"""
Unit test for Linear Programming
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import (assert_, assert_allclose, assert_equal,
assert_array_less)
from pytest import raises as assert_raises
from scipy.optimize import linprog, OptimizeWarning
from scipy._lib._numpy_compat import _assert_warns, suppress_warnings
from scipy.sparse.linalg import MatrixRankWarning
from scipy.linalg import LinAlgWarning
import pytest
has_umfpack = True
try:
from scikits.umfpack import UmfpackWarning
except ImportError:
has_umfpack = False
has_cholmod = True
try:
import sksparse
except ImportError:
has_cholmod = False
def _assert_iteration_limit_reached(res, maxiter):
assert_(not res.success, "Incorrectly reported success")
assert_(res.success < maxiter, "Incorrectly reported number of iterations")
assert_equal(res.status, 1, "Failed to report iteration limit reached")
def _assert_infeasible(res):
# res: linprog result object
assert_(not res.success, "incorrectly reported success")
assert_equal(res.status, 2, "failed to report infeasible status")
def _assert_unbounded(res):
# res: linprog result object
assert_(not res.success, "incorrectly reported success")
assert_equal(res.status, 3, "failed to report unbounded status")
def _assert_unable_to_find_basic_feasible_sol(res):
# res: linprog result object
assert_(not res.success, "incorrectly reported success")
assert_equal(res.status, 2, "failed to report optimization failure")
def _assert_success(res, desired_fun=None, desired_x=None,
rtol=1e-8, atol=1e-8):
# res: linprog result object
# desired_fun: desired objective function value or None
# desired_x: desired solution or None
if not res.success:
msg = "linprog status {0}, message: {1}".format(res.status,
res.message)
raise AssertionError(msg)
assert_equal(res.status, 0)
if desired_fun is not None:
assert_allclose(res.fun, desired_fun,
err_msg="converged to an unexpected objective value",
rtol=rtol, atol=atol)
if desired_x is not None:
assert_allclose(res.x, desired_x,
err_msg="converged to an unexpected solution",
rtol=rtol, atol=atol)
def magic_square(n):
"""
Generates a linear program for which integer solutions represent an
n x n magic square; binary decision variables represent the presence
(or absence) of an integer 1 to n^2 in each position of the square.
"""
np.random.seed(0)
M = n * (n**2 + 1) / 2
numbers = np.arange(n**4) // n**2 + 1
numbers = numbers.reshape(n**2, n, n)
zeros = np.zeros((n**2, n, n))
A_list = []
b_list = []
# Rule 1: use every number exactly once
for i in range(n**2):
A_row = zeros.copy()
A_row[i, :, :] = 1
A_list.append(A_row.flatten())
b_list.append(1)
# Rule 2: Only one number per square
for i in range(n):
for j in range(n):
A_row = zeros.copy()
A_row[:, i, j] = 1
A_list.append(A_row.flatten())
b_list.append(1)
# Rule 3: sum of rows is M
for i in range(n):
A_row = zeros.copy()
A_row[:, i, :] = numbers[:, i, :]
A_list.append(A_row.flatten())
b_list.append(M)
# Rule 4: sum of columns is M
for i in range(n):
A_row = zeros.copy()
A_row[:, :, i] = numbers[:, :, i]
A_list.append(A_row.flatten())
b_list.append(M)
# Rule 5: sum of diagonals is M
A_row = zeros.copy()
A_row[:, range(n), range(n)] = numbers[:, range(n), range(n)]
A_list.append(A_row.flatten())
b_list.append(M)
A_row = zeros.copy()
A_row[:, range(n), range(-1, -n - 1, -1)] = \
numbers[:, range(n), range(-1, -n - 1, -1)]
A_list.append(A_row.flatten())
b_list.append(M)
A = np.array(np.vstack(A_list), dtype=float)
b = np.array(b_list, dtype=float)
c = np.random.rand(A.shape[1])
return A, b, c, numbers
def lpgen_2d(m, n):
""" -> A b c LP test: m*n vars, m+n constraints
row sums == n/m, col sums == 1
https://gist.github.com/denis-bz/8647461
"""
np.random.seed(0)
c = - np.random.exponential(size=(m, n))
Arow = np.zeros((m, m * n))
brow = np.zeros(m)
for j in range(m):
j1 = j + 1
Arow[j, j * n:j1 * n] = 1
brow[j] = n / m
Acol = np.zeros((n, m * n))
bcol = np.zeros(n)
for j in range(n):
j1 = j + 1
Acol[j, j::n] = 1
bcol[j] = 1
A = np.vstack((Arow, Acol))
b = np.hstack((brow, bcol))
return A, b, c.ravel()
def nontrivial_problem():
c = [-1, 8, 4, -6]
A_ub = [[-7, -7, 6, 9],
[1, -1, -3, 0],
[10, -10, -7, 7],
[6, -1, 3, 4]]
b_ub = [-3, 6, -6, 6]
A_eq = [[-10, 1, 1, -8]]
b_eq = [-4]
x_star = [101 / 1391, 1462 / 1391, 0, 752 / 1391]
f_star = 7083 / 1391
return c, A_ub, b_ub, A_eq, b_eq, x_star, f_star
def generic_callback_test(self):
# Check that callback is as advertised
last_cb = {}
def cb(res):
message = res.pop('message')
