Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scipy   python

Repository URL to install this package:

Version: 1.3.3 

/ sparse / construct.py

"""Functions to construct sparse matrices
"""
from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['spdiags', 'eye', 'identity', 'kron', 'kronsum',
           'hstack', 'vstack', 'bmat', 'rand', 'random', 'diags', 'block_diag']


import numpy as np
from scipy._lib._numpy_compat import get_randint

from scipy._lib.six import xrange

from .sputils import upcast, get_index_dtype, isscalarlike

from .csr import csr_matrix
from .csc import csc_matrix
from .bsr import bsr_matrix
from .coo import coo_matrix
from .dia import dia_matrix

from .base import issparse


def spdiags(data, diags, m, n, format=None):
    """
    Return a sparse matrix from diagonals.

    Parameters
    ----------
    data : array_like
        matrix diagonals stored row-wise
    diags : diagonals to set
        - k = 0  the main diagonal
        - k > 0  the k-th upper diagonal
        - k < 0  the k-th lower diagonal
    m, n : int
        shape of the result
    format : str, optional
        Format of the result. By default (format=None) an appropriate sparse
        matrix format is returned.  This choice is subject to change.

    See Also
    --------
    diags : more convenient form of this function
    dia_matrix : the sparse DIAgonal format.

    Examples
    --------
    >>> from scipy.sparse import spdiags
    >>> data = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
    >>> diags = np.array([0, -1, 2])
    >>> spdiags(data, diags, 4, 4).toarray()
    array([[1, 0, 3, 0],
           [1, 2, 0, 4],
           [0, 2, 3, 0],
           [0, 0, 3, 4]])

    """
    return dia_matrix((data, diags), shape=(m,n)).asformat(format)


def diags(diagonals, offsets=0, shape=None, format=None, dtype=None):
    """
    Construct a sparse matrix from diagonals.

    Parameters
    ----------
    diagonals : sequence of array_like
        Sequence of arrays containing the matrix diagonals,
        corresponding to `offsets`.
    offsets : sequence of int or an int, optional
        Diagonals to set:
          - k = 0  the main diagonal (default)
          - k > 0  the k-th upper diagonal
          - k < 0  the k-th lower diagonal
    shape : tuple of int, optional
        Shape of the result. If omitted, a square matrix large enough
        to contain the diagonals is returned.
    format : {"dia", "csr", "csc", "lil", ...}, optional
        Matrix format of the result.  By default (format=None) an
        appropriate sparse matrix format is returned.  This choice is
        subject to change.
    dtype : dtype, optional
        Data type of the matrix.

    See Also
    --------
    spdiags : construct matrix from diagonals

    Notes
    -----
    This function differs from `spdiags` in the way it handles
    off-diagonals.

    The result from `diags` is the sparse equivalent of::

        np.diag(diagonals[0], offsets[0])
        + ...
        + np.diag(diagonals[k], offsets[k])

    Repeated diagonal offsets are disallowed.

    .. versionadded:: 0.11

    Examples
    --------
    >>> from scipy.sparse import diags
    >>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
    >>> diags(diagonals, [0, -1, 2]).toarray()
    array([[1, 0, 1, 0],
           [1, 2, 0, 2],
           [0, 2, 3, 0],
           [0, 0, 3, 4]])

    Broadcasting of scalars is supported (but shape needs to be
    specified):

    >>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
    array([[-2.,  1.,  0.,  0.],
           [ 1., -2.,  1.,  0.],
           [ 0.,  1., -2.,  1.],
           [ 0.,  0.,  1., -2.]])


    If only one diagonal is wanted (as in `numpy.diag`), the following
    works as well:

    >>> diags([1, 2, 3], 1).toarray()
    array([[ 0.,  1.,  0.,  0.],
           [ 0.,  0.,  2.,  0.],
           [ 0.,  0.,  0.,  3.],
           [ 0.,  0.,  0.,  0.]])
    """
    # if offsets is not a sequence, assume that there's only one diagonal
    if isscalarlike(offsets):
        # now check that there's actually only one diagonal
        if len(diagonals) == 0 or isscalarlike(diagonals[0]):
            diagonals = [np.atleast_1d(diagonals)]
        else:
            raise ValueError("Different number of diagonals and offsets.")
    else:
        diagonals = list(map(np.atleast_1d, diagonals))

    offsets = np.atleast_1d(offsets)

    # Basic check
    if len(diagonals) != len(offsets):
        raise ValueError("Different number of diagonals and offsets.")

    # Determine shape, if omitted
    if shape is None:
        m = len(diagonals[0]) + abs(int(offsets[0]))
        shape = (m, m)

    # Determine data type, if omitted
    if dtype is None:
        dtype = np.common_type(*diagonals)

    # Construct data array
    m, n = shape

    M = max([min(m + offset, n - offset) + max(0, offset)
             for offset in offsets])
    M = max(0, M)
    data_arr = np.zeros((len(offsets), M), dtype=dtype)

    K = min(m, n)

    for j, diagonal in enumerate(diagonals):
        offset = offsets[j]
        k = max(0, offset)
        length = min(m + offset, n - offset, K)
        if length < 0:
            raise ValueError("Offset %d (index %d) out of bounds" % (offset, j))
        try:
            data_arr[j, k:k+length] = diagonal[...,:length]
        except ValueError:
            if len(diagonal) != length and len(diagonal) != 1:
                raise ValueError(
                    "Diagonal length (index %d: %d at offset %d) does not "
                    "agree with matrix size (%d, %d)." % (
                    j, len(diagonal), offset, m, n))
            raise

    return dia_matrix((data_arr, offsets), shape=(m, n)).asformat(format)


def identity(n, dtype='d', format=None):
    """Identity matrix in sparse format

    Returns an identity matrix with shape (n,n) using a given
    sparse format and dtype.

    Parameters
    ----------
    n : int
        Shape of the identity matrix.
    dtype : dtype, optional
        Data type of the matrix
    format : str, optional
        Sparse format of the result, e.g. format="csr", etc.

    Examples
    --------
    >>> from scipy.sparse import identity
    >>> identity(3).toarray()
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    >>> identity(3, dtype='int8', format='dia')
    <3x3 sparse matrix of type '<class 'numpy.int8'>'
            with 3 stored elements (1 diagonals) in DIAgonal format>

    """
    return eye(n, n, dtype=dtype, format=format)


def eye(m, n=None, k=0, dtype=float, format=None):
    """Sparse matrix with ones on diagonal

    Returns a sparse (m x n) matrix where the k-th diagonal
    is all ones and everything else is zeros.

    Parameters
    ----------
    m : int
        Number of rows in the matrix.
    n : int, optional
        Number of columns. Default: `m`.
    k : int, optional
        Diagonal to place ones on. Default: 0 (main diagonal).
    dtype : dtype, optional
        Data type of the matrix.
    format : str, optional
        Sparse format of the result, e.g. format="csr", etc.

    Examples
    --------
    >>> from scipy import sparse
    >>> sparse.eye(3).toarray()
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    >>> sparse.eye(3, dtype=np.int8)
    <3x3 sparse matrix of type '<class 'numpy.int8'>'
        with 3 stored elements (1 diagonals) in DIAgonal format>

    """
    if n is None:
        n = m
    m,n = int(m),int(n)

    if m == n and k == 0:
        # fast branch for special formats
        if format in ['csr', 'csc']:
            idx_dtype = get_index_dtype(maxval=n)
            indptr = np.arange(n+1, dtype=idx_dtype)
            indices = np.arange(n, dtype=idx_dtype)
            data = np.ones(n, dtype=dtype)
            cls = {'csr': csr_matrix, 'csc': csc_matrix}[format]
            return cls((data,indices,indptr),(n,n))
        elif format == 'coo':
            idx_dtype = get_index_dtype(maxval=n)
            row = np.arange(n, dtype=idx_dtype)
            col = np.arange(n, dtype=idx_dtype)
            data = np.ones(n, dtype=dtype)
            return coo_matrix((data,(row,col)),(n,n))

    diags = np.ones((1, max(0, min(m + k, n))), dtype=dtype)
    return spdiags(diags, k, m, n).asformat(format)


def kron(A, B, format=None):
    """kronecker product of sparse matrices A and B

    Parameters
    ----------
    A : sparse or dense matrix
        first matrix of the product
    B : sparse or dense matrix
        second matrix of the product
    format : str, optional
        format of the result (e.g. "csr")

    Returns
    -------
    kronecker product in a sparse matrix format


    Examples
    --------
    >>> from scipy import sparse
    >>> A = sparse.csr_matrix(np.array([[0, 2], [5, 0]]))
    >>> B = sparse.csr_matrix(np.array([[1, 2], [3, 4]]))
    >>> sparse.kron(A, B).toarray()
    array([[ 0,  0,  2,  4],
           [ 0,  0,  6,  8],
           [ 5, 10,  0,  0],
           [15, 20,  0,  0]])

    >>> sparse.kron(A, [[1, 2], [3, 4]]).toarray()
    array([[ 0,  0,  2,  4],
           [ 0,  0,  6,  8],
           [ 5, 10,  0,  0],
           [15, 20,  0,  0]])

    """
    B = coo_matrix(B)

    if (format is None or format == "bsr") and 2*B.nnz >= B.shape[0] * B.shape[1]:
        # B is fairly dense, use BSR
        A = csr_matrix(A,copy=True)

        output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])

        if A.nnz == 0 or B.nnz == 0:
            # kronecker product is the zero matrix
            return coo_matrix(output_shape)

        B = B.toarray()
        data = A.data.repeat(B.size).reshape(-1,B.shape[0],B.shape[1])
        data = data * B

        return bsr_matrix((data,A.indices,A.indptr), shape=output_shape)
    else:
        # use COO
        A = coo_matrix(A)
        output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])

        if A.nnz == 0 or B.nnz == 0:
            # kronecker product is the zero matrix
            return coo_matrix(output_shape)

        # expand entries of a into blocks
        row = A.row.repeat(B.nnz)
        col = A.col.repeat(B.nnz)
        data = A.data.repeat(B.nnz)

        row *= B.shape[0]
        col *= B.shape[1]

        # increment block indices
Loading ...