"""
shgo: The simplicial homology global optimisation algorithm
"""
from __future__ import division, print_function, absolute_import
import numpy as np
import time
import logging
import warnings
from scipy import spatial
from scipy.optimize import OptimizeResult, minimize
from scipy.optimize._shgo_lib import sobol_seq
from scipy.optimize._shgo_lib.triangulation import Complex
__all__ = ['shgo']
def shgo(func, bounds, args=(), constraints=None, n=100, iters=1, callback=None,
minimizer_kwargs=None, options=None, sampling_method='simplicial'):
"""
Finds the global minimum of a function using SHG optimization.
SHGO stands for "simplicial homology global optimization".
Parameters
----------
func : callable
The objective function to be minimized. Must be in the form
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
and ``args`` is a tuple of any additional fixed parameters needed to
completely specify the function.
bounds : sequence
Bounds for variables. ``(min, max)`` pairs for each element in ``x``,
defining the lower and upper bounds for the optimizing argument of
`func`. It is required to have ``len(bounds) == len(x)``.
``len(bounds)`` is used to determine the number of parameters in ``x``.
Use ``None`` for one of min or max when there is no bound in that
direction. By default bounds are ``(None, None)``.
args : tuple, optional
Any additional fixed parameters needed to completely specify the
objective function.
constraints : dict or sequence of dict, optional
Constraints definition.
Function(s) ``R**n`` in the form::
g(x) <= 0 applied as g : R^n -> R^m
h(x) == 0 applied as h : R^n -> R^p
Each constraint is defined in a dictionary with fields:
type : str
Constraint type: 'eq' for equality, 'ineq' for inequality.
fun : callable
The function defining the constraint.
jac : callable, optional
The Jacobian of `fun` (only for SLSQP).
args : sequence, optional
Extra arguments to be passed to the function and Jacobian.
Equality constraint means that the constraint function result is to
be zero whereas inequality means that it is to be non-negative.
Note that COBYLA only supports inequality constraints.
.. note::
Only the COBYLA and SLSQP local minimize methods currently
support constraint arguments. If the ``constraints`` sequence
used in the local optimization problem is not defined in
``minimizer_kwargs`` and a constrained method is used then the
global ``constraints`` will be used.
(Defining a ``constraints`` sequence in ``minimizer_kwargs``
means that ``constraints`` will not be added so if equality
constraints and so forth need to be added then the inequality
functions in ``constraints`` need to be added to
``minimizer_kwargs`` too).
n : int, optional
Number of sampling points used in the construction of the simplicial
complex. Note that this argument is only used for ``sobol`` and other
arbitrary `sampling_methods`.
iters : int, optional
Number of iterations used in the construction of the simplicial complex.
callback : callable, optional
Called after each iteration, as ``callback(xk)``, where ``xk`` is the
current parameter vector.
minimizer_kwargs : dict, optional
Extra keyword arguments to be passed to the minimizer
``scipy.optimize.minimize`` Some important options could be:
* method : str
The minimization method (e.g. ``SLSQP``).
* args : tuple
Extra arguments passed to the objective function (``func``) and
its derivatives (Jacobian, Hessian).
* options : dict, optional
Note that by default the tolerance is specified as
``{ftol: 1e-12}``
options : dict, optional
A dictionary of solver options. Many of the options specified for the
global routine are also passed to the scipy.optimize.minimize routine.
The options that are also passed to the local routine are marked with
"(L)".
Stopping criteria, the algorithm will terminate if any of the specified
criteria are met. However, the default algorithm does not require any to
be specified:
* maxfev : int (L)
Maximum number of function evaluations in the feasible domain.
(Note only methods that support this option will terminate
the routine at precisely exact specified value. Otherwise the
criterion will only terminate during a global iteration)
* f_min
Specify the minimum objective function value, if it is known.
* f_tol : float
Precision goal for the value of f in the stopping
criterion. Note that the global routine will also
terminate if a sampling point in the global routine is
within this tolerance.
* maxiter : int
Maximum number of iterations to perform.
* maxev : int
Maximum number of sampling evaluations to perform (includes
searching in infeasible points).
* maxtime : float
Maximum processing runtime allowed
* minhgrd : int
Minimum homology group rank differential. The homology group of the
objective function is calculated (approximately) during every
iteration. The rank of this group has a one-to-one correspondence
with the number of locally convex subdomains in the objective
function (after adequate sampling points each of these subdomains
contain a unique global minimum). If the difference in the hgr is 0
between iterations for ``maxhgrd`` specified iterations the
algorithm will terminate.
Objective function knowledge:
* symmetry : bool
Specify True if the objective function contains symmetric variables.
The search space (and therefore performance) is decreased by O(n!).
* jac : bool or callable, optional
Jacobian (gradient) of objective function. Only for CG, BFGS,
Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg. If ``jac`` is a
boolean and is True, ``fun`` is assumed to return the gradient along
with the objective function. If False, the gradient will be
estimated numerically. ``jac`` can also be a callable returning the
gradient of the objective. In this case, it must accept the same
arguments as ``fun``. (Passed to `scipy.optimize.minmize` automatically)
* hess, hessp : callable, optional
Hessian (matrix of second-order derivatives) of objective function
or Hessian of objective function times an arbitrary vector p.
Only for Newton-CG, dogleg, trust-ncg. Only one of ``hessp`` or
``hess`` needs to be given. If ``hess`` is provided, then
``hessp`` will be ignored. If neither ``hess`` nor ``hessp`` is
provided, then the Hessian product will be approximated using
finite differences on ``jac``. ``hessp`` must compute the Hessian
times an arbitrary vector. (Passed to `scipy.optimize.minmize`
automatically)
Algorithm settings:
* minimize_every_iter : bool
If True then promising global sampling points will be passed to a
local minimisation routine every iteration. If False then only the
final minimiser pool will be run. Defaults to False.
* local_iter : int
Only evaluate a few of the best minimiser pool candidates every
iteration. If False all potential points are passed to the local
minimisation routine.
* infty_constraints: bool
If True then any sampling points generated which are outside will
the feasible domain will be saved and given an objective function
value of ``inf``. If False then these points will be discarded.
Using this functionality could lead to higher performance with
respect to function evaluations before the global minimum is found,
specifying False will use less memory at the cost of a slight
decrease in performance. Defaults to True.
Feedback:
* disp : bool (L)
Set to True to print convergence messages.
sampling_method : str or function, optional
Current built in sampling method options are ``sobol`` and
``simplicial``. The default ``simplicial`` uses less memory and provides
the theoretical guarantee of convergence to the global minimum in finite
time. The ``sobol`` method is faster in terms of sampling point
generation at the cost of higher memory resources and the loss of
guaranteed convergence. It is more appropriate for most "easier"
problems where the convergence is relatively fast.
User defined sampling functions must accept two arguments of ``n``
sampling points of dimension ``dim`` per call and output an array of
sampling points with shape `n x dim`.
Returns
-------
res : OptimizeResult
The optimization result represented as a `OptimizeResult` object.
Important attributes are:
``x`` the solution array corresponding to the global minimum,
``fun`` the function output at the global solution,
``xl`` an ordered list of local minima solutions,
``funl`` the function output at the corresponding local solutions,
``success`` a Boolean flag indicating if the optimizer exited
successfully,
``message`` which describes the cause of the termination,
``nfev`` the total number of objective function evaluations including
the sampling calls,
``nlfev`` the total number of objective function evaluations
culminating from all local search optimisations,
``nit`` number of iterations performed by the global routine.
Notes
-----
Global optimization using simplicial homology global optimisation [1]_.
Appropriate for solving general purpose NLP and blackbox optimisation
problems to global optimality (low dimensional problems).
In general, the optimization problems are of the form::
minimize f(x) subject to
g_i(x) >= 0, i = 1,...,m
h_j(x) = 0, j = 1,...,p
where x is a vector of one or more variables. ``f(x)`` is the objective
function ``R^n -> R``, ``g_i(x)`` are the inequality constraints, and
``h_j(x)`` are the equality constraints.
Optionally, the lower and upper bounds for each element in x can also be
specified using the `bounds` argument.
While most of the theoretical advantages of SHGO are only proven for when
``f(x)`` is a Lipschitz smooth function. The algorithm is also proven to
converge to the global optimum for the more general case where ``f(x)`` is
non-continuous, non-convex and non-smooth, if the default sampling method
is used [1]_.
