Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scipy   python

Repository URL to install this package:

Version: 1.3.3 

/ optimize / tests / test__remove_redundancy.py

"""
Unit test for Linear Programming via Simplex Algorithm.
"""

# TODO: add tests for:
# https://github.com/scipy/scipy/issues/5400
# https://github.com/scipy/scipy/issues/6690

from __future__ import division, print_function, absolute_import

import numpy as np
from numpy.testing import (
    assert_,
    assert_allclose,
    assert_equal)

from .test_linprog import magic_square
from scipy.optimize._remove_redundancy import _remove_redundancy


def setup_module():
    np.random.seed(2017)


def _assert_success(
        res,
        desired_fun=None,
        desired_x=None,
        rtol=1e-7,
        atol=1e-7):
    # res: linprog result object
    # desired_fun: desired objective function value or None
    # desired_x: desired solution or None
    assert_(res.success)
    assert_equal(res.status, 0)
    if desired_fun is not None:
        assert_allclose(
            res.fun,
            desired_fun,
            err_msg="converged to an unexpected objective value",
            rtol=rtol,
            atol=atol)
    if desired_x is not None:
        assert_allclose(
            res.x,
            desired_x,
            err_msg="converged to an unexpected solution",
            rtol=rtol,
            atol=atol)


def test_no_redundancy():
    m, n = 10, 10
    A0 = np.random.rand(m, n)
    b0 = np.random.rand(m)
    A1, b1, status, message = _remove_redundancy(A0, b0)
    assert_allclose(A0, A1)
    assert_allclose(b0, b1)
    assert_equal(status, 0)


def test_infeasible_zero_row():
    A = np.eye(3)
    A[1, :] = 0
    b = np.random.rand(3)
    A1, b1, status, message = _remove_redundancy(A, b)
    assert_equal(status, 2)


def test_remove_zero_row():
    A = np.eye(3)
    A[1, :] = 0
    b = np.random.rand(3)
    b[1] = 0
    A1, b1, status, message = _remove_redundancy(A, b)
    assert_equal(status, 0)
    assert_allclose(A1, A[[0, 2], :])
    assert_allclose(b1, b[[0, 2]])


def test_infeasible_m_gt_n():
    m, n = 20, 10
    A0 = np.random.rand(m, n)
    b0 = np.random.rand(m)
    A1, b1, status, message = _remove_redundancy(A0, b0)
    assert_equal(status, 2)


def test_infeasible_m_eq_n():
    m, n = 10, 10
    A0 = np.random.rand(m, n)
    b0 = np.random.rand(m)
    A0[-1, :] = 2 * A0[-2, :]
    A1, b1, status, message = _remove_redundancy(A0, b0)
    assert_equal(status, 2)


def test_infeasible_m_lt_n():
    m, n = 9, 10
    A0 = np.random.rand(m, n)
    b0 = np.random.rand(m)
    A0[-1, :] = np.arange(m - 1).dot(A0[:-1])
    A1, b1, status, message = _remove_redundancy(A0, b0)
    assert_equal(status, 2)


def test_m_gt_n():
    np.random.seed(2032)
    m, n = 20, 10
    A0 = np.random.rand(m, n)
    b0 = np.random.rand(m)
    x = np.linalg.solve(A0[:n, :], b0[:n])
    b0[n:] = A0[n:, :].dot(x)
    A1, b1, status, message = _remove_redundancy(A0, b0)
    assert_equal(status, 0)
    assert_equal(A1.shape[0], n)
    assert_equal(np.linalg.matrix_rank(A1), n)


def test_m_gt_n_rank_deficient():
    m, n = 20, 10
    A0 = np.zeros((m, n))
    A0[:, 0] = 1
    b0 = np.ones(m)
    A1, b1, status, message = _remove_redundancy(A0, b0)
    assert_equal(status, 0)
    assert_allclose(A1, A0[0:1, :])
    assert_allclose(b1, b0[0])


def test_m_lt_n_rank_deficient():
    m, n = 9, 10
    A0 = np.random.rand(m, n)
    b0 = np.random.rand(m)
    A0[-1, :] = np.arange(m - 1).dot(A0[:-1])
    b0[-1] = np.arange(m - 1).dot(b0[:-1])
    A1, b1, status, message = _remove_redundancy(A0, b0)
    assert_equal(status, 0)
    assert_equal(A1.shape[0], 8)
    assert_equal(np.linalg.matrix_rank(A1), 8)


def test_dense1():
    A = np.ones((6, 6))
    A[0, :3] = 0
    A[1, 3:] = 0
    A[3:, ::2] = -1
    A[3, :2] = 0
    A[4, 2:] = 0
    b = np.zeros(A.shape[0])

    A2 = A[[0, 1, 3, 4], :]
    b2 = np.zeros(4)

    A1, b1, status, message = _remove_redundancy(A, b)
    assert_allclose(A1, A2)
    assert_allclose(b1, b2)
    assert_equal(status, 0)


def test_dense2():
    A = np.eye(6)
    A[-2, -1] = 1
    A[-1, :] = 1
    b = np.zeros(A.shape[0])
    A1, b1, status, message = _remove_redundancy(A, b)
    assert_allclose(A1, A[:-1, :])
    assert_allclose(b1, b[:-1])
    assert_equal(status, 0)


def test_dense3():
    A = np.eye(6)
    A[-2, -1] = 1
    A[-1, :] = 1
    b = np.random.rand(A.shape[0])
    b[-1] = np.sum(b[:-1])
    A1, b1, status, message = _remove_redundancy(A, b)
    assert_allclose(A1, A[:-1, :])
    assert_allclose(b1, b[:-1])
    assert_equal(status, 0)


def test_m_gt_n_sparse():
    np.random.seed(2013)
    m, n = 20, 5
    p = 0.1
    A = np.random.rand(m, n)
    A[np.random.rand(m, n) > p] = 0
    rank = np.linalg.matrix_rank(A)
    b = np.zeros(A.shape[0])
    A1, b1, status, message = _remove_redundancy(A, b)
    assert_equal(status, 0)
    assert_equal(A1.shape[0], rank)
    assert_equal(np.linalg.matrix_rank(A1), rank)


def test_m_lt_n_sparse():
    np.random.seed(2017)
    m, n = 20, 50
    p = 0.05
    A = np.random.rand(m, n)
    A[np.random.rand(m, n) > p] = 0
    rank = np.linalg.matrix_rank(A)
    b = np.zeros(A.shape[0])
    A1, b1, status, message = _remove_redundancy(A, b)
    assert_equal(status, 0)
    assert_equal(A1.shape[0], rank)
    assert_equal(np.linalg.matrix_rank(A1), rank)


def test_m_eq_n_sparse():
    np.random.seed(2017)
    m, n = 100, 100
    p = 0.01
    A = np.random.rand(m, n)
    A[np.random.rand(m, n) > p] = 0
    rank = np.linalg.matrix_rank(A)
    b = np.zeros(A.shape[0])
    A1, b1, status, message = _remove_redundancy(A, b)
    assert_equal(status, 0)
    assert_equal(A1.shape[0], rank)
    assert_equal(np.linalg.matrix_rank(A1), rank)


def test_magic_square():
    A, b, c, numbers = magic_square(3)
    A1, b1, status, message = _remove_redundancy(A, b)
    assert_equal(status, 0)
    assert_equal(A1.shape[0], 23)
    assert_equal(np.linalg.matrix_rank(A1), 23)


def test_magic_square2():
    A, b, c, numbers = magic_square(4)
    A1, b1, status, message = _remove_redundancy(A, b)
    assert_equal(status, 0)
    assert_equal(A1.shape[0], 39)
    assert_equal(np.linalg.matrix_rank(A1), 39)