complete = res.pop('complete')
assert_(res.pop('phase') in (1, 2))
assert_(res.pop('status') in range(4))
assert_(isinstance(res.pop('nit'), int))
assert_(isinstance(complete, bool))
assert_(isinstance(message, str))
last_cb['x'] = res['x']
last_cb['fun'] = res['fun']
last_cb['slack'] = res['slack']
last_cb['con'] = res['con']
c = np.array([-3, -2])
A_ub = [[2, 1], [1, 1], [1, 0]]
b_ub = [10, 8, 4]
res = linprog(c, A_ub=A_ub, b_ub=b_ub, callback=cb, method=self.method)
_assert_success(res, desired_fun=-18.0, desired_x=[2, 6])
assert_allclose(last_cb['fun'], res['fun'])
assert_allclose(last_cb['x'], res['x'])
assert_allclose(last_cb['con'], res['con'])
assert_allclose(last_cb['slack'], res['slack'])
def test_unknown_solver():
c = np.array([-3, -2])
A_ub = [[2, 1], [1, 1], [1, 0]]
b_ub = [10, 8, 4]
assert_raises(ValueError, linprog,
c, A_ub=A_ub, b_ub=b_ub, method='ekki-ekki-ekki')
A_ub = None
b_ub = None
A_eq = None
b_eq = None
bounds = None
################
# Common Tests #
################
class LinprogCommonTests(object):
"""
Base class for `linprog` tests. Generally, each test will be performed
once for every derived class of LinprogCommonTests, each of which will
typically change self.options and/or self.method. Effectively, these tests
are run for many combination of method (simplex, revised simplex, and
interior point) and options (such as pivoting rule or sparse treatment).
"""
##################
# Targeted Tests #
##################
def test_callback(self):
generic_callback_test(self)
def test_disp(self):
# test that display option does not break anything.
A, b, c = lpgen_2d(20, 20)
res = linprog(c, A_ub=A, b_ub=b, method=self.method,
options={"disp": True})
_assert_success(res, desired_fun=-64.049494229)
def test_docstring_example(self):
# Example from linprog docstring.
c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds),
options=self.options, method=self.method)
_assert_success(res, desired_fun=-22)
def test_type_error(self):
# (presumably) checks that linprog recognizes type errors
# This is tested more carefully in test__linprog_clean_inputs.py
c = [1]
A_eq = [[1]]
b_eq = "hello"
assert_raises(TypeError, linprog,
c, A_eq=A_eq, b_eq=b_eq,
method=self.method, options=self.options)
def test_aliasing_b_ub(self):
# (presumably) checks that linprog does not modify b_ub
# This is tested more carefully in test__linprog_clean_inputs.py
c = np.array([1.0])
A_ub = np.array([[1.0]])
b_ub_orig = np.array([3.0])
b_ub = b_ub_orig.copy()
bounds = (-4.0, np.inf)
res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds,
method=self.method, options=self.options)
_assert_success(res, desired_fun=-4, desired_x=[-4])
assert_allclose(b_ub_orig, b_ub)
def test_aliasing_b_eq(self):
# (presumably) checks that linprog does not modify b_eq
# This is tested more carefully in test__linprog_clean_inputs.py
c = np.array([1.0])
A_eq = np.array([[1.0]])
b_eq_orig = np.array([3.0])
b_eq = b_eq_orig.copy()
bounds = (-4.0, np.inf)
res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds,
method=self.method, options=self.options)
_assert_success(res, desired_fun=3, desired_x=[3])
assert_allclose(b_eq_orig, b_eq)
def test_non_ndarray_args(self):
# (presumably) checks that linprog accepts list in place of arrays
# This is tested more carefully in test__linprog_clean_inputs.py
c = [1.0]
A_ub = [[1.0]]
b_ub = [3.0]
A_eq = [[1.0]]
b_eq = [2.0]
bounds = (-1.0, 10.0)
res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds,
method=self.method, options=self.options)
_assert_success(res, desired_fun=2, desired_x=[2])
def test_unknown_options(self):
c = np.array([-3, -2])
A_ub = [[2, 1], [1, 1], [1, 0]]
b_ub = [10, 8, 4]
def f(c, A_ub=None, b_ub=None, A_eq=None,
b_eq=None, bounds=None, options={}):
linprog(c, A_ub, b_ub, A_eq, b_eq, bounds,
method=self.method, options=options)
o = {key: self.options[key] for key in self.options}
o['spam'] = 42
_assert_warns(OptimizeWarning, f,
c, A_ub=A_ub, b_ub=b_ub, options=o)
def test_invalid_inputs(self):
def f(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None):
linprog(c, A_ub, b_ub, A_eq, b_eq, bounds,
method=self.method, options=self.options)
for bad_bound in [[(5, 0), (1, 2), (3, 4)],
[(1, 2), (3, 4)],
[(1, 2), (3, 4), (3, 4, 5)],
[(1, 2), (np.inf, np.inf), (3, 4)],
[(1, 2), (-np.inf, -np.inf), (3, 4)],
]:
assert_raises(ValueError, f, [1, 2, 3], bounds=bad_bound)
assert_raises(ValueError, f, [1, 2], A_ub=[[1, 2]], b_ub=[1, 2])
Loading ...