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``dtbmv``.

Parameters
----------
k : input int
a : input rank-2 array('d') with bounds (lda,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('d') with bounds (*) and x storagexout = stbmv(k,a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``stbmv``.

Parameters
----------
k : input int
a : input rank-2 array('f') with bounds (lda,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('f') with bounds (*) and x storagexout = ztrsv(a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ztrsv``.

Parameters
----------
a : input rank-2 array('D') with bounds (n,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('D') with bounds (*) and x storagexout = ctrsv(a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ctrsv``.

Parameters
----------
a : input rank-2 array('F') with bounds (n,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('F') with bounds (*) and x storagexout = dtrsv(a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``dtrsv``.

Parameters
----------
a : input rank-2 array('d') with bounds (n,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('d') with bounds (*) and x storagexout = strsv(a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``strsv``.

Parameters
----------
a : input rank-2 array('f') with bounds (n,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('f') with bounds (*) and x storagex = ztrmv(a,x,[offx,incx,lower,trans,diag,overwrite_x])

Wrapper for ``ztrmv``.

Parameters
----------
a : input rank-2 array('D') with bounds (n,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
x : rank-1 array('D') with bounds (*)x = ctrmv(a,x,[offx,incx,lower,trans,diag,overwrite_x])

Wrapper for ``ctrmv``.

Parameters
----------
a : input rank-2 array('F') with bounds (n,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
x : rank-1 array('F') with bounds (*)x = dtrmv(a,x,[offx,incx,lower,trans,diag,overwrite_x])

Wrapper for ``dtrmv``.

Parameters
----------
a : input rank-2 array('d') with bounds (n,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
x : rank-1 array('d') with bounds (*)x = strmv(a,x,[offx,incx,lower,trans,diag,overwrite_x])

Wrapper for ``strmv``.

Parameters
----------
a : input rank-2 array('f') with bounds (n,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
x : rank-1 array('f') with bounds (*)xout = ztpsv(n,ap,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ztpsv``.

Parameters
----------
n : input int
ap : input rank-1 array('D') with bounds (*)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('D') with bounds (*) and x storagexout = ctpsv(n,ap,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ctpsv``.

Parameters
----------
n : input int
ap : input rank-1 array('F') with bounds (*)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('F') with bounds (*) and x storagexout = dtpsv(n,ap,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``dtpsv``.

Parameters
----------
n : input int
ap : input rank-1 array('d') with bounds (*)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('d') with bounds (*) and x storagexout = stpsv(n,ap,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``stpsv``.

Parameters
----------
n : input int
ap : input rank-1 array('f') with bounds (*)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('f') with bounds (*) and x storagexout = ztbsv(k,a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ztbsv``.

Parameters
----------
k : input int
a : input rank-2 array('D') with bounds (lda,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('D') with bounds (*) and x storagexout = ctbsv(k,a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``ctbsv``.

Parameters
----------
k : input int
a : input rank-2 array('F') with bounds (lda,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('F') with bounds (*) and x storagexout = dtbsv(k,a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``dtbsv``.

Parameters
----------
k : input int
a : input rank-2 array('d') with bounds (lda,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('d') with bounds (*) and x storagexout = stbsv(k,a,x,[incx,offx,lower,trans,diag,overwrite_x])

Wrapper for ``stbsv``.

Parameters
----------
k : input int
a : input rank-2 array('f') with bounds (lda,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
xout : rank-1 array('f') with bounds (*) and x storageapu = zhpr2(n,alpha,x,y,ap,[incx,offx,incy,offy,lower,overwrite_ap])

Wrapper for ``zhpr2``.

Parameters
----------
n : input int
alpha : input complex
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)
ap : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('D') with bounds (*) and ap storageapu = chpr2(n,alpha,x,y,ap,[incx,offx,incy,offy,lower,overwrite_ap])

Wrapper for ``chpr2``.

Parameters
----------
n : input int
alpha : input complex
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)
ap : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('F') with bounds (*) and ap storageapu = dspr2(n,alpha,x,y,ap,[incx,offx,incy,offy,lower,overwrite_ap])

Wrapper for ``dspr2``.

Parameters
----------
n : input int
alpha : input float
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)
ap : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('d') with bounds (*) and ap storageapu = sspr2(n,alpha,x,y,ap,[incx,offx,incy,offy,lower,overwrite_ap])

Wrapper for ``sspr2``.

Parameters
----------
n : input int
alpha : input float
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)
ap : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('f') with bounds (*) and ap storageapu = zhpr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap])

Wrapper for ``zhpr``.

Parameters
----------
n : input int
alpha : input float
x : input rank-1 array('D') with bounds (*)
ap : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('D') with bounds (*) and ap storageapu = chpr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap])

Wrapper for ``chpr``.

Parameters
----------
n : input int
alpha : input float
x : input rank-1 array('F') with bounds (*)
ap : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('F') with bounds (*) and ap storageapu = zspr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap])

Wrapper for ``zspr``.

Parameters
----------
n : input int
alpha : input complex
x : input rank-1 array('D') with bounds (*)
ap : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('D') with bounds (*) and ap storageapu = cspr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap])

Wrapper for ``cspr``.

Parameters
----------
n : input int
alpha : input complex
x : input rank-1 array('F') with bounds (*)
ap : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('F') with bounds (*) and ap storageapu = dspr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap])

Wrapper for ``dspr``.

Parameters
----------
n : input int
alpha : input float
x : input rank-1 array('d') with bounds (*)
ap : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('d') with bounds (*) and ap storageapu = sspr(n,alpha,x,ap,[incx,offx,lower,overwrite_ap])

Wrapper for ``sspr``.

Parameters
----------
n : input int
alpha : input float
x : input rank-1 array('f') with bounds (*)
ap : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
overwrite_ap : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
apu : rank-1 array('f') with bounds (*) and ap storagea = zher2(alpha,x,y,[lower,incx,offx,incy,offy,n,a,overwrite_a])

Wrapper for ``zher2``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
n : input int, optional
    Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a : input rank-2 array('D') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (n,n)a = cher2(alpha,x,y,[lower,incx,offx,incy,offy,n,a,overwrite_a])

Wrapper for ``cher2``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
n : input int, optional
    Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a : input rank-2 array('F') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (n,n)a = dsyr2(alpha,x,y,[lower,incx,offx,incy,offy,n,a,overwrite_a])

Wrapper for ``dsyr2``.

Parameters
----------
alpha : input float
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
n : input int, optional
    Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a : input rank-2 array('d') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('d') with bounds (n,n)a = ssyr2(alpha,x,y,[lower,incx,offx,incy,offy,n,a,overwrite_a])

Wrapper for ``ssyr2``.

Parameters
----------
alpha : input float
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
n : input int, optional
    Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a : input rank-2 array('f') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('f') with bounds (n,n)a = zher(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``zher``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('D') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (n,n)a = cher(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``cher``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('F') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (n,n)a = zsyr(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``zsyr``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('D') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (n,n)a = csyr(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``csyr``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('F') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (n,n)a = dsyr(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``dsyr``.

Parameters
----------
alpha : input float
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('d') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('d') with bounds (n,n)a = ssyr(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``ssyr``.

Parameters
----------
alpha : input float
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('f') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('f') with bounds (n,n)a = zgerc(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``zgerc``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (m)
y : input rank-1 array('D') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('D') with bounds (m,n), optional
    Default: (0.0,0.0)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (m,n)a = cgerc(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``cgerc``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (m)
y : input rank-1 array('F') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('F') with bounds (m,n), optional
    Default: (0.0,0.0)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (m,n)a = zgeru(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``zgeru``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (m)
y : input rank-1 array('D') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('D') with bounds (m,n), optional
    Default: (0.0,0.0)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (m,n)a = cgeru(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``cgeru``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (m)
y : input rank-1 array('F') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('F') with bounds (m,n), optional
    Default: (0.0,0.0)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (m,n)a = dger(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``dger``.

Parameters
----------
alpha : input float
x : input rank-1 array('d') with bounds (m)
y : input rank-1 array('d') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('d') with bounds (m,n), optional
    Default: 0.0
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('d') with bounds (m,n)a = sger(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``sger``.

Parameters
----------
alpha : input float
x : input rank-1 array('f') with bounds (m)
y : input rank-1 array('f') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('f') with bounds (m,n), optional
    Default: 0.0
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('f') with bounds (m,n)y = zhemv(alpha,a,x,[beta,y,offx,incx,offy,incy,lower,overwrite_y])

Wrapper for ``zhemv``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (n,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('D') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
lower : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('D') with bounds (ly)y = chemv(alpha,a,x,[beta,y,offx,incx,offy,incy,lower,overwrite_y])

Wrapper for ``chemv``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (n,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('F') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
lower : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('F') with bounds (ly)y = dsymv(alpha,a,x,[beta,y,offx,incx,offy,incy,lower,overwrite_y])

Wrapper for ``dsymv``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (n,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
y : input rank-1 array('d') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
lower : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('d') with bounds (ly)y = ssymv(alpha,a,x,[beta,y,offx,incx,offy,incy,lower,overwrite_y])

Wrapper for ``ssymv``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (n,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
y : input rank-1 array('f') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
lower : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('f') with bounds (ly)yout = zhpmv(n,alpha,ap,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``zhpmv``.

