Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scipy   python

Repository URL to install this package:

Version: 1.3.3 

/ sparse / csgraph / _tools.pypy3-71-x86_64-linux-gnu.so

ELF>p;@XI@8@t¬t¬ h­h­!h­!`HXM €­€­!€­!ÐÐÈÈÈ$$Påtdp p p QåtdRåtdh­h­!h­!˜˜GNUî€ô´ê™(9p#±w=‰ê{c€cÑÉvmC¶¤
-YŸ ‰ãՌَj.íEèʯã§+¡Ôi‹ß‘X¯`GöÄÌåÕŸ6!§™,Byöó m_3YyñöOkÆ°q|Hÿ¾yfI‚
Ú|U Ƶ“&¹, 3FÃçŽF"nh<;__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassesPyPyExc_ValueErrorPyPyErr_FormatPyPyObject_GetAttrStringPyPyExc_TypeErrorPyPyOS_snprintfPyPyErr_WarnEx_PyPy_DeallocPyPyModule_GetDictPyPyDict_NewPyPyImport_ImportModuleLevelObjectPyPyList_NewPyPyExc_ImportErrorPyPyErr_ExceptionMatchesPyPyErr_ClearPyPyObject_GetAttrPyPyExc_NameErrorPyPyExc_SystemErrorPyPyErr_SetStringPyPyType_IsSubtypePyPyExc_AttributeErrorPyPyObject_GetItemPyPyThreadState_GetPyPyFrame_NewPyPyTraceBack_HerePyPyUnicode_FromStringPyPyCode_NewPyPyMem_ReallocPyPyErr_FetchPyPyObject_Not_PyPy_FalseStruct_PyPy_TrueStructPyPyErr_RestorePyPyUnicode_FromFormatPyPyObject_SetAttrPyPyMem_MallocPyPyDict_NextPyPyUnicode_CheckPyPyUnicode_ComparePyPyErr_OccurredPyPyExc_BaseExceptionPyPyObject_IsSubclassPyPyErr_SetObjectPyPyTuple_NewPyPyObject_CallPyPyLong_AsLongPyPyExc_OverflowErrorPyPyBytes_TypePyPyUnicode_CheckExactPyPyNumber_LongPyPyLong_TypePyPyExc_DeprecationWarningPyPyErr_WarnFormatPyPyObject_GetBufferPyPyBuffer_ReleasePyPyErr_PrintExPyPyErr_WriteUnraisable_PyPy_NoneStructPyPyTuple_PackPyPyDict_SizePyPyDict_GetItemPyPyExc_IndexErrorPyPyObject_RichComparePyPyObject_SetItemPyPyLong_FromLongPyPyBool_TypePyPyDict_SetItemPyPyFloat_FromDoublePyPyList_SET_ITEMPyPyFloat_AsDoublePyPyObject_IsTruePyPyFloat_TypePyPySequence_CheckPyPySequence_GetItemPyPyFloat_AS_DOUBLEPyPyLong_FromSsize_tPyPyNumber_InPlaceOrPyPyNumber_InvertPyPyNumber_AddPyPySlice_NewPyInit__toolsPyPy_GetVersionPyPyBytes_FromStringAndSizePyPyUnicode_FromStringAndSizePyPyModule_Create2PyPyImport_AddModulePyPyObject_SetAttrStringPyPyUnicode_InternFromStringPyPyObject_HashPyPyUnicode_DecodePyPyImport_GetModuleDictPyPyDict_GetItemStringPyPyDict_SetItemStringPyPyImport_ImportModulePyPyCFunction_NewExlibpthread.so.0libc.so.6GLIBC_2.2.5jui	th­!€\p­!@\€²!€²!Àà!Xø!Èà!X÷!Ðà!ˆ÷!Øà!ø!àà!`ù!á!Xø!á!X÷!á!ˆ÷!á!ø!0á!Pù!8á!X÷!`á!Pù!há! ÷!pá!ø!€á!Xø!ˆá! ÷!á!ø!˜á!X÷!Àá!ú!Èá!£–èá!ú!ðá!>–â!ú!â!Àb8â!øù!@â!€``â!ðù!hâ!8–ˆâ!èù!â!¸”°â!àù!¸â!¡–Øâ!Øù!àâ!€bã!Ðù!ã!˜”(ã!Èù!0ã!(•Pã!Àù!Xã!ѕxã!¸ù!€ã!¨• ã!°ù!¨ã!2–Èã!¨ù!Ðã! •ðã! ù!øã!ʕä!˜ù! ä!ˆ–@ä!ù!Hä!Ÿ–hä!ˆù!pä!P“ä!€ù!˜ä!•¸ä!xù!Àä!ð’àä!pù!èä! ˆå!hù!å!0å!`ù!8å!ƒ–Xå!Xù!`å!8”€å!Pù!ˆå!˜•¨å!Hù!°å!0“Ðå!@ù!Øå!@„øå!8ù!æ!P’ æ!0ù!(æ!“Hæ!(ù!Pæ!€€pæ! ù!xæ!0’˜æ!ù! æ!ВÀæ!ù!Èæ! {èæ!ù!ðæ!@bç!ù!ç!b8ç!øø!@ç!Àa`ç!ðø!hç!°“ˆç!èø!ç! n°ç!àø!¸ç!°’Øç!Øø!àç!p“è!Ðø!è! j(è!Èø!0è!p’Pè!Àø!Xè!•xè!¸ø!€è!ø” è!°ø!¨è!ÕÈè!¨ø!Ðè!~–ðè! ø!øè!,–é!˜ø! é!ˆ”@é!ø!Hé!h•hé!ˆø!pé!¨”é!€ø!˜é!&–¸é!xø!Àé! –àé!pø!èé!y–ê!hø!ê!•0ê!`ø!8ê!–Xê!Xø!`ê!–€ê!Pø!ˆê!€a¨ê!Hø!°ê! ‘Ðê!@ø!Øê!@aøê!8ø!ë!X• ë!0ø!(ë!¸•Hë!(ø!Pë!ˆ•pë! ø!xë!°•˜ë!ø! ë!•–Àë!ø!Èë!(”èë!ø!ðë!–ì!ø!ì!–8ì!ø÷!@ì!–`ì!ð÷!hì!蔈ì!è÷!ì!”°ì!à÷!¸ì!ø“Øì!Ø÷!àì!è“í!Ð÷!í!œ–(í!È÷!0í!p–Pí!À÷!Xí!i–xí!¸÷!€í!x” í!°÷!¨í!ؓÈí!¨÷!Ðí!”ðí! ÷!øí!€•î!˜÷! î!`–@î!÷!Hî!‘–hî!ˆ÷!pî!H•î!€÷!˜î!’¸î!x÷!Àî!aàî!p÷!èî![–ï!h÷!ï!ü•0ï!`÷!8ï!™–Xï!X÷!`ï!ؔ€ï!P÷!ˆï!ö•¨ï!H÷!°ï!àiÐï!@÷!Øï!À`øï!8÷!ð!V– ð!0÷!(ð!ð•Hð!(÷!Pð!Q–pð! ÷!xð!h”˜ð!÷! ð!ê•Àð!÷!Èð!“èð!÷!ðð!@cñ!÷!ñ!’8ñ!øö!@ñ!X”`ñ!ðö!hñ!ð‘ˆñ!èö!ñ!H”°ñ!àö!¸ñ!ä•Øñ!Øö!àñ!–ò!Ðö!ò!H–(ò!Èö!0ò!ޕPò!Àö!Xò!x•xò!¸ö!€ò!8• ò!°ö!¨ò!cÈò!¨ö!Ðò!ȓðò! ö!øò!Ȕó!˜ö! ó!ؕ°ó!8X¸ó!`‘Èó! ö!ô!ÈWô!p¢ô! ²! ô!	X(ô!ð*8ô!`»!@ô!°XHô!€zXô!Â!`ô!øWhô!°àxô!€Æ!€ô!µWˆô!À˜ô!Ó! ô!ÞW¨ô!0¹¸ô!`×!Àô!ÂXÈô!ÀØô!ÀÜ!àô!ÖX`õ!ÞXP¯!X¯!`¯!
