"""Trust-region interior point method.
References
----------
.. [1] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal.
"An interior point algorithm for large-scale nonlinear
programming." SIAM Journal on Optimization 9.4 (1999): 877-900.
.. [2] Byrd, Richard H., Guanghui Liu, and Jorge Nocedal.
"On the local behavior of an interior point method for
nonlinear programming." Numerical analysis 1997 (1997): 37-56.
.. [3] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
from __future__ import division, print_function, absolute_import
import scipy.sparse as sps
import numpy as np
from .equality_constrained_sqp import equality_constrained_sqp
from scipy.sparse.linalg import LinearOperator
__all__ = ['tr_interior_point']
class BarrierSubproblem:
"""
Barrier optimization problem:
minimize fun(x) - barrier_parameter*sum(log(s))
subject to: constr_eq(x) = 0
constr_ineq(x) + s = 0
"""
def __init__(self, x0, s0, fun, grad, lagr_hess, n_vars, n_ineq, n_eq,
constr, jac, barrier_parameter, tolerance,
enforce_feasibility, global_stop_criteria,
xtol, fun0, grad0, constr_ineq0, jac_ineq0, constr_eq0,
jac_eq0):
# Store parameters
self.n_vars = n_vars
self.x0 = x0
self.s0 = s0
self.fun = fun
self.grad = grad
self.lagr_hess = lagr_hess
self.constr = constr
self.jac = jac
self.barrier_parameter = barrier_parameter
self.tolerance = tolerance
self.n_eq = n_eq
self.n_ineq = n_ineq
self.enforce_feasibility = enforce_feasibility
self.global_stop_criteria = global_stop_criteria
self.xtol = xtol
self.fun0 = self._compute_function(fun0, constr_ineq0, s0)
self.grad0 = self._compute_gradient(grad0)
self.constr0 = self._compute_constr(constr_ineq0, constr_eq0, s0)
self.jac0 = self._compute_jacobian(jac_eq0, jac_ineq0, s0)
self.terminate = False
def update(self, barrier_parameter, tolerance):
self.barrier_parameter = barrier_parameter
self.tolerance = tolerance
def get_slack(self, z):
return z[self.n_vars:self.n_vars+self.n_ineq]
def get_variables(self, z):
return z[:self.n_vars]
def function_and_constraints(self, z):
"""Returns barrier function and constraints at given point.
For z = [x, s], returns barrier function:
function(z) = fun(x) - barrier_parameter*sum(log(s))
and barrier constraints:
constraints(z) = [ constr_eq(x) ]
[ constr_ineq(x) + s ]
"""
# Get variables and slack variables
x = self.get_variables(z)
s = self.get_slack(z)
# Compute function and constraints
f = self.fun(x)
c_eq, c_ineq = self.constr(x)
# Return objective function and constraints
return (self._compute_function(f, c_ineq, s),
self._compute_constr(c_ineq, c_eq, s))
def _compute_function(self, f, c_ineq, s):
# Use technique from Nocedal and Wright book, ref [3]_, p.576,
# to guarantee constraints from `enforce_feasibility`
# stay feasible along iterations.
s[self.enforce_feasibility] = -c_ineq[self.enforce_feasibility]
log_s = [np.log(s_i) if s_i > 0 else -np.inf for s_i in s]
# Compute barrier objective function
return f - self.barrier_parameter*np.sum(log_s)
def _compute_constr(self, c_ineq, c_eq, s):
# Compute barrier constraint
return np.hstack((c_eq,
c_ineq + s))
def scaling(self, z):
"""Returns scaling vector.
Given by:
scaling = [ones(n_vars), s]
"""
s = self.get_slack(z)
diag_elements = np.hstack((np.ones(self.n_vars), s))
# Diagonal Matrix
def matvec(vec):
return diag_elements*vec
return LinearOperator((self.n_vars+self.n_ineq,
self.n_vars+self.n_ineq),
matvec)
def gradient_and_jacobian(self, z):
"""Returns scaled gradient.
Return scaled gradient:
gradient = [ grad(x) ]
[ -barrier_parameter*ones(n_ineq) ]
and scaled Jacobian Matrix:
jacobian = [ jac_eq(x) 0 ]
[ jac_ineq(x) S ]
Both of them scaled by the previously defined scaling factor.
"""
# Get variables and slack variables
x = self.get_variables(z)
s = self.get_slack(z)
# Compute first derivatives
g = self.grad(x)
J_eq, J_ineq = self.jac(x)
# Return gradient and jacobian
return (self._compute_gradient(g),
self._compute_jacobian(J_eq, J_ineq, s))
def _compute_gradient(self, g):
return np.hstack((g, -self.barrier_parameter*np.ones(self.n_ineq)))
def _compute_jacobian(self, J_eq, J_ineq, s):
if self.n_ineq == 0:
return J_eq
else:
if sps.issparse(J_eq) or sps.issparse(J_ineq):
# It is expected that J_eq and J_ineq
# are already `csr_matrix` because of
# the way ``BoxConstraint``, ``NonlinearConstraint``
# and ``LinearConstraint`` are defined.
J_eq = sps.csr_matrix(J_eq)
J_ineq = sps.csr_matrix(J_ineq)
return self._assemble_sparse_jacobian(J_eq, J_ineq, s)
else:
S = np.diag(s)
zeros = np.zeros((self.n_eq, self.n_ineq))
# Convert to matrix
if sps.issparse(J_ineq):
J_ineq = J_ineq.toarray()
if sps.issparse(J_eq):
J_eq = J_eq.toarray()
# Concatenate matrices
return np.block([[J_eq, zeros],
[J_ineq, S]])
def _assemble_sparse_jacobian(self, J_eq, J_ineq, s):
"""Assemble sparse jacobian given its components.
Given ``J_eq``, ``J_ineq`` and ``s`` returns:
jacobian = [ J_eq, 0 ]
[ J_ineq, diag(s) ]
It is equivalent to:
sps.bmat([[ J_eq, None ],
[ J_ineq, diag(s) ]], "csr")
but significantly more efficient for this
given structure.
"""
n_vars, n_ineq, n_eq = self.n_vars, self.n_ineq, self.n_eq
J_aux = sps.vstack([J_eq, J_ineq], "csr")
indptr, indices, data = J_aux.indptr, J_aux.indices, J_aux.data
new_indptr = indptr + np.hstack((np.zeros(n_eq, dtype=int),
np.arange(n_ineq+1, dtype=int)))
size = indices.size+n_ineq
new_indices = np.empty(size)
new_data = np.empty(size)
mask = np.full(size, False, bool)
mask[new_indptr[-n_ineq:]-1] = True
new_indices[mask] = n_vars+np.arange(n_ineq)
new_indices[~mask] = indices
new_data[mask] = s
new_data[~mask] = data
J = sps.csr_matrix((new_data, new_indices, new_indptr),
(n_eq + n_ineq, n_vars + n_ineq))
return J
def lagrangian_hessian_x(self, z, v):
"""Returns Lagrangian Hessian (in relation to `x`) -> Hx"""
x = self.get_variables(z)
# Get lagrange multipliers relatated to nonlinear equality constraints
v_eq = v[:self.n_eq]
# Get lagrange multipliers relatated to nonlinear ineq. constraints
v_ineq = v[self.n_eq:self.n_eq+self.n_ineq]
lagr_hess = self.lagr_hess
return lagr_hess(x, v_eq, v_ineq)
def lagrangian_hessian_s(self, z, v):
"""Returns scaled Lagrangian Hessian (in relation to`s`) -> S Hs S"""
s = self.get_slack(z)
# Using the primal formulation:
# S Hs S = diag(s)*diag(barrier_parameter/s**2)*diag(s).
# Reference [1]_ p. 882, formula (3.1)
primal = self.barrier_parameter
# Using the primal-dual formulation
# S Hs S = diag(s)*diag(v/s)*diag(s)
# Reference [1]_ p. 883, formula (3.11)
primal_dual = v[-self.n_ineq:]*s
# Uses the primal-dual formulation for
# positives values of v_ineq, and primal
# formulation for the remaining ones.
return np.where(v[-self.n_ineq:] > 0, primal_dual, primal)
def lagrangian_hessian(self, z, v):
"""Returns scaled Lagrangian Hessian"""
# Compute Hessian in relation to x and s
Hx = self.lagrangian_hessian_x(z, v)
if self.n_ineq > 0:
S_Hs_S = self.lagrangian_hessian_s(z, v)
# The scaled Lagragian Hessian is:
# [ Hx 0 ]
# [ 0 S Hs S ]
def matvec(vec):
vec_x = self.get_variables(vec)
vec_s = self.get_slack(vec)
if self.n_ineq > 0:
return np.hstack((Hx.dot(vec_x), S_Hs_S*vec_s))
else:
return Hx.dot(vec_x)
return LinearOperator((self.n_vars+self.n_ineq,
self.n_vars+self.n_ineq),
matvec)
def stop_criteria(self, state, z, last_iteration_failed,
optimality, constr_violation,
trust_radius, penalty, cg_info):
"""Stop criteria to the barrier problem.
The criteria here proposed is similar to formula (2.3)
from [1]_, p.879.
"""
x = self.get_variables(z)
if self.global_stop_criteria(state, x,
last_iteration_failed,
trust_radius, penalty,
cg_info,
self.barrier_parameter,
self.tolerance):
self.terminate = True
return True
else:
g_cond = (optimality < self.tolerance and
constr_violation < self.tolerance)
x_cond = trust_radius < self.xtol
return g_cond or x_cond
def tr_interior_point(fun, grad, lagr_hess, n_vars, n_ineq, n_eq,
constr, jac, x0, fun0, grad0,
constr_ineq0, jac_ineq0, constr_eq0,
jac_eq0, stop_criteria,
enforce_feasibility, xtol, state,
initial_barrier_parameter,
initial_tolerance,
initial_penalty,
initial_trust_radius,
factorization_method):
"""Trust-region interior points method.
Solve problem:
minimize fun(x)
subject to: constr_ineq(x) <= 0
constr_eq(x) = 0
using trust-region interior point method described in [1]_.
"""
# BOUNDARY_PARAMETER controls the decrease on the slack
# variables. Represents ``tau`` from [1]_ p.885, formula (3.18).
BOUNDARY_PARAMETER = 0.995
# BARRIER_DECAY_RATIO controls the decay of the barrier parameter
# and of the subproblem toloerance. Represents ``theta`` from [1]_ p.879.
BARRIER_DECAY_RATIO = 0.2
# TRUST_ENLARGEMENT controls the enlargement on trust radius
# after each iteration
TRUST_ENLARGEMENT = 5
# Default enforce_feasibility
if enforce_feasibility is None:
enforce_feasibility = np.zeros(n_ineq, bool)
# Initial Values
barrier_parameter = initial_barrier_parameter
tolerance = initial_tolerance
trust_radius = initial_trust_radius
# Define initial value for the slack variables
s0 = np.maximum(-1.5*constr_ineq0, np.ones(n_ineq))
# Define barrier subproblem
subprob = BarrierSubproblem(
x0, s0, fun, grad, lagr_hess, n_vars, n_ineq, n_eq, constr, jac,
barrier_parameter, tolerance, enforce_feasibility,
stop_criteria, xtol, fun0, grad0, constr_ineq0, jac_ineq0,
constr_eq0, jac_eq0)
# Define initial parameter for the first iteration.
z = np.hstack((x0, s0))
fun0_subprob, constr0_subprob = subprob.fun0, subprob.constr0
grad0_subprob, jac0_subprob = subprob.grad0, subprob.jac0
# Define trust region bounds
trust_lb = np.hstack((np.full(subprob.n_vars, -np.inf),
np.full(subprob.n_ineq, -BOUNDARY_PARAMETER)))
trust_ub = np.full(subprob.n_vars+subprob.n_ineq, np.inf)
# Solves a sequence of barrier problems
while True:
# Solve SQP subproblem
z, state = equality_constrained_sqp(
subprob.function_and_constraints,
subprob.gradient_and_jacobian,
subprob.lagrangian_hessian,
z, fun0_subprob, grad0_subprob,
constr0_subprob, jac0_subprob, subprob.stop_criteria,
state, initial_penalty, trust_radius,
factorization_method, trust_lb, trust_ub, subprob.scaling)
if subprob.terminate:
break
# Update parameters
trust_radius = max(initial_trust_radius,
TRUST_ENLARGEMENT*state.tr_radius)
# TODO: Use more advanced strategies from [2]_
# to update this parameters.
barrier_parameter *= BARRIER_DECAY_RATIO
tolerance *= BARRIER_DECAY_RATIO
# Update Barrier Problem
subprob.update(barrier_parameter, tolerance)
# Compute initial values for next iteration
fun0_subprob, constr0_subprob = subprob.function_and_constraints(z)
grad0_subprob, jac0_subprob = subprob.gradient_and_jacobian(z)
# Get x and s
Loading ...