The local search method may be specified using the ``minimizer_kwargs``
parameter which is passed on to ``scipy.optimize.minimize``. By default
the ``SLSQP`` method is used. In general it is recommended to use the
``SLSQP`` or ``COBYLA`` local minimization if inequality constraints
are defined for the problem since the other methods do not use constraints.
The ``sobol`` method points are generated using the Sobol (1967) [2]_
sequence. The primitive polynomials and various sets of initial direction
numbers for generating Sobol sequences is provided by [3]_ by Frances Kuo
and Stephen Joe. The original program sobol.cc (MIT) is available and
described at http://web.maths.unsw.edu.au/~fkuo/sobol/ translated to
Python 3 by Carl Sandrock 2016-03-31.
References
----------
.. [1] Endres, SC, Sandrock, C, Focke, WW (2018) "A simplicial homology
algorithm for lipschitz optimisation", Journal of Global Optimization.
.. [2] Sobol, IM (1967) "The distribution of points in a cube and the
approximate evaluation of integrals", USSR Comput. Math. Math. Phys.
7, 86-112.
.. [3] Joe, SW and Kuo, FY (2008) "Constructing Sobol sequences with
better two-dimensional projections", SIAM J. Sci. Comput. 30,
2635-2654.
.. [4] Hoch, W and Schittkowski, K (1981) "Test examples for nonlinear
programming codes", Lecture Notes in Economics and mathematical
Systems, 187. Springer-Verlag, New York.
http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf
.. [5] Wales, DJ (2015) "Perspective: Insight into reaction coordinates and
dynamics from the potential energy landscape",
Journal of Chemical Physics, 142(13), 2015.
Examples
--------
First consider the problem of minimizing the Rosenbrock function, `rosen`:
>>> from scipy.optimize import rosen, shgo
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = shgo(rosen, bounds)
>>> result.x, result.fun
(array([ 1., 1., 1., 1., 1.]), 2.9203923741900809e-18)
Note that bounds determine the dimensionality of the objective
function and is therefore a required input, however you can specify
empty bounds using ``None`` or objects like ``np.inf`` which will be
converted to large float numbers.
>>> bounds = [(None, None), ]*4
>>> result = shgo(rosen, bounds)
>>> result.x
array([ 0.99999851, 0.99999704, 0.99999411, 0.9999882 ])
Next we consider the Eggholder function, a problem with several local
minima and one global minimum. We will demonstrate the use of arguments and
the capabilities of `shgo`.
(https://en.wikipedia.org/wiki/Test_functions_for_optimization)
>>> def eggholder(x):
... return (-(x[1] + 47.0)
... * np.sin(np.sqrt(abs(x[0]/2.0 + (x[1] + 47.0))))
... - x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47.0))))
... )
...
>>> bounds = [(-512, 512), (-512, 512)]
`shgo` has two built-in low discrepancy sampling sequences. First we will
input 30 initial sampling points of the Sobol sequence:
>>> result = shgo(eggholder, bounds, n=30, sampling_method='sobol')
>>> result.x, result.fun
(array([ 512. , 404.23180542]), -959.64066272085051)
`shgo` also has a return for any other local minima that was found, these
can be called using:
>>> result.xl
array([[ 512. , 404.23180542],
[ 283.07593402, -487.12566542],
[-294.66820039, -462.01964031],
[-105.87688985, 423.15324143],
[-242.97923629, 274.38032063],
[-506.25823477, 6.3131022 ],
[-408.71981195, -156.10117154],
[ 150.23210485, 301.31378508],
[ 91.00922754, -391.28375925],
[ 202.8966344 , -269.38042147],
[ 361.66625957, -106.96490692],
[-219.40615102, -244.06022436],
[ 151.59603137, -100.61082677]])
>>> result.funl
array([-959.64066272, -718.16745962, -704.80659592, -565.99778097,
-559.78685655, -557.36868733, -507.87385942, -493.9605115 ,
-426.48799655, -421.15571437, -419.31194957, -410.98477763,
-202.53912972])
These results are useful in applications where there are many global minima
and the values of other global minima are desired or where the local minima
can provide insight into the system (for example morphologies
in physical chemistry [5]_).
Loading ...