h¯!p¯! x¯!%€¯!+ˆ¯!,¯!2˜¯!7 ¯!8¨¯!C°¯!D¸¯!E/!Gȯ!HЯ!Rد!Wà¯!Zè¯![ð¯!`ø¯!a°! °!(°!0°!8°!@°!H°!	P°!X°!`°!
h°!p°!x°!€°!ˆ°!°!˜°! °!¨°!°°!¸°!0!Ȱ!а!ذ!à°!è°!ð°!!ø°!"±!#±!$±!&±!' ±!((±!)0±!*8±!-@±!.H±!/P±!0X±!1`±!3h±!4p±!5x±!6€±!9ˆ±!:±!;˜±!< ±!=¨±!>°±!?¸±!@1!Aȱ!Bб!Fر!Ià±!Jè±!Kð±!Lø±!M²!N²!O²!P²!Q ²!S(²!T0²!U8²!V@²!XH²!YP²!\X²!]`²!^h²!_p²!bHƒìH‹y!H…ÀtÿÐHƒÄÃÿ5ry!ÿ%ty!@ÿ%ry!héàÿÿÿÿ%jy!héÐÿÿÿÿ%by!héÀÿÿÿÿ%Zy!hé°ÿÿÿÿ%Ry!hé ÿÿÿÿ%Jy!héÿÿÿÿ%By!hé€ÿÿÿÿ%:y!hépÿÿÿÿ%2y!hé`ÿÿÿÿ%*y!h	éPÿÿÿÿ%"y!h
é@ÿÿÿÿ%y!hé0ÿÿÿÿ%y!hé ÿÿÿÿ%
y!h
éÿÿÿÿ%y!héÿÿÿÿ%úx!héðþÿÿÿ%òx!héàþÿÿÿ%êx!héÐþÿÿÿ%âx!héÀþÿÿÿ%Úx!hé°þÿÿÿ%Òx!hé þÿÿÿ%Êx!héþÿÿÿ%Âx!hé€þÿÿÿ%ºx!hépþÿÿÿ%²x!hé`þÿÿÿ%ªx!héPþÿÿÿ%¢x!hé@þÿÿÿ%šx!hé0þÿÿÿ%’x!hé þÿÿÿ%Šx!héþÿÿÿ%‚x!héþÿÿÿ%zx!héðýÿÿÿ%rx!h éàýÿÿÿ%jx!h!éÐýÿÿÿ%bx!h"éÀýÿÿÿ%Zx!h#é°ýÿÿÿ%Rx!h$é ýÿÿÿ%Jx!h%éýÿÿÿ%Bx!h&é€ýÿÿÿ%:x!h'épýÿÿÿ%2x!h(é`ýÿÿÿ%*x!h)éPýÿÿÿ%"x!h*é@ýÿÿÿ%x!h+é0ýÿÿÿ%x!h,é ýÿÿÿ%
x!h-éýÿÿÿ%x!h.éýÿÿÿ%úw!h/éðüÿÿÿ%òw!h0éàüÿÿÿ%êw!h1éÐüÿÿÿ%âw!h2éÀüÿÿÿ%Úw!h3é°üÿÿÿ%Òw!h4é üÿÿÿ%Êw!h5éüÿÿÿ%Âw!h6é€üÿÿÿ%ºw!h7épüÿÿÿ%²w!h8é`üÿÿÿ%ªw!h9éPüÿÿÿ%¢w!h:é@üÿÿÿ%šw!h;é0üÿÿÿ%’w!h<é üÿÿÿ%Šw!h=éüÿÿÿ%‚w!h>éüÿÿÿ%zw!h?