Parameters
----------
n : input int
alpha : input complex
ap : input rank-1 array('D') with bounds (*)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('D') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('D') with bounds (ly) and y storageyout = chpmv(n,alpha,ap,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``chpmv``.

Parameters
----------
n : input int
alpha : input complex
ap : input rank-1 array('F') with bounds (*)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('F') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('F') with bounds (ly) and y storageyout = zspmv(n,alpha,ap,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``zspmv``.

Parameters
----------
n : input int
alpha : input complex
ap : input rank-1 array('D') with bounds (*)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('D') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('D') with bounds (ly) and y storageyout = cspmv(n,alpha,ap,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``cspmv``.

Parameters
----------
n : input int
alpha : input complex
ap : input rank-1 array('F') with bounds (*)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('F') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('F') with bounds (ly) and y storageyout = dspmv(n,alpha,ap,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``dspmv``.

Parameters
----------
n : input int
alpha : input float
ap : input rank-1 array('d') with bounds (*)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input float, optional
    Default: 0.0
y : input rank-1 array('d') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('d') with bounds (ly) and y storageyout = sspmv(n,alpha,ap,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``sspmv``.

Parameters
----------
n : input int
alpha : input float
ap : input rank-1 array('f') with bounds (*)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input float, optional
    Default: 0.0
y : input rank-1 array('f') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('f') with bounds (ly) and y storageyout = zhbmv(k,alpha,a,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``zhbmv``.

Parameters
----------
k : input int
alpha : input complex
a : input rank-2 array('D') with bounds (lda,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('D') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('D') with bounds (ly) and y storageyout = chbmv(k,alpha,a,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``chbmv``.

Parameters
----------
k : input int
alpha : input complex
a : input rank-2 array('F') with bounds (lda,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('F') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('F') with bounds (ly) and y storageyout = dsbmv(k,alpha,a,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``dsbmv``.

Parameters
----------
k : input int
alpha : input float
a : input rank-2 array('d') with bounds (lda,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input float, optional
    Default: 0.0
y : input rank-1 array('d') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('d') with bounds (ly) and y storageyout = ssbmv(k,alpha,a,x,[incx,offx,beta,y,incy,offy,lower,overwrite_y])

Wrapper for ``ssbmv``.

Parameters
----------
k : input int
alpha : input float
a : input rank-2 array('f') with bounds (lda,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input float, optional
    Default: 0.0
y : input rank-1 array('f') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('f') with bounds (ly) and y storageyout = zgbmv(m,n,kl,ku,alpha,a,x,[incx,offx,beta,y,incy,offy,trans,overwrite_y])

Wrapper for ``zgbmv``.

Parameters
----------
m : input int
n : input int
kl : input int
ku : input int
alpha : input complex
a : input rank-2 array('D') with bounds (lda,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('D') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
trans : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('D') with bounds (ly) and y storageyout = cgbmv(m,n,kl,ku,alpha,a,x,[incx,offx,beta,y,incy,offy,trans,overwrite_y])

Wrapper for ``cgbmv``.

Parameters
----------
m : input int
n : input int
kl : input int
ku : input int
alpha : input complex
a : input rank-2 array('F') with bounds (lda,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('F') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
trans : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('F') with bounds (ly) and y storageyout = dgbmv(m,n,kl,ku,alpha,a,x,[incx,offx,beta,y,incy,offy,trans,overwrite_y])

Wrapper for ``dgbmv``.

Parameters
----------
m : input int
n : input int
kl : input int
ku : input int
alpha : input float
a : input rank-2 array('d') with bounds (lda,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input float, optional
    Default: 0.0
y : input rank-1 array('d') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
trans : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('d') with bounds (ly) and y storageyout = sgbmv(m,n,kl,ku,alpha,a,x,[incx,offx,beta,y,incy,offy,trans,overwrite_y])

Wrapper for ``sgbmv``.

Parameters
----------
m : input int
n : input int
kl : input int
ku : input int
alpha : input float
a : input rank-2 array('f') with bounds (lda,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
beta : input float, optional
    Default: 0.0
y : input rank-1 array('f') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
trans : input int, optional
    Default: 0

Returns
-------
yout : rank-1 array('f') with bounds (ly) and y storagey = zgemv(alpha,a,x,[beta,y,offx,incx,offy,incy,trans,overwrite_y])

Wrapper for ``zgemv``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (m,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('D') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
trans : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('D') with bounds (ly)y = cgemv(alpha,a,x,[beta,y,offx,incx,offy,incy,trans,overwrite_y])

Wrapper for ``cgemv``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (m,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('F') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
trans : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('F') with bounds (ly)y = dgemv(alpha,a,x,[beta,y,offx,incx,offy,incy,trans,overwrite_y])

Wrapper for ``dgemv``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (m,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
y : input rank-1 array('d') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
trans : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('d') with bounds (ly)y = sgemv(alpha,a,x,[beta,y,offx,incx,offy,incy,trans,overwrite_y])

Wrapper for ``sgemv``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (m,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
y : input rank-1 array('f') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
trans : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('f') with bounds (ly)k = izamax(x,[n,offx,incx])

Wrapper for ``izamax``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
k : intk = icamax(x,[n,offx,incx])

Wrapper for ``icamax``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
k : intk = idamax(x,[n,offx,incx])

Wrapper for ``idamax``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
k : intk = isamax(x,[n,offx,incx])

Wrapper for ``isamax``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
k : ints = dzasum(x,[n,offx,incx])

Wrapper for ``dzasum``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
s : floats = dasum(x,[n,offx,incx])

Wrapper for ``dasum``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
s : floats = scasum(x,[n,offx,incx])

Wrapper for ``scasum``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
s : floats = sasum(x,[n,offx,incx])

Wrapper for ``sasum``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
s : floatn2 = dznrm2(x,[n,offx,incx])

Wrapper for ``dznrm2``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
n2 : floatn2 = dnrm2(x,[n,offx,incx])

Wrapper for ``dnrm2``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
n2 : floatn2 = scnrm2(x,[n,offx,incx])

Wrapper for ``scnrm2``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
n2 : floatn2 = snrm2(x,[n,offx,incx])

Wrapper for ``snrm2``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
n2 : floatxy = zdotc(x,y,[n,offx,incx,offy,incy])

Wrapper for ``zdotc``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : complexxy = cdotc(x,y,[n,offx,incx,offy,incy])

Wrapper for ``cdotc``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : complexxy = zdotu(x,y,[n,offx,incx,offy,incy])

Wrapper for ``zdotu``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : complexxy = cdotu(x,y,[n,offx,incx,offy,incy])

Wrapper for ``cdotu``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : complexxy = ddot(x,y,[n,offx,incx,offy,incy])

Wrapper for ``ddot``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : floatxy = sdot(x,y,[n,offx,incx,offy,incy])

Wrapper for ``sdot``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : floatz = zaxpy(x,y,[n,a,offx,incx,offy,incy])

Wrapper for ``zaxpy``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
a : input complex, optional
    Default: (1.0, 0.0)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
z : rank-1 array('D') with bounds (*) and y storagez = caxpy(x,y,[n,a,offx,incx,offy,incy])

Wrapper for ``caxpy``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
a : input complex, optional
    Default: (1.0, 0.0)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
z : rank-1 array('F') with bounds (*) and y storagez = daxpy(x,y,[n,a,offx,incx,offy,incy])

Wrapper for ``daxpy``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
a : input float, optional
    Default: 1.0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
z : rank-1 array('d') with bounds (*) and y storagez = saxpy(x,y,[n,a,offx,incx,offy,incy])

Wrapper for ``saxpy``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
a : input float, optional
    Default: 1.0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
z : rank-1 array('f') with bounds (*) and y storagey = zcopy(x,y,[n,offx,incx,offy,incy])

Wrapper for ``zcopy``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
y : rank-1 array('D') with bounds (*)y = ccopy(x,y,[n,offx,incx,offy,incy])

Wrapper for ``ccopy``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
y : rank-1 array('F') with bounds (*)y = dcopy(x,y,[n,offx,incx,offy,incy])

Wrapper for ``dcopy``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
y : rank-1 array('d') with bounds (*)y = scopy(x,y,[n,offx,incx,offy,incy])

Wrapper for ``scopy``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
y : rank-1 array('f') with bounds (*)x = zdscal(a,x,[n,offx,incx,overwrite_x])

Wrapper for ``zdscal``.

Parameters
----------
a : input float
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('D') with bounds (*)x = csscal(a,x,[n,offx,incx,overwrite_x])

Wrapper for ``csscal``.

Parameters
----------
a : input float
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('F') with bounds (*)x = zscal(a,x,[n,offx,incx])

Wrapper for ``zscal``.

