"""Simplex method for linear programming
The *simplex* method uses a traditional, full-tableau implementation of
Dantzig's simplex algorithm [1]_, [2]_ (*not* the Nelder-Mead simplex).
This algorithm is included for backwards compatibility and educational
purposes.
.. versionadded:: 0.15.0
Warnings
--------
The simplex method may encounter numerical difficulties when pivot
values are close to the specified tolerance. If encountered try
remove any redundant constraints, change the pivot strategy to Bland's
rule or increase the tolerance value.
Alternatively, more robust methods maybe be used. See
:ref:`'interior-point' <optimize.linprog-interior-point>` and
:ref:`'revised simplex' <optimize.linprog-revised_simplex>`.
References
----------
.. [1] Dantzig, George B., Linear programming and extensions. Rand
Corporation Research Study Princeton Univ. Press, Princeton, NJ,
1963
.. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
Mathematical Programming", McGraw-Hill, Chapter 4.
"""
import numpy as np
from warnings import warn
from .optimize import OptimizeResult, OptimizeWarning, _check_unknown_options
from ._linprog_util import _postsolve
def _pivot_col(T, tol=1.0E-12, bland=False):
"""
Given a linear programming simplex tableau, determine the column
of the variable to enter the basis.
Parameters
----------
T : 2D array
A 2D array representing the simplex tableau, T, corresponding to the
linear programming problem. It should have the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0]]
for a Phase 2 problem, or the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0],
[c'[0], c'[1], ..., c'[n_total], 0]]
for a Phase 1 problem (a problem in which a basic feasible solution is
sought prior to maximizing the actual objective. ``T`` is modified in
place by ``_solve_simplex``.
tol : float
Elements in the objective row larger than -tol will not be considered
for pivoting. Nominally this value is zero, but numerical issues
cause a tolerance about zero to be necessary.
bland : bool
If True, use Bland's rule for selection of the column (select the
first column with a negative coefficient in the objective row,
regardless of magnitude).
Returns
-------
status: bool
True if a suitable pivot column was found, otherwise False.
A return of False indicates that the linear programming simplex
algorithm is complete.
col: int
The index of the column of the pivot element.
If status is False, col will be returned as nan.
"""
ma = np.ma.masked_where(T[-1, :-1] >= -tol, T[-1, :-1], copy=False)
if ma.count() == 0:
return False, np.nan
if bland:
# ma.mask is sometimes 0d
return True, np.nonzero(np.logical_not(np.atleast_1d(ma.mask)))[0][0]
return True, np.ma.nonzero(ma == ma.min())[0][0]
def _pivot_row(T, basis, pivcol, phase, tol=1.0E-12, bland=False):
"""
Given a linear programming simplex tableau, determine the row for the
pivot operation.
Parameters
----------
T : 2D array
A 2D array representing the simplex tableau, T, corresponding to the
linear programming problem. It should have the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0]]
for a Phase 2 problem, or the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0],
[c'[0], c'[1], ..., c'[n_total], 0]]
for a Phase 1 problem (a Problem in which a basic feasible solution is
sought prior to maximizing the actual objective. ``T`` is modified in
place by ``_solve_simplex``.
basis : array
A list of the current basic variables.
pivcol : int
The index of the pivot column.
phase : int
The phase of the simplex algorithm (1 or 2).
tol : float
Elements in the pivot column smaller than tol will not be considered
for pivoting. Nominally this value is zero, but numerical issues
cause a tolerance about zero to be necessary.
bland : bool
If True, use Bland's rule for selection of the row (if more than one
row can be used, choose the one with the lowest variable index).
Returns
-------
status: bool
True if a suitable pivot row was found, otherwise False. A return
of False indicates that the linear programming problem is unbounded.
row: int
The index of the row of the pivot element. If status is False, row
will be returned as nan.
"""
if phase == 1:
k = 2
else:
k = 1
ma = np.ma.masked_where(T[:-k, pivcol] <= tol, T[:-k, pivcol], copy=False)
if ma.count() == 0:
return False, np.nan
mb = np.ma.masked_where(T[:-k, pivcol] <= tol, T[:-k, -1], copy=False)
q = mb / ma
min_rows = np.ma.nonzero(q == q.min())[0]
if bland:
return True, min_rows[np.argmin(np.take(basis, min_rows))]
return True, min_rows[0]
def _apply_pivot(T, basis, pivrow, pivcol, tol=1e-12):
"""
Pivot the simplex tableau inplace on the element given by (pivrow, pivol).
The entering variable corresponds to the column given by pivcol forcing
the variable basis[pivrow] to leave the basis.
Parameters
----------
T : 2D array
A 2D array representing the simplex tableau, T, corresponding to the
linear programming problem. It should have the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0]]
for a Phase 2 problem, or the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0],
[c'[0], c'[1], ..., c'[n_total], 0]]
for a Phase 1 problem (a problem in which a basic feasible solution is
sought prior to maximizing the actual objective. ``T`` is modified in
place by ``_solve_simplex``.
basis : 1D array
An array of the indices of the basic variables, such that basis[i]
contains the column corresponding to the basic variable for row i.
Basis is modified in place by _apply_pivot.
pivrow : int
Row index of the pivot.
pivcol : int
Column index of the pivot.
"""
basis[pivrow] = pivcol
pivval = T[pivrow, pivcol]
T[pivrow] = T[pivrow] / pivval
for irow in range(T.shape[0]):
if irow != pivrow:
T[irow] = T[irow] - T[pivrow] * T[irow, pivcol]
# The selected pivot should never lead to a pivot value less than the tol.
if np.isclose(pivval, tol, atol=0, rtol=1e4):
message = (
"The pivot operation produces a pivot value of:{0: .1e}, "
"which is only slightly greater than the specified "
"tolerance{1: .1e}. This may lead to issues regarding the "
"numerical stability of the simplex method. "
"Removing redundant constraints, changing the pivot strategy "
"via Bland's rule or increasing the tolerance may "
"help reduce the issue.".format(pivval, tol))
warn(message, OptimizeWarning)
def _solve_simplex(T, n, basis, maxiter=1000, phase=2, status=0, message='',
callback=None, tol=1.0E-12, nit0=0, bland=False, _T_o=None):
"""
Solve a linear programming problem in "standard form" using the Simplex
Method. Linear Programming is intended to solve the following problem form:
Minimize::
c @ x
Subject to::
A @ x == b
x >= 0
Parameters
----------
T : 2D array
A 2D array representing the simplex tableau, T, corresponding to the
linear programming problem. It should have the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0]]
for a Phase 2 problem, or the form:
[[A[0, 0], A[0, 1], ..., A[0, n_total], b[0]],
[A[1, 0], A[1, 1], ..., A[1, n_total], b[1]],
.
.
.
[A[m, 0], A[m, 1], ..., A[m, n_total], b[m]],
[c[0], c[1], ..., c[n_total], 0],
[c'[0], c'[1], ..., c'[n_total], 0]]
for a Phase 1 problem (a problem in which a basic feasible solution is
sought prior to maximizing the actual objective. ``T`` is modified in
place by ``_solve_simplex``.
n : int
The number of true variables in the problem.
basis : 1D array
An array of the indices of the basic variables, such that basis[i]
contains the column corresponding to the basic variable for row i.
Basis is modified in place by _solve_simplex
maxiter : int
The maximum number of iterations to perform before aborting the
optimization.
phase : int
The phase of the optimization being executed. In phase 1 a basic
feasible solution is sought and the T has an additional row
representing an alternate objective function.
callback : callable, optional
If a callback function is provided, it will be called within each
iteration of the algorithm. The callback must accept a
`scipy.optimize.OptimizeResult` consisting of the following fields:
x : 1D array
Current solution vector
fun : float
Current value of the objective function
success : bool
True only when a phase has completed successfully. This
will be False for most iterations.
slack : 1D array
The values of the slack variables. Each slack variable
corresponds to an inequality constraint. If the slack is zero,
the corresponding constraint is active.
con : 1D array
The (nominally zero) residuals of the equality constraints,
that is, ``b - A_eq @ x``
phase : int
The phase of the optimization being executed. In phase 1 a basic
feasible solution is sought and the T has an additional row
representing an alternate objective function.
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered
nit : int
The number of iterations performed.
message : str
A string descriptor of the exit status of the optimization.
tol : float
The tolerance which determines when a solution is "close enough" to
zero in Phase 1 to be considered a basic feasible solution or close
enough to positive to serve as an optimal solution.
nit0 : int
The initial iteration number used to keep an accurate iteration total
in a two-phase problem.
bland : bool
If True, choose pivots using Bland's rule [3]_. In problems which
fail to converge due to cycling, using Bland's rule can provide
convergence at the expense of a less optimal path about the simplex.
Returns
-------
nit : int
The number of iterations. Used to keep an accurate iteration total
in the two-phase problem.
status : int
An integer representing the exit status of the optimization::
0 : Optimization terminated successfully
1 : Iteration limit reached
Loading ...