éðûÿÿÿ%rw!h@éàûÿÿÿ%jw!hAéÐûÿÿÿ%bw!hBéÀûÿÿÿ%Zw!hCé°ûÿÿÿ%Rw!hDé ûÿÿÿ%Jw!hEéûÿÿÿ%Bw!hFé€ûÿÿÿ%:w!hGépûÿÿÿ%2w!hHé`ûÿÿÿ%*w!hIéPûÿÿÿ%"w!hJé@ûÿÿÿ%w!hKé0ûÿÿÿ%’t!fAVAUI‰õATUH‰ÖSI‰ÔH‰ÍE‰ÆHìÐè½üÿÿH…À„·H‰ÃH‹@ö€³€u H‹s!H5f[L‰áL‰êH‹81ÀèÖþÿÿëzL‹K(I9ér
E…öu(I9ét#H‹Šs!H5[[I‰èL‰áL‰êH‹81Àè þÿÿëDAÿÎuNI9évII‰æHƒìH¦[AQL‰éI‰éM‰à¾ÈL‰÷1Àèœúÿÿ1Ò1ÿL‰öèpþÿÿ…ÀZYyHÿuH‰ßèÝúÿÿ1ÛHÄÐH‰Ø[]A\A]A^ÃAUATUSHìèL‹%<¾!M…ät	Iÿ$éHl$H„A¸¹¾1ÀH‰ïLl$èúÿÿèfþÿÿH_H‰~1ÀL‰ïèýùÿÿŠD$8D$u
ŠD$8D$
tbH\$L0HæbM‰éH‰é¾ÈH‰ß1ÀèÁùÿÿ1ÿºH‰Þè’ýÿÿ…Ày'HpÇY½!ÇK½!5$H‰<½!é:1ÿè üÿÿH…ÀH‰>½!u'H6ǽ!ǽ!9$H‰½!éH=]1öèŸûÿÿH…ÀH‰õ¼!u'HõÇ޼!Çм!:$H‰|!é¿H=1öè>üÿÿH…Àu'H»Ç¤¼!Ç–¼!;$H‰‡¼!é…H={µ!¾õè1üÿÿH…ÀH‰Ÿ¼!u'HwÇ`¼!ÇR¼!_$H‰C¼!é—H‰ÇèÖøÿÿH…ÀH‰\¼!u'H<Ç%¼!Ǽ!a$H‰¼!éHÿH=¸èÄúÿÿH…ÀH‰¼!u'HúÇã»!Çջ!c$H‰ƻ!éÄHÿH=è‚úÿÿH…ÀH‰Ȼ!u'H¸Ç¡»!Ç“»!e$H‰„»!é‚HÿH‹»!H5EH‹=Ÿ»!H ¢!èKøÿÿ…Ày[HiÇR»!ÇD»!g$H‰5»!é3ŠC 
C!H‹{t]€{"t,è‰øÿÿH‰EH‹H‹8H…ÿtèEùÿÿHÿÀtuHƒÃ(H‹+H…íuÄë>H‹SH‹sH…ÒtHÿÎ1Éè›øÿÿH‰EëÀHÿÎè]úÿÿH‰Eë²H‹CHpÿèjùÿÿH‰EëŸ1ÿè½÷ÿÿH…ÀH‰³¶!t¿è§÷ÿÿH…ÀH‰•¶!u$HÇ†º!Çxº!i$H‰iº!ëj¿èm÷ÿÿH…ÀH‰S¶!tÆHʵ!ƒ8„ÆH‹‚·!H‹5K·!H‹=dº!è§ùÿÿ…À‰¤H1Ǻ!Çº!n$H‰ý¹!Hƒ=-º!tLHƒ=º!tH‹