Parameters
----------
a : input complex
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('D') with bounds (*)x = cscal(a,x,[n,offx,incx])

Wrapper for ``cscal``.

Parameters
----------
a : input complex
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('F') with bounds (*)x = dscal(a,x,[n,offx,incx])

Wrapper for ``dscal``.

Parameters
----------
a : input float
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('d') with bounds (*)x = sscal(a,x,[n,offx,incx])

Wrapper for ``sscal``.

Parameters
----------
a : input float
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('f') with bounds (*)x,y = zswap(x,y,[n,offx,incx,offy,incy])

Wrapper for ``zswap``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('D') with bounds (*)
y : rank-1 array('D') with bounds (*)x,y = cswap(x,y,[n,offx,incx,offy,incy])

Wrapper for ``cswap``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('F') with bounds (*)
y : rank-1 array('F') with bounds (*)x,y = dswap(x,y,[n,offx,incx,offy,incy])

Wrapper for ``dswap``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('d') with bounds (*)
y : rank-1 array('d') with bounds (*)x,y = sswap(x,y,[n,offx,incx,offy,incy])

Wrapper for ``sswap``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('f') with bounds (*)
y : rank-1 array('f') with bounds (*)x,y = drotm(x,y,param,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``drotm``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)
param : input rank-1 array('d') with bounds (5)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('d') with bounds (*)
y : rank-1 array('d') with bounds (*)x,y = srotm(x,y,param,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``srotm``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)
param : input rank-1 array('f') with bounds (5)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('f') with bounds (*)
y : rank-1 array('f') with bounds (*)x,y = zdrot(x,y,c,s,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``zdrot``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)
c : input float
s : input float

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('D') with bounds (*)
y : rank-1 array('D') with bounds (*)x,y = csrot(x,y,c,s,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``csrot``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)
c : input float
s : input float

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('F') with bounds (*)
y : rank-1 array('F') with bounds (*)x,y = drot(x,y,c,s,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``drot``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)
c : input float
s : input float

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('d') with bounds (*)
y : rank-1 array('d') with bounds (*)x,y = srot(x,y,c,s,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``srot``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)
c : input float
s : input float

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('f') with bounds (*)
y : rank-1 array('f') with bounds (*)param = drotmg(d1,d2,x1,y1)

Wrapper for ``drotmg``.

Parameters
----------
d1 : input float
d2 : input float
x1 : input float
y1 : input float

Returns
-------
param : rank-1 array('d') with bounds (5)param = srotmg(d1,d2,x1,y1)

Wrapper for ``srotmg``.

Parameters
----------
d1 : input float
d2 : input float
x1 : input float
y1 : input float

Returns
-------
param : rank-1 array('f') with bounds (5)c,s = zrotg(a,b)

Wrapper for ``zrotg``.

Parameters
----------
a : input complex
b : input complex

Returns
-------
c : complex
s : complexc,s = crotg(a,b)

Wrapper for ``crotg``.

Parameters
----------
a : input complex
b : input complex

Returns
-------
c : complex
s : complexc,s = drotg(a,b)

Wrapper for ``drotg``.

Parameters
----------
a : input float
b : input float

Returns
-------
c : float
s : floatc,s = srotg(a,b)

Wrapper for ``srotg``.

Parameters
----------
a : input float
b : input float

Returns
-------
c : float
s : float~m½m~m½m~m½m~m½mmmm"mmmm"mCmOm¬mÄmà:%m*m/m4m9mEmCmOm¬mÄmà:%m*m/m4m9mEmCmOm¬mÄmà:%m*m/m4m9mEmCmOm¬mÄmà:%m*m/m4m9mEmCmOmQmà:%m*m/m4m9mEmCmOmQmà:%m*m/m4m9mEmCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmOmà:%m*m/m4m~mCmà:%m*m~mCmà:%m*m~mCmà:%m*m~mCmà:%m*m~mCmà:%m*m9m~mCmà:%m*m9mCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmOmà:~m%m*m/m4mCmOmà:~m%m*m/m4mCmOmà:~m%m*m/m4mCmOmà:~m%m*m/m4mCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmOmà:%m*m/m4mCmà:%m*mCmà:%m*mCmà:%m*mCmà:%m*mCmà:%m*mCmà:%m*mCmà:%m*mCmà:%m*mCmà:%m*mCmà:%m*mCmà:%m*mCmà:%m*mWm~mCm]mOm%m*m/m4mbmEmWm~mCm]mOm%m*m/m4mbmEmWm~mCm]mOm%m*m/m4mbmEmWm~mCm]mOm%m*m/m4mbmEmUmà:hmkmWm~mCm*m%m]mOm4m/mbmEmUmà:hmkmWm~mCm*m%m]mOm4m/mbmEmUmà:hmkmWm~mCm*m%m]mOm4m/mbmEmUmà:hmkmWm~mCm*m%m]mOm4m/mbmEm°LWm~mCm*m%m]mOm4m/mnmEm°LWm~mCm*m%m]mOm4m/mnmEm°LWm~mCm*m%m]mOm4m/mnmEm°LWm~mCm*m%m]mOm4m/mnmEmà:WmŠmCm*m%m]mOm4m/mnmEmà:WmŠmCm*m%m]mOm4m/mnmEmà:WmŠmCm*m%m]mOm4m/mnmEmà:WmŠmCm*m%m]mOm4m/mnmEmà:WmŠmCm*m%m]mOm4m/mnmEmà:WmŠmCm*m%m]mOm4m/mnmEmWm~mCm]mOm%m*m/m4mnmEmWm~mCm]mOm%m*m/m4mnmEmWm~mCm]mOm%m*m/m4mnmEmWm~mCm]mOm%m*m/m4mnmEmWmCmOm*m4m~m9mEmtmWmCmOm*m4m~m9mEmtmWmCmOm*m4m~m9mEmtmWmCmOm*m4m~m9mEmtmWmCmOm*m4m~m9mEmtmWmCmOm*m4m~m9mEmtmWmCmnm*m%mà:~mtmWmCmnm*m%mà:~mtmWmCmnm*m%mà:~mtmWmCmnm*m%mà:~mtmWmCmnm*m%mà:~mtmWmCmnm*m%mà:~mtmWmCmOmnm*m%m4m/mà:~mtmWmCmOmnm*m%m4m/mà:~mtmWmCmOmnm*m%m4m/mà:~mtmWmCmOmnm*m%m4m/mà:~mtmà:WmCmŠm*m%mnm€mà:WmCmŠm*m%mnm€mà:WmCmŠm*m%mnm€mà:WmCmŠm*m%mnm€mà:WmCmŠm*m%mnm€mà:WmCmŠm*m%mnm€mà:WmCmOmŠm*m%m4m/mnm€mà:WmCmOmŠm*m%m4m/mnm€mà:WmCmOmŠm*m%m4m/mnm€mà:WmCmOmŠm*m%m4m/mnm€m°L~mCm*m%mnmbmm9m°L~mCm*m%mnmbmm9m°L~mCm*m%mnmbmm9m°L~mCm*m%mnmbmm9mà:ŠmCm*m%mnmbmm9mà:ŠmCm*m%mnmbmm9mà:ŠmCm*m%mnmbmm9mà:ŠmCm*m%mnmbmm9m~mCm%m*mnmbmm9m~mCm%m*mnmbmm9m~mCm%m*mnmbmm9m~mCm%m*mnmbmm9m~mCm*m%mnmbmm9m~mCm*m%mnmbmm9m~mCm*m%mnmbmm9m~mCm*m%mnmbmm9m°L~mCm*m%mnmbmm9m°L~mCm*m%mnmbmm9m°L~mCm*m%mnmbmm9m°L~mCm*m%mnmbmm9mà:ŠmCm*m%mnmbmm9mà:ŠmCm*m%mnmbmm9mà:ŠmCm*m%mnmbmm9mà:ŠmCm*m%mnmbmm9mWm~m½m]m¬m’mšm¢mWm~m½m]m¬m’mšm¢mWm~m½m]m¬m’mšm¢mWm~m½m]m¬m’mšm¢mWm~m½m]m¬m®mnm¢mWm~m½m]m¬m®mnm¢mWm~m½m]m¬m®mnm¢mWm~m½m]m¬m®mnm¢mWm~m½m]m¬m®mnm¢mWm~m½m]m¬m®mnm¢mWm~m]m¬mbmnm¢mWm~m]m¬mbmnm¢mWm~m]m¬mbmnm¢mWm~m]m¬mbmnm¢mWm~m]m¬mbmnm¢mWm~m]m¬mbmnm¢mWm~m½m]m¬mbmnm¢mWm~m½m]m¬mbmnm¢mWm~m½m]m¬mbmnm¢mWm~m½m]m¬mbmnm¢mWm~m½m]m¬mbmnm¢mWm~m½m]m¬mbmnm¢mWm~m½m®mnm’mm³mWm~m½m®mnm’mm³mWm~m½m®mnm’mm³mWm~m½m®mnm’mm³mWm~m½m®mnm’mm³mWm~m½m®mnm’mm³mWm~m½m®mnm’mm³mWm~m½m®mnm’mm³m¿mÿÿÿÿÿÿÿÿ@š(ôcÿÿÿÿÿÿÿÿÿÿÿÿ`t@Š'kÿÿÿÿÿÿÿÿÿÿÿÿ€ì ‰'í8ÿÿÿÿÿÿÿÿÿÿÿÿÀá‰'Ú8ÿÿÿÿÿÿÿÿÿÿÿÿà`ˆ'ãcÿÿÿÿÿÿÿÿÿÿÿÿàq€‡'kÿÿÿÿÿÿÿÿÿÿÿÿ€ê †'€cÿÿÿÿÿÿÿÿÿÿÿÿ°kàƒ'¨jÿÿÿÿÿÿÿÿÿÿÿÿpä 'cÿÿÿÿÿÿÿÿÿÿÿÿ€e`~'7jÿÿÿÿÿÿÿÿÿÿÿÿ`Þ {'KÿÿÿÿÿÿÿÿÿÿÿÿðÉÀx'¢JÿÿÿÿÿÿÿÿÿÿÿÿðÃàu'2Jÿÿÿÿÿÿÿÿÿÿÿÿð¾Às'ÅIÿÿÿÿÿÿÿÿÿÿÿÿð¹ q'XIÿÿÿÿÿÿÿÿÿÿÿÿð´€o'ëHÿÿÿÿÿÿÿÿÿÿÿÿà¯`m'Âbÿÿÿÿÿÿÿÿÿÿÿÿbàk'êiÿÿÿÿÿÿÿÿÿÿÿÿ Û`j'SÿÿÿÿÿÿÿÿÿÿÿÿàZàh'"Zÿÿÿÿÿÿÿÿÿÿÿÿ0Ö`g'wbÿÿÿÿÿÿÿÿÿÿÿÿÀ^ e'ŸiÿÿÿÿÿÿÿÿÿÿÿÿÀ×àc'~HÿÿÿÿÿÿÿÿÿÿÿÿЪàa'Hÿÿÿÿÿÿÿÿÿÿÿÿ%à_'¤Gÿÿÿÿÿÿÿÿÿÿÿÿ° à]'7Gÿÿÿÿÿÿÿÿÿÿÿÿ›à['bÿÿÿÿÿÿÿÿÿÿÿÿ Y Y'3iÿÿÿÿÿÿÿÿÿÿÿÿ@Ò`W'¥Rÿÿÿÿÿÿÿÿÿÿÿÿ U U'·Yÿÿÿÿÿÿÿÿÿÿÿÿ ÐàR'ÐFÿÿÿÿÿÿÿÿÿÿÿÿ@6@–Q'iFÿÿÿÿÿÿÿÿÿÿÿÿp6‘ O'²[ÿÿÿÿÿÿÿÿÿÿÿÿ 6pé@M'E[ÿÿÿÿÿÿÿÿÿÿÿÿð6 ä`K'ØZÿÿÿÿÿÿÿÿÿÿÿÿ07ÐÞ€I'kZÿÿÿÿÿÿÿÿÿÿÿÿ€7€Ù G' FÿÿÿÿÿÿÿÿÿÿÿÿÀ7 @F'ÖEÿÿÿÿÿÿÿÿÿÿÿÿà7@ŠàD'Eÿÿÿÿÿÿÿÿÿÿÿÿ8ð†€C'FEÿÿÿÿÿÿÿÿÿÿÿÿ 8 ƒ B'Eÿÿÿÿÿÿÿÿÿÿÿÿ@8@€À@'¶Dÿÿÿÿÿÿÿÿÿÿÿÿ`8à|`?'pDÿÿÿÿÿÿÿÿÿÿÿÿ€8y>'&Dÿÿÿÿÿÿÿÿÿÿÿÿ 8@v <'ÜCÿÿÿÿÿÿÿÿÿÿÿÿs@;'’CÿÿÿÿÿÿÿÿÿÿÿÿÀoà9'HCÿÿÿÿÿÿÿÿÿÿÿÿ€l€8'üBÿÿÿÿÿÿÿÿÿÿÿÿ@i 7'½aÿÿÿÿÿÿÿÿÿÿÿÿ Q€4'åhÿÿÿÿÿÿÿÿÿÿÿÿËà1'WRÿÿÿÿÿÿÿÿÿÿÿÿ`M /'iYÿÿÿÿÿÿÿÿÿÿÿÿpÉ`,'.aÿÿÿÿÿÿÿÿÿÿÿÿ H`)'Vhÿÿÿÿÿÿÿÿÿÿÿÿ Á`&'ÈQÿÿÿÿÿÿÿÿÿÿÿÿ C`#'ÚXÿÿÿÿÿÿÿÿÿÿÿÿ À` '»`ÿÿÿÿÿÿÿÿÿÿÿÿP@€'ãgÿÿÿÿÿÿÿÿÿÿÿÿ๠'UQÿÿÿÿÿÿÿÿÿÿÿÿp;À'gXÿÿÿÿÿÿÿÿÿÿÿÿp¸à'Z`ÿÿÿÿÿÿÿÿÿÿÿÿ°8 '‚gÿÿÿÿÿÿÿÿÿÿÿÿp²`'ôPÿÿÿÿÿÿÿÿÿÿÿÿ3€'Xÿÿÿÿÿÿÿÿÿÿÿÿ± 	'“Pÿÿÿÿÿÿÿÿÿÿÿÿ°+À'¥Wÿÿÿÿÿÿÿÿÿÿÿÿ°©à'`ÿÿÿÿÿÿÿÿÿÿÿÿÀ1@'0gÿÿÿÿÿÿÿÿÿÿÿÿ « þ&APÿÿÿÿÿÿÿÿÿÿÿÿP$àû&SWÿÿÿÿÿÿÿÿÿÿÿÿࢠù&7kÿÿÿÿÿÿÿÿÿÿÿÿ`î ö&pkÿÿÿÿÿÿÿÿÿÿÿÿ ó ô&©kÿÿÿÿÿÿÿÿÿÿÿÿù ñ&åkÿÿÿÿÿÿÿÿÿÿÿÿ€þ ï&!lÿÿÿÿÿÿÿÿÿÿÿÿà ì&]lÿÿÿÿÿÿÿÿÿÿÿÿP	 ê&¾_ÿÿÿÿÿÿÿÿÿÿÿÿÐ,è&æfÿÿÿÿÿÿÿÿÿÿÿÿà¦àå&÷OÿÿÿÿÿÿÿÿÿÿÿÿPÀã&	Wÿÿÿÿÿÿÿÿÿÿÿÿ@ž á&°OÿÿÿÿÿÿÿÿÿÿÿÿP€ß&ÂVÿÿÿÿÿÿÿÿÿÿÿÿ ™`Ý&a_ÿÿÿÿÿÿÿÿÿÿÿÿ %@Ú&‰fÿÿÿÿÿÿÿÿÿÿÿÿ ×&SOÿÿÿÿÿÿÿÿÿÿÿÿÔ&eVÿÿÿÿÿÿÿÿÿÿÿÿ€’àÐ&_ÿÿÿÿÿÿÿÿÿÿÿÿð àÎ&?fÿÿÿÿÿÿÿÿÿÿÿÿ0›àÌ&	OÿÿÿÿÿÿÿÿÿÿÿÿPàÊ&VÿÿÿÿÿÿÿÿÿÿÿÿðàÈ&Ð^ÿÿÿÿÿÿÿÿÿÿÿÿ@àÆ&øeÿÿÿÿÿÿÿÿÿÿÿÿ –àÄ&s^ÿÿÿÿÿÿÿÿÿÿÿÿ`@Â&›eÿÿÿÿÿÿÿÿÿÿÿÿà ¿&¬Nÿÿÿÿÿÿÿÿÿÿÿÿ`½&¾Uÿÿÿÿÿÿÿÿÿÿÿÿ@‡`º&”Bÿÿÿÿÿÿÿÿÿÿÿÿpc¸&'Bÿÿÿÿÿÿÿÿÿÿÿÿ ] µ&ºAÿÿÿÿÿÿÿÿÿÿÿÿÐW@³&MAÿÿÿÿÿÿÿÿÿÿÿÿRà°&ï@ÿÿÿÿÿÿÿÿÿÿÿÿ L€®&‘@ÿÿÿÿÿÿÿÿÿÿÿÿ@G ¬&3@ÿÿÿÿÿÿÿÿÿÿÿÿàA)&Õ?ÿÿÿÿÿÿÿÿÿÿÿÿ€<`§&R?ÿÿÿÿÿÿÿÿÿÿÿÿ 7@¥&Ð>ÿÿÿÿÿÿÿÿÿÿÿÿÀ1 £&N>ÿÿÿÿÿÿÿÿÿÿÿÿ`,¡&Ì=ÿÿÿÿÿÿÿÿÿÿÿÿð&àž&o=ÿÿÿÿÿÿÿÿÿÿÿÿ ! œ&=ÿÿÿÿÿÿÿÿÿÿÿÿP`š&µ<ÿÿÿÿÿÿÿÿÿÿÿÿ ˜&X<ÿÿÿÿÿÿÿÿÿÿÿÿ°à•&ì;ÿÿÿÿÿÿÿÿÿÿÿÿà€“&;ÿÿÿÿÿÿÿÿÿÿÿÿ ‘&;ÿÿÿÿÿÿÿÿÿÿÿÿ@&Š:ÿÿÿÿÿÿÿÿÿÿÿÿpú`Œ&,:ÿÿÿÿÿÿÿÿÿÿÿÿõŠ&Î9ÿÿÿÿÿÿÿÿÿÿÿÿ°ï ‡&p9ÿÿÿÿÿÿÿÿÿÿÿÿPê@…&9ÿÿÿÿÿÿÿÿÿÿÿÿðäà‚& ^ÿÿÿÿÿÿÿÿÿÿÿÿp €&Heÿÿÿÿÿÿÿÿÿÿÿÿð‰`~&YNÿÿÿÿÿÿÿÿÿÿÿÿð |&kUÿÿÿÿÿÿÿÿÿÿÿÿ`ày&Õ]ÿÿÿÿÿÿÿÿÿÿÿÿà	Àw&ýdÿÿÿÿÿÿÿÿÿÿÿÿ€„ u&Nÿÿÿÿÿÿÿÿÿÿÿÿû`s& Uÿÿÿÿÿÿÿÿÿÿÿÿ| q&ÃMÿÿÿÿÿÿÿÿÿÿÿÿ0õàn&ÕTÿÿÿÿÿÿÿÿÿÿÿÿ v l&˜]ÿÿÿÿÿÿÿÿÿÿÿÿP j&Àdÿÿÿÿÿÿÿÿÿÿÿÿ0€ h&†Mÿÿÿÿÿÿÿÿÿÿÿÿ@ð f&˜TÿÿÿÿÿÿÿÿÿÿÿÿPr d&JMÿÿÿÿÿÿÿÿÿÿÿÿPë b&\Tÿÿÿÿÿÿÿÿÿÿÿÿn `&I]ÿÿÿÿÿÿÿÿÿÿÿÿ°ÿ€^&qdÿÿÿÿÿÿÿÿÿÿÿÿ°z`\&ûLÿÿÿÿÿÿÿÿÿÿÿÿpå Z&
TÿÿÿÿÿÿÿÿÿÿÿÿhàW&«Lÿÿÿÿÿÿÿÿÿÿÿÿß U&½Sÿÿÿÿÿÿÿÿÿÿÿÿ c`S&æ\ÿÿÿÿÿÿÿÿÿÿÿÿÀú@Q&dÿÿÿÿÿÿÿÿÿÿÿÿðu O&HLÿÿÿÿÿÿÿÿÿÿÿÿÚM&ZSÿÿÿÿÿÿÿÿÿÿÿÿP^àJ&ƒ\ÿÿÿÿÿÿÿÿÿÿÿÿpõ H& \ÿÿÿÿÿÿÿÿÿÿÿÿ@ð`F&åKÿÿÿÿÿÿÿÿÿÿÿÿ0Õ D&‚KÿÿÿÿÿÿÿÿÿÿÿÿðÏàA&„Ù0à€/°+P€GCC: (Debian 6.3.0-18+deb9u1) 6.3.0 20170516,à5W,%@6}!üfà5W&(ç06œx(y(976ÊUóUTóTô!Úû 6œûx!ûry!û«ëû'6ÙUóUTóTÊà^6œ©n©äcx°ð©Vcy°©È׏6èUóUTóTQóQRóRXóXN	¿
¿ÇG6œmn©cx°:ð©scy°¬©å>6÷UóUTóTQóQRóRXóX»	ãûð5œn	©cx	Wð	©cy	É	©²û÷5UóUTóTQóQRóRXóX	û#
¿7ûà5œÊn©;cxtð©­cyæ©.ûç5UóUTóTQóQRóRXóXè',èÛõ%Û––%D%ИдÃ
¡ü–@6}ˆõ¬J 8œÁ¬ÁXn¬È¥x¬Ïòv¬È?ð¬ÈŒ·8ô	UóTTóQQóRRóXNåÞ	ÞÇy¡‡€8œs¡ÁÅn¡Èx¡_v¡È¬ð¡Èù—8
UóTTóQQóRRóXÁŽ	Þj–Z`8œ!Ê–!2n–Èx–(Ìv–È	ð–Èf	w8
UóTTóQQóRRóX×77	ÞÊ€‹@8œÑõ‹!Ÿ	n‹Èì	x‹Ñ9
v‹È†
ð‹ÈÓ
W8!
UóTTóQQóRRóX!à	ÞH€¶ 8œs¬€Án€ÈYx€Ï¦v€Èóð€È@780
UóTTóQQóRRóXeuã8œžuÁynuÈÆxu
vuÈ`
ðuÈ­
8?
UóTTóQQóRRóX»jÓà7œ™j!æ
njÈ3xj(€vjÈÍðjÈ÷7N
UóTTóQQóRRóX,_ÙÀ7œ, _!Sn_È x_Ñív_È:ð_ȇ×7]
UóTTóQQóRRóX<P€74œøòPåÀnPÈ
xPÏZvPȧðPÈôyPÏA
{PÈ‘
PÈ‘§7l
UóTTóQQóRRóXXóYY‘¬A07HœÄäA7ŽnAÈÛxA((vAÈuðAÈÂyA(
{AÈ‘
AÈ‘W7{
UóTTóQQóRRóXXóYY‘2Žð64œº2å\n2È©x2Ïöv2ÈCð2Ȑy2ÏÝ
{2È‘
2È‘7Š
UóTTóQQóRRóXXóYY‘#È 6Hœ\.#7*n#Èwx#(Äv#Èð#È^y#(«
{#È‘
#È‘Ç6™
UóTTóQQóRRóXXóYY‘i:p6/œ(	ÁønÈEx’vÈßðÈ,yy
{È‘
È‘—6¨
UóTTóQQóRRóXXóYY‘èW@6/œô	Æ!ÆnÈxÑ`vÈ­ðÈúyÑG
{È‘
È‘g6·
UóTTóQQóRRóXXóYY‘Rý³R¨brb¥ˆ’¥¾P‡¾ëm|ëÛÃqÛá4fáÂG[Â7L^à=^ã».ãBqB_ð_%B.?:;nI@—B:;I4I4‰‚•B1Š‚‘B$>:;I	I
!I.?<n:;n%B.?:;n@—B:;I:;I‰‚1Š‚‘B$>I	!I
:;I.?<n:;n„bû
/tmp/pip-install-vgudo8pq/scipy/scipy/_build_utils/srcwrap_dummy_g77_abi.f	à5õõõõõoû
build/src.linux-x86_64-3.6/build/src.linux-x86_64-3.6/scipy/linalg_fblas-f2pywrappers.f	@6 äuJ<óKM äuJ<óKM<<+Ù äuJ<ó‘ç<<+Ù äuJ<ó‘ç'y.{['y.{['y.{['y.{['y.{['y.{['y.{['y.{incycomplex(kind=8)wcdotc___result_wzladiv__result_wcdotc__result_wzdotcinteger(kind=4)wzdotu_/tmp/pip-install-vgudo8pq/scipy/scipy/_build_utils/src/wrap_dummy_g77_abi.f__result_wcdotuwzdotc_complex(kind=4)wcladiv_wcdotu___result_wcladivGNU Fortran2008 6.3.0 20170516 -ffixed-form -mtune=generic -march=x86-64 -g -O3 -ffixed-form -fno-second-underscore -fPIC -funroll-loops -fintrinsic-modules-path /usr/lib/gcc/x86_64-linux-gnu/6/fincludeinteger(kind=8)__result_wzdotuwzladiv_incxsasumf2pywrapreal(kind=8)build/src.linux-x86_64-3.6/build/src.linux-x86_64-3.6/scipy/linalg/_fblas-f2pywrappers.ff2pywrapddotoffxoffyf2pywrapsasumf2pywrapzdotu_f2pywrapsasum_dznrm2f2pywrapf2pywrapscnrm2scasumf2pywrapf2pywrapsnrm2_f2pywrapsdotf2pywrapdzasumddotf2pywrapf2pywrapcdotc_snrm2f2pywrapcdotuf2pywrapf2pywrapzdotcf2pywrapdzasum_f2pywrapscasum_f2pywrapscasumf2pywrapdasumf2pywrapdasum_/tmp/pip-install-vgudo8pq/scipyf2pywrapdznrm2_sdotf2pywrapf2pywrapscnrm2_f2pywrapdnrm2_zdotcf2pywrapscnrm2f2pywrapf2pywrapzdotuf2pywrapzdotc_f2pywrapsnrm2f2pywrapddot_f2pywrapdznrm2f2pywrapsdot_f2pywrapdnrm2dasumf2pywrapdzasumf2pywrapf2pywrapcdotudnrm2f2pywrapf2pywrapcdotczdotuf2pywrapf2pywrapcdotu_real(kind=4)cdotcf2pywrapPVuVWóUPVtVWóT@FuFGóU@FtFGóT06u67óU06t67óT06q67óQ06r67óR06x67óX &u&'óU &t&'óT &q&'óQ &r&'óR &x&'óXuóUtóTqóQróRxóXuóUtóTqóQróRxóX`iui|s|}óU`ltlvuv}óT`oqovtv}óQ`rrrvqv}óR`vxv}óX@IuI\s\]óU@LtLVuV]óT@OqOVtV]óQ@RrRVqV]óR@VxV]óX )u)<s<=óU ,t,6u6=óT /q/6t6=óQ 2r26q6=óR 6x6=óX	u	sóUtuóTqtóQrqóRxóXàéuéüsüýóUàìtìöuöýóTàïqïötöýóQàòròöqöýóRàöxöýóXÀÉuÉÜsÜÝóUÀÌtÌÖuÖÝóTÀÏqÏÖtÖÝóQÀÒrÒÖqÖÝóRÀÖxÖÝóX ©u©¼s¼½óU ¬t¬¶u¶½óT ¯q¯¶t¶½óQ ²r²¶q¶½óR ¶x¶½óX€‰u‰œsœóU€ŒtŒ–u–óT€q–t–óQ€’r’–q–óR€–x–óX@GuGssstóU@JtJfuftóT@MqMftftóQ@PrPfqftóR@WxWfrftóX@bybfxftóYð÷u÷7s78óUðútúu8óTðýqýt8óQðrq8óRðxr8óXðyx8óY°·u·ãsãäóU°ºtºÖuÖäóT°½q½ÖtÖäóQ°ÀrÀÖqÖäóR°ÇxÇÖrÖäóX°ÒyÒÖxÖäóY`gug§s§¨óU`jtj†u†¨óT`mqm†t†¨óQ`prp†q†¨óR`wxw†r†¨óX`‚y‚†x†¨óY07u7^s^_óU0:t:VuV_óT0=q=VtV_óQ0@r@VqV_óR0GxGVrV_óX0RyRVxV_óYu.s./óU
t
&u&/óT
q
&t&/óQr&q&/óRx&r&/óX"y"&x&/óYÈð Îˆ!¸!°Ñ	¨Ö
ÀÖ Ú Ú
À8Ð8Ý ãÈ<&Ð<&Ø<&à<& ?&@&ÀA& š(ñÿØ<& ÚàÚ.0ÛD š(SÐ<&zpۆÈ<&¥ñÿ´ ÛŒÎ0ßUÚ`š((3à,ç@‹'Àá¿ù ‹'€ãlˆš(iðäZ'´'PNPêW9 ³'P3°ïWK@³'PõW]à²'PýpúÅo€²'Pâ@ ²'PÇ“1'P¬àÂ¥`±'P‘°D·±'HvAÉ °'H[PAÛ@°'H@ !Aíà¯'H%ð&bÿ€¯'H
`,_ ¯'HïÀ1_#.'HÔ 7_5`®'H¹€<ZG®'PžàAWY ­'Pƒ@GWk@­'Ph LW}à¬'PMRŏ€¬'P2ÐW¡ ¬'P ]³+'PüpcÂÅ`«'PÞ@i5×`—'(Â€l3é —'(¦Ào3ûà–'(Šs3
 –'(n@vP`–'(SyN1 –'(7à|RCà•'(@€RU •'( ƒPg`•'(åð†Ny •'(É@ŠR‹à”'(® R ”'((‘4¯`“'@@–EÁ “'@‡›Ó`‘'@l° å ‘'@Q%÷à'@6Ъ	 '@w
à¯àŽ'@\
ð´þ- Ž'@A
ð¹þ?`Ž'@&
ð¾þQ Ž'@
ðÃöc
'XððÉöu`'X™ðÏ3‡€¾'H~0ÕZ™ ¾'HÚô« ¼'H¤ßའ»'HlpåàÏ`º'HþPëâá ¹'@È@ðâó ¸'@\0õÒ`·'H&ûÒ ¶'Hºðd) µ'HÆ`ë; ª'`(P¦M`¨'H¾K_à¦'`TPþq`¥'H Pþƒ ¤'HP$Y•à '`ª°+Ú§ Ÿ'ht3Ú¹ ž'hp;#Ë œ'hœ C»	Ý š'€0`M¼ï`˜'`Ø U¿`’'HÈ
àZe '0-P^Í%½'HÀ cb7€»'HˆhbI:'HnP[`¹'@ãPrPmà¸'@w vT7'HA|T‘·'HÕ`Ö£€µ'Há@‡¡µ«'`Bð†Ç('HÙ€’ Ù@§'`n ™Ÿë%'H:@žŸý¥'H1à¢Æ@¡'`Å°©T! Ÿ'h±T3 ž'h#p¸©E œ'h· ÀC	W š'€KpÉ*i'`ó Ð‰{'Hã
0ÖHà'0“€ÙNŸ`”'@xÐÞE± ”'@] äNÃà“'@BpéEÕ “'@¼Àîtc@ð&ç='HHpõPù`½'HÜÀúêà»'H4°ÿ’ ¹'H’P„/ ¸'@ðà	ŒAàµ'H„pðS`´'H`Öeà©'`\@¦w ©'Hô𠦉 §'Hˆ %(› ¦'`ìÐ,æ­à£'HàÀ1é¿  '`>°8–Ñ 'hÒP@Ïã ›'hf Hw	õ ™'€ú Q€	 —'`¢ YŸ	 ‘'Hþ
À^I+	 '8’
bg=	 '0º€e0O	 Œ'`†°k0a	à‹'`Nàqus	`‹'(â`t†…	àŠ'÷ðuÀ—	@¼'HP°zr©	º'H­0€P»	`¸'@€„dÍ	@¶'HŸð‰áß	4'H«àºñ	@ª'`v –†
۩'H0ݠ
¨'H£'
€¦'`঴9
@¤'Hû «ÏK
€ '`Yp²f]
 'hí๼o
 ›'h ÁV	
 ™'€Ë@“
˜'`½@Ò¥
’'HÀ×Q·
`'8­
 Û3É
`'0Õ`Þ	Û
'` päí
@Œ'`j€êñÿ
 ‹'(ý€ì(‹'#°í¯L`î<B ¡'Pf ócT¢'P€ùlf`¢'P›€þ[x"'P¶àlŠ £'PÑP	[œ€£'P®à¾'p¸`¿'ÙÊ@š( Þ@Š'…ù ‰'…‰'/`ˆ'J€‡'Ëf †'˂àƒ'µœ 'µ¶`~'·Ñ {'·ìÀx'Å
àu'Å"
Às'=
 q'X
€o's
`m'Ž
àk's©
`j'sÄ
àh'uß
`g'uú
 e'²àc'²2àa'íMà_'íhà]'íƒà['íž Y'(¹`W'(Ô U'1ïàR'1
Q'Ñ$ O'Ñ>@M'ÕY`K'Õt€I'Տ G'Õª@F'GÅàD'Iá€C'Gü B'IÀ@'E3`?'GO>'Ej <'G†@;'E¢à9'E¾€8'EÚ 7'Eö€4'›à1'›, /'¦G`,'¦b`)'õ}`&'õ˜`#'³` '΀'Áé 'ÁÀ'Ìà'Ì: '¿U`'¿p€'Ê‹ 	'ʦÀ'ÊÁà'ÊÜ@'›÷ þ&›àû&¦- ù&¦H ö&lb ô&l| ñ&v— ï&v² ì&vÍ ê&vèè&àå&Àã&6 á&P€ß&j`Ý&„@Ú&Ÿ ×&ºÔ&ÕàÐ&ðàÎ&ý
àÌ&ý$àÊ&ÿ>àÈ&ÿXàÆ&ýràÄ&ýŒ@Â&‹§ ¿&‹Â½&Ý`º&ø¸&F µ&F.@³&FIà°&Fd€®&D ¬&Dš)&Dµ`§&DÐ@¥& ë £& ¡& !àž& < œ&4W`š&4r ˜&4à•&4¨€“&Fà ‘&FÞ&Fù`Œ&FŠ&D/ ‡&DJ@…&Deà‚&D€ €&"›`~&"¶ |&-Ñày&-ìÀw& u&"`s&#= q&#Xàn&#s l&#Ž j&ç© h&çÄ f&òß d&òú b&ò `&ò0€^&L`\&h Z&'„àW&'  U&'¼`S&'Ø@Q&ó O&M&)àJ&D H&'_`F&'z D&)•àA&)°ñÿÀ (ɐš(ÒP‰ßàöêà!új€i °+g0€/@ñÿUñÿñÿkp5yØ<&ñÿ…`8•p6/£À7² 8Â8Ñ€8àÝó
À8ù@8˜š(@&2@6/@à7P6X 6HgÛ{07HŠÀ5œ€˜( «p 1¼5,Ò /à š(ìà5ôÀA&ðM@D2 š(>€74M 8]6e š(j06sð5{ š(‚ 6‹à<&”	¨Öšð64©@/4ÁØßæ:óú«+29@GNekry€ƒ’˜¦ µ ÉÐÖÜãêñø	  °e 2 U9 @ G U ] q x † ˜ Ÿ ¦ ­  É Ð × Þ æ í ô  !!!%!4!;!ÊB!I!O!a!v!Š!‘! «!¢²!¸!Ì!&"å!õ!û!"""%","3";"P"c"$$j""†"H"”"›"¢"¨"¯"¶"½"Ô"#Û"á"ÿ"#k#%#=#N#U#b#i#€#˜# #¨#¯#¶#½#Ä#Þ#ï#ö#Fý#
$$$#$Ù+$1$B$J$Q$X$_$g$n$|$ƒ$—$ª$±$¸$¾$Å$Ì$ã$ê$%%%/%6%F%N%U%\%o%v%ˆ%%¤%«%É%â%ó%ú%&&&`#&*&2&A&H&X&_&ƒf&m&&ˆ&&–&œ&£&«&À&ºÇ&Î&Õ&Ü&ï&'''"'*'1'C'J'Q'X'ëk'crtstuff.c__JCR_LIST__deregister_tm_clones__do_global_dtors_auxcompleted.6972__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry_fblasmodule.ccomplex_double_from_pyobjnextforcombforcombcachecapi_kwlist.11169capi_kwlist.11147int_from_pyobj_fblas_errorcapi_kwlist.17022capi_kwlist.16973capi_kwlist.16924capi_kwlist.16875capi_kwlist.16825capi_kwlist.16771capi_kwlist.16717capi_kwlist.16663capi_kwlist.16610capi_kwlist.16560capi_kwlist.16510capi_kwlist.16460capi_kwlist.16409capi_kwlist.16359capi_kwlist.16309capi_kwlist.16259capi_kwlist.16210capi_kwlist.16161capi_kwlist.16112capi_kwlist.16063capi_kwlist.16013capi_kwlist.15959capi_kwlist.15905capi_kwlist.15851capi_kwlist.12942capi_kwlist.12911capi_kwlist.12880capi_kwlist.12849capi_kwlist.12818capi_kwlist.12786capi_kwlist.12754capi_kwlist.12722capi_kwlist.12690capi_kwlist.12658capi_kwlist.12626capi_kwlist.12594capi_kwlist.12357capi_kwlist.12308capi_kwlist.12069capi_kwlist.12024capi_kwlist.11979capi_kwlist.11934capi_kwlist.11703capi_kwlist.11660capi_kwlist.11617capi_kwlist.11574capi_kwlist.11529capi_kwlist.11475capi_kwlist.18753capi_kwlist.18699capi_kwlist.18482capi_kwlist.18254capi_kwlist.18130capi_kwlist.17898capi_kwlist.17800capi_kwlist.17588capi_kwlist.17464capi_kwlist.17214capi_kwlist.15738capi_kwlist.15432capi_kwlist.15233capi_kwlist.15005capi_kwlist.14913capi_kwlist.14348capi_kwlist.14098capi_kwlist.13972capi_kwlist.13714capi_kwlist.13431capi_kwlist.13138capi_kwlist.12213capi_kwlist.11799capi_kwlist.18537capi_kwlist.18316capi_kwlist.18192capi_kwlist.17947capi_kwlist.17849capi_kwlist.17650capi_kwlist.17526capi_kwlist.17278capi_kwlist.15797capi_kwlist.15476capi_kwlist.15295capi_kwlist.15051capi_kwlist.14959capi_kwlist.14410capi_kwlist.14161capi_kwlist.14035capi_kwlist.13782capi_kwlist.13508capi_kwlist.13204capi_kwlist.12261capi_kwlist.11830capi_kwlist.12557capi_kwlist.12507capi_kwlist.12457capi_kwlist.12407capi_kwlist.18645capi_kwlist.18591capi_kwlist.18372capi_kwlist.18006capi_kwlist.17702capi_kwlist.17340capi_kwlist.17086capi_kwlist.15620capi_kwlist.15520capi_kwlist.15344capi_kwlist.15109capi_kwlist.14821capi_kwlist.14224capi_kwlist.13846capi_kwlist.13578capi_kwlist.13277capi_kwlist.13006capi_kwlist.12117capi_kwlist.11862capi_kwlist.11737capi_kwlist.11372capi_kwlist.11270capi_kwlist.11197capi_kwlist.11105capi_kwlist.18427capi_kwlist.18068capi_kwlist.17751capi_kwlist.17402capi_kwlist.17150capi_kwlist.15679capi_kwlist.15564capi_kwlist.15388capi_kwlist.15171capi_kwlist.14867capi_kwlist.14286capi_kwlist.13909capi_kwlist.13646capi_kwlist.13354capi_kwlist.13072capi_kwlist.12165capi_kwlist.11894capi_kwlist.11768capi_kwlist.11423capi_kwlist.11321capi_kwlist.11225capi_kwlist.11125initforcomb.part.2.constprop.3capi_kwlist.14466capi_kwlist.14526capi_kwlist.14586capi_kwlist.14647capi_kwlist.14708capi_kwlist.14769moduledeff2py_routine_defsf2py_module_methodsdoc_f2py_rout__fblas_srotgdoc_f2py_rout__fblas_drotgdoc_f2py_rout__fblas_crotgdoc_f2py_rout__fblas_zrotgdoc_f2py_rout__fblas_srotmgdoc_f2py_rout__fblas_drotmgdoc_f2py_rout__fblas_srotdoc_f2py_rout__fblas_drotdoc_f2py_rout__fblas_csrotdoc_f2py_rout__fblas_zdrotdoc_f2py_rout__fblas_srotmdoc_f2py_rout__fblas_drotmdoc_f2py_rout__fblas_sswapdoc_f2py_rout__fblas_dswapdoc_f2py_rout__fblas_cswapdoc_f2py_rout__fblas_zswapdoc_f2py_rout__fblas_sscaldoc_f2py_rout__fblas_dscaldoc_f2py_rout__fblas_cscaldoc_f2py_rout__fblas_zscaldoc_f2py_rout__fblas_csscaldoc_f2py_rout__fblas_zdscaldoc_f2py_rout__fblas_scopydoc_f2py_rout__fblas_dcopydoc_f2py_rout__fblas_ccopydoc_f2py_rout__fblas_zcopydoc_f2py_rout__fblas_saxpydoc_f2py_rout__fblas_daxpydoc_f2py_rout__fblas_caxpydoc_f2py_rout__fblas_zaxpydoc_f2py_rout__fblas_sdotdoc_f2py_rout__fblas_ddotdoc_f2py_rout__fblas_cdotudoc_f2py_rout__fblas_zdotudoc_f2py_rout__fblas_cdotcdoc_f2py_rout__fblas_zdotcdoc_f2py_rout__fblas_snrm2doc_f2py_rout__fblas_scnrm2doc_f2py_rout__fblas_dnrm2doc_f2py_rout__fblas_dznrm2doc_f2py_rout__fblas_sasumdoc_f2py_rout__fblas_scasumdoc_f2py_rout__fblas_dasumdoc_f2py_rout__fblas_dzasumdoc_f2py_rout__fblas_isamaxdoc_f2py_rout__fblas_idamaxdoc_f2py_rout__fblas_icamaxdoc_f2py_rout__fblas_izamaxdoc_f2py_rout__fblas_sgemvdoc_f2py_rout__fblas_dgemvdoc_f2py_rout__fblas_cgemvdoc_f2py_rout__fblas_zgemvdoc_f2py_rout__fblas_sgbmvdoc_f2py_rout__fblas_dgbmvdoc_f2py_rout__fblas_cgbmvdoc_f2py_rout__fblas_zgbmvdoc_f2py_rout__fblas_ssbmvdoc_f2py_rout__fblas_dsbmvdoc_f2py_rout__fblas_chbmvdoc_f2py_rout__fblas_zhbmvdoc_f2py_rout__fblas_sspmvdoc_f2py_rout__fblas_dspmvdoc_f2py_rout__fblas_cspmvdoc_f2py_rout__fblas_zspmvdoc_f2py_rout__fblas_chpmvdoc_f2py_rout__fblas_zhpmvdoc_f2py_rout__fblas_ssymvdoc_f2py_rout__fblas_dsymvdoc_f2py_rout__fblas_chemvdoc_f2py_rout__fblas_zhemvdoc_f2py_rout__fblas_sgerdoc_f2py_rout__fblas_dgerdoc_f2py_rout__fblas_cgerudoc_f2py_rout__fblas_zgerudoc_f2py_rout__fblas_cgercdoc_f2py_rout__fblas_zgercdoc_f2py_rout__fblas_ssyrdoc_f2py_rout__fblas_dsyrdoc_f2py_rout__fblas_csyrdoc_f2py_rout__fblas_zsyrdoc_f2py_rout__fblas_cherdoc_f2py_rout__fblas_zherdoc_f2py_rout__fblas_ssyr2doc_f2py_rout__fblas_dsyr2doc_f2py_rout__fblas_cher2doc_f2py_rout__fblas_zher2doc_f2py_rout__fblas_ssprdoc_f2py_rout__fblas_dsprdoc_f2py_rout__fblas_csprdoc_f2py_rout__fblas_zsprdoc_f2py_rout__fblas_chprdoc_f2py_rout__fblas_zhprdoc_f2py_rout__fblas_sspr2doc_f2py_rout__fblas_dspr2doc_f2py_rout__fblas_chpr2doc_f2py_rout__fblas_zhpr2doc_f2py_rout__fblas_stbsvdoc_f2py_rout__fblas_dtbsvdoc_f2py_rout__fblas_ctbsvdoc_f2py_rout__fblas_ztbsvdoc_f2py_rout__fblas_stpsvdoc_f2py_rout__fblas_dtpsvdoc_f2py_rout__fblas_ctpsvdoc_f2py_rout__fblas_ztpsvdoc_f2py_rout__fblas_strmvdoc_f2py_rout__fblas_dtrmvdoc_f2py_rout__fblas_ctrmvdoc_f2py_rout__fblas_ztrmvdoc_f2py_rout__fblas_strsvdoc_f2py_rout__fblas_dtrsvdoc_f2py_rout__fblas_ctrsvdoc_f2py_rout__fblas_ztrsvdoc_f2py_rout__fblas_stbmvdoc_f2py_rout__fblas_dtbmvdoc_f2py_rout__fblas_ctbmvdoc_f2py_rout__fblas_ztbmvdoc_f2py_rout__fblas_stpmvdoc_f2py_rout__fblas_dtpmvdoc_f2py_rout__fblas_ctpmvdoc_f2py_rout__fblas_ztpmvdoc_f2py_rout__fblas_sgemmdoc_f2py_rout__fblas_dgemmdoc_f2py_rout__fblas_cgemmdoc_f2py_rout__fblas_zgemmdoc_f2py_rout__fblas_ssymmdoc_f2py_rout__fblas_dsymmdoc_f2py_rout__fblas_csymmdoc_f2py_rout__fblas_zsymmdoc_f2py_rout__fblas_chemmdoc_f2py_rout__fblas_zhemmdoc_f2py_rout__fblas_ssyrkdoc_f2py_rout__fblas_dsyrkdoc_f2py_rout__fblas_csyrkdoc_f2py_rout__fblas_zsyrkdoc_f2py_rout__fblas_cherkdoc_f2py_rout__fblas_zherkdoc_f2py_rout__fblas_ssyr2kdoc_f2py_rout__fblas_dsyr2kdoc_f2py_rout__fblas_csyr2kdoc_f2py_rout__fblas_zsyr2kdoc_f2py_rout__fblas_cher2kdoc_f2py_rout__fblas_zher2kdoc_f2py_rout__fblas_strmmdoc_f2py_rout__fblas_dtrmmdoc_f2py_rout__fblas_ctrmmdoc_f2py_rout__fblas_ztrmmdoc_f2py_rout__fblas_strsmdoc_f2py_rout__fblas_dtrsmdoc_f2py_rout__fblas_ctrsmdoc_f2py_rout__fblas_ztrsmfortranobject.cset_datasave_deffortran_reprformat_deffortran_dealloccheck_and_fix_dimensionsfortran_callfortran_setattrfortran_getattrwrap_dummy_g77_abi.f_fblas-f2pywrappers.f__FRAME_END____JCR_END__f2pywrapscasum_f2pywrapddot_f2pywrapsnrm2_f2pywrapdznrm2_f2pywrapdnrm2_f2pywrapdasum___GNU_EH_FRAME_HDR_finif2pywrapsasum__npy_f2py_ARRAY_API_GLOBAL_OFFSET_TABLE_f2pywrapsdot_f2pywrapscnrm2_wzdotc_f2pywrapcdotu_PyFortranObject_Newf2pywrapcdotc_F2PyCapsule_CheckPyFortran_Typearray_from_pyobjF2PyCapsule_AsVoidPtrcopy_ND_array__TMC_END__wcdotc___dso_handleF2PyDict_SetItemStringPyFortranObject_NewAsAttr__bss_startf2pywrapzdotc_f2pywrapdzasum_wzdotu__endwzladiv_wcdotu__edatawcladiv__DYNAMIC_initf2pywrapzdotu_F2PyCapsule_FromVoidPtrPyPyComplex_AsCComplexcgemv_cscal_PyPyMem_Freezspmv_dtrmm_zhpr_PyPyOS_snprintfmemset@@GLIBC_2.2.5zherk_sspmv_cswap_dswap_dgemm_PyPyExc_AttributeErrorcsyr_ztrmv_zgbmv_ctbsv_PyPyComplex_Checkdger_PyPyType_Type__gmon_start___Jv_RegisterClassesdtpsv_sspr_cher_caxpy_ztpsv_zdrot_zscal_PyPyCapsule_Typesswap_PyInit__fblasPyPyFloat_AS_DOUBLEctpsv_daxpy_ctrsv__PyPy_Deallocizamax_malloc@@GLIBC_2.2.5drotg_PyPyErr_PrintPyPyExc_TypeErrordsymm_zhpr2_stpsv_PyPySequence_GetItemssbmv_cgbmv_crotg_zhbmv_srotmg_cgemm_dtpmv__ITM_deregisterTMCloneTablechemv_ssyr2_ctbmv_PyPyErr_Formatsaxpy_drotm_ctrmm_zspr_free@@GLIBC_2.2.5PyPyExc_RuntimeErrorstrlen@@GLIBC_2.2.5ztbsv__ITM_registerTMCloneTabledtrsv_dsyr_PyPyExc_ImportErrorPyPyObject_SetAttrString_PyPyObject_Newzsyr___cxa_finalize@@GLIBC_2.2.5ccopy_zgeru_csrot_zhpmv_csyr2k_sprintf@@GLIBC_2.2.5PyPyModule_Create2ctrsm_PyPyErr_NewExceptioncgerc_dcopy_zgemm_cspmv_sgbmv_cspr_sspr2_ztrsv_cgeru_PyPyDict_GetItemStringdgbmv_chpr_PyPyUnicode_FromStringAndSizezdscal_PyPyDict_SetItemStringstrmm_PyPyComplex_FromDoublesPyPyErr_Occurredssymm_PyPyDict_Newzgemv_PyPyUnicode_FromFormatPyPyImport_ImportModuleisamax_drotmg_zsyrk_stbsv_strsv_srotg_PyPyObject_GenericGetAttrPyPyErr_NoMemorysgemm_scopy_PyPyLong_AsLongzrotg_dsyr2k_dsyrk_csscal_ssyr__PyPy_NoneStructssyr2k_dspr2_zher2_dtrsm_idamax_dtbsv_PyPyErr_Clearctrmv_strcmp@@GLIBC_2.2.5PyPyModule_GetDictstrmv_zaxpy_zher_ssymv_zhemm_PyPyDict_DelItemStringdtrmv_PyPyCapsule_GetPointerPyPyCapsule_Newzgerc_PyPyUnicode_FromStringchemm_PyPyNumber_Longzher2k_ztpmv_zswap_PyPyType_IsSubtypedspmv_PyPyUnicode_CheckPyPyBytes_FromStringzsymm_ztrmm_PyPyArg_ParseTupleAndKeywordsPyPyObject_GetAttrStringPyPyNumber_Floatdtbmv_dgemv_sgemv_chpr2_stderr@@GLIBC_2.2.5ctpmv_cher2k_PyPyMem_Malloccsymm_PyPy_BuildValueztrsm_cherk_dsbmv_fwrite@@GLIBC_2.2.5csyrk_stpmv_chpmv_sger_cher2_zsyr2k_fprintf@@GLIBC_2.2.5strsm_stbmv_chbmv_dsyr2_PyPyUnicode_ConcatPyPyExc_ValueErrormemcpy@@GLIBC_2.14zcopy_dspr_icamax_dsymv_PyPyErr_SetStringzhemv_ssyrk_srotm_PyPySequence_Checkztbmv_.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.dynamic.got.plt.data.bss.comment.debug_aranges.debug_info.debug_abbrev.debug_line.debug_str.debug_locÈÈ$.öÿÿoðð$8ˆ@  .	HÿÿÿoÎζUþÿÿoˆ!ˆ!0d¸!¸!ø¯nB°Ñ°Ñøx¨Ö¨ÖsÀÖÀÖ`~ Ú Úx‡ Ú Ú^À8À8	“Ð8Ð80¤›ÝÝ© ã ãTR³È<&È<¿Ð<&Ð<ËØ<&Ø<Ðà<&à<@‚ ?& ?àÙ@&@ÀâÀA&ÀA`X è š( š€ í0 š-öMš`­šì™©Cܪ“+0o¬ò6a±”øÌÀH!.	¸	r'*=	A