â¹!‹è¹!H=…_‹5׹!èÊ!H‹=û¹!H…ÿt7HÿHÇè¹!u'èYöÿÿë èâùÿÿH…ÀuH‹þn!H5?_H‹8è'øÿÿL‹%¸¹!éè6úÿÿH…ÀH‰Ãu'H€Çi¹!Ç[¹!r$H‰L¹!éJÿÿÿH5ãH‰ÇèöÿÿH…ÀuAH‹d¹!H5ÈH‰ßè½öÿÿ…Ày'H+ǹ!ǹ!t$H‰÷¸!éõþÿÿH‹=3¸!èvH…ÀH‰t¸!u'HìÇո!>ÇǸ!["H‰¸¸!é¶þÿÿH‹=Dµ!è7H…Àu'H´Ç¸!Ç¸!\"H‰€¸!é~þÿÿH‹=ķ!èÿH…Àu'HGÇe¸!XÇW¸!]"H‰H¸!éFþÿÿH‹=¤·!èÇH…Àu'HÇ-¸!Ǹ!^"H‰¸!éþÿÿH‹5ĵ!1?èØ÷ÿÿH…ÀH‰޳!u'HþÇç·!>Çٷ!o"H‰ʷ!éÈýÿÿH‹5†µ!1?è’÷ÿÿH…ÀH‰€³!u'H¸Ç¡·!AÇ“·!z"H‰„·!é‚ýÿÿH‹¨l!H‰ÚH‰ÞH‰ßèZ÷ÿÿH…ÀH‰H³!u'HpÇY·!JÇK·!…"H‰<·!é:ýÿÿH‹=8³!H‰ÚH‰Þè÷ÿÿH…ÀH‰û²!u'H+Ç·!NÇ·!"H‰÷¶!éõüÿÿH‹5kµ!1?è¿öÿÿH…ÀH‰¥²!u'HåÇζ!@Ç6!›"H‰±¶!é¯üÿÿH‹5µ!1?èyöÿÿH…ÀH‰W²!u'HŸÇˆ¶!DÇz¶!¦"H‰k¶!éiüÿÿH‹5/´!1?è3öÿÿH…ÀH‰	²!u'HYÇB¶!CÇ4¶!±"H‰%¶!é#üÿÿH‹5³!1?èíõÿÿH…Àu'HåǶ!Çõµ!¼"H‰æµ!éäûÿÿH‹5Ҳ!1?è®õÿÿH…Àu'H¦Çĵ!Ƕµ!Ç"H‰§µ!é¥ûÿÿH‹5ó´!1?èoõÿÿH…Àu'HgÇ…µ!2Çwµ!Ò"H‰hµ!éfûÿÿH‹5ܴ!1?è0õÿÿH…Àu'H(ÇFµ!XÇ8µ!Ý"H‰)µ!é'ûÿÿH‹5•´!1?èñôÿÿH…Àu'Héǵ!pÇù´!è"H‰ê´!éèúÿÿH‹5¦±!1?è²ôÿÿH…Àu'HªÇȴ!Ǻ´!ó"H‰«´!é©úÿÿH‹5_±!1?èsôÿÿH…Àu'Hklj´!Ç{´!þ"H‰l´!éjúÿÿL‹
²!L‹™±!1ÀH‹
x²!H‹©³!¿H‹5²!ÿ5ױ!ÿ5ٱ!èôÿÿH…ÀAZA[u'H5Ç´!Ç´!	#H‰´!éÿùÿÿH‹
´!L‹
þ³!Hƒì1É1öA¸¿AQjÿ5²!ÿ5°!RRPRRºè|òÿÿHƒÄPH…Àu'HÅÇ®³!Ç ³!#H‰‘³!éùÿÿL‹
e²!L‹±!1ÀH‹
}°!H‹F°!¿H‹5:±!ÿ5œ°!ÿ5¶²!è1óÿÿH…ÀAXAYu'HZÇC³!SÇ5³!#H‰&³!é$ùÿÿH‹2³!L‹
#³!Hƒì1É1öA¸¿AQjSÿ5Ž±!ÿ5(¯!RRPRRºè¡ñÿÿHƒÄPH…Àu'HêÇӲ!SÇŲ!#H‰¶²!é´øÿÿL‹:°!H‹
«¯!1ÀH‹r¯!H‹5k°!¿èiòÿÿH…Àu'H–Dz!¬Çq²!!#H‰b²!é`øÿÿH‹n²!L‹
_²!Hƒì1É1öA¸¿AQh¬ÿ5÷°!ÿ5a®!RRPRRºèÚðÿÿHƒÄPH…Àu'H#Ç²!¬Çþ±!$#H‰ï±!éí÷ÿÿH‹5³°!L‹
„¯!¿L‹ø¯!H‹
)±!1ÀH‹˜®!ÿ5’¯!ÿ5T¯!èñÿÿH…À^_u'HºÇ£±!ÞÇ•±!-#H‰†±!é„÷ÿÿH‹’±!L‹
ƒ±!Hƒì1É1öA¸¿AQhÞÿ5ï!ÿ5…­!RRPRRºèþïÿÿHƒÄPH…Àu'HGÇ0±!ÞÇ"±!0#H‰±!é÷ÿÿH‹5ׯ!1?èÛðÿÿH…Àu'HÇñ°!RÇã°!9#H‰԰!éÒöÿÿH‹à°!L‹
Ѱ!Hƒì1É1öA¸¿AQhRÿ5ù®!ÿ5Ӭ!RRPRRºèLïÿÿHƒÄPH…Àu'H•
Ç~°!RÇp°!<#H‰a°!é_öÿÿL‹
µ¯!L‹v¬!1ÀH‹
U®!H‹ެ!¿H‹5¯!ÿ5L®!ÿ5N®!ÿ5-!ÿ5¬!ÿ5¼­!ÿ5ö¬!èéïÿÿHƒÄ0H…Àu'H
Çû¯!œÇí¯!E#H‰ޯ!éÜõÿÿH‹ê¯!L‹
ۯ!Hƒì1É1öA¸¿AQhœÿ5;¬!ÿ5ݫ!RRPRRºèVîÿÿHƒÄPH…Àu'HŸLj¯!œÇz¯!H#H‰k¯!éiõÿÿH‹
o­!H‹ø«!HƒìL‹
u«!L‹¬!1ÀH‹5­!ÿ5?­!¿è
ïÿÿH…ÀZYu'H8Ç!¯!ôǯ!Q#H‰¯!éõÿÿH‹¯!L‹
¯!Hƒì1É1öA¸¿AQhôÿ5ɭ!ÿ5«!RRPRRºè|íÿÿHƒÄPH…Àu'HÅÇ®®!ôÇ ®!T#H‰‘®!éôÿÿH=Dè€ëÿÿH…ÀH‰Ãu'HbÇs®!	Çe®!“#H‰V®!éTôÿÿH^H5A¸¹hH‰ßè ïÿÿH…Àu'HÇ&®!	Ç®!œ#H‰	®!éÙHÿuH‰ßè§êÿÿH=êèëêÿÿH…ÀH‰Ãu'HÀÇޭ!ÎÇЭ!ž#H‰m!é¿óÿÿHÈ
H5¨A¸¹hH‰Çè‹îÿÿH…Àu'HsÇ‘­!Îǃ­!¡#H‰t­!éDHhH5[A¸¹P
H‰ßè>îÿÿH…Àu'H&ÇD­!åÇ6­!£#H‰'­!é÷H$H5A¸¹8H‰ßèñíÿÿH…Àu'HÙ
Ç÷¬!éÇé¬!¥#H‰ڬ!éªHá
H5Á
A¸¹XH‰ßè¤íÿÿH…ÀH‰J¬!u$H…
Ç£¬!òÇ•¬!§#H‰†¬!ëYH˜
H5p
A¸¹ÈH‰ßèSíÿÿH…Àu$H;
ÇY¬!–ÇK¬!©#H‰<¬!ëHÿu H‰ßèÝèÿÿëHÿ…%òÿÿH‰ßèÊèÿÿéòÿÿH‹=ި!1Ò1öèÅH…ÀH‰Ãu'H	Çø«!
Çê«!$H‰۫!éÙñÿÿH‹5¯¨!H‹=ø«!H‰Úè èÿÿ…Ày'HÎÇ·«!
Ç©«!’$H‰š«!éuHÿuH‰ßè8èÿÿ¿èîëÿÿH…ÀH‰Ãu'HˆÇq«!
Çc«!œ$H‰T«!éRñÿÿH‹ˆ©!H‰Ç1öHÿèKêÿÿH‹¤¨!¾H‰ßHÿè4êÿÿH‹}¨!¾H‰ßHÿèêÿÿH‹n¨!¾H‰ßHÿèêÿÿH‹G¨!¾H‰ßHÿèïéÿÿH‹=P§!1ÒH‰ÞèŽH…ÀH‰Åu*HØÇj!
dzª!­$E1äH‰¡ª!é|HÿuH‰ßè?çÿÿH‹5Ȩ!H‰ïèH…ÀH‰Ãu'HŠÇsª!
Çeª!°$H‰Vª!é^H‹5Š¨!H‹=sª!H‰Âè›æÿÿ…Ày*HIÇ2ª!
Ç$ª!²$I‰ìH‰ª!éí
HÿuH‰ßè°æÿÿH‹5i§!H‰ïèqH…ÀH‰Ãu'HûÇä©!
Ç֩!´$H‰ǩ!éÏ
H‹5+§!H‹=ä©!H‰Âèæÿÿ…Ày*HºÇ£©!
Ç•©!¶$I‰ìH‰ƒ©!é^
HÿuH‰ßè!æÿÿH‹5ʦ!H‰ïèâH…ÀH‰Ãu'HlÇU©!
ÇG©!¸$H‰8©!é@
H‹5Œ¦!H‹=U©!H‰Âè}åÿÿ…Ày*H+Ç©!Ç©!º$I‰ìH‰ô¨!éÏ	HÿuH‰ßè’åÿÿH‹5C¦!H‰ïèSH…ÀH‰Ãu'HÝÇƨ!
Ǹ¨!¼$H‰©¨!é±	H‹5¦!H‹=ƨ!H‰Âèîäÿÿ…Ày*HœÇ…¨!Çw¨!¾$I‰ìH‰e¨!é@	HÿuH‰ßèåÿÿH‹5¤¥!H‰ïèÄH…ÀH‰Ãu'HNÇ7¨!
Ç)¨!À$H‰¨!é"	H‹5f¥!H‹=7¨!H‰Âè_äÿÿ…Ày*H
Çö§!Çè§!Â$I‰ìH‰֧!é±HÿuH‰ßètäÿÿHÿMuH‰ïèfäÿÿH‹=¤!èzH…ÀH‰Åu'H¼Ç§!Ǐ§!Ì$H‰€§!é~íÿÿH‹5\¥!H‰Çè<èÿÿH…ÀH‰Ãu'H~Ç_§!ÇQ§!Î$H‰B§!éJHÿMuH‰ïèßãÿÿH‹5°¦!H‹=Q§!H‰Úèyãÿÿ…Ày'H/ǧ!ǧ!Ñ$H‰ó¦!éÎHÿuH‰ßè‘ãÿÿH‹=º£!è¥H…ÀH‰Ãu'HçÇȦ!Ǻ¦!Û$H‰«¦!é©ìÿÿH‹5'¤!H‰ÇègçÿÿH…ÀH‰Åu*H©ÇŠ¦!Ç|¦!Ý$E1äH‰j¦!éEHÿuH‰ßèãÿÿH‹5e!H‹=z¦!H‰êè¢âÿÿ…Ày'HXÇ9¦!Ç+¦!à$H‰¦!é$HÿMuH‰ïè¹âÿÿH‹r¢!H=; !1öè„æÿÿH…ÀH‰Åu'HþÇç¥!Ç٥!ê$H‰ʥ!éÈëÿÿH‹5n¤!H‹=ç¥!H‰Âèâÿÿ…Ày'H½Ç¦¥!ǘ¥!ì$H‰‰¥!é‘HÿMuH‰ïè&âÿÿH‹ߡ!H=ˆŸ!1öèñåÿÿH…ÀH‰Åu'HkÇT¥!SÇF¥!ö$H‰7¥!é5ëÿÿH‹5ã!H‹=T¥!H‰Âè|áÿÿ…Ày'H*Ç¥!SÇ¥!ø$H‰ö¤!éþHÿMuH‰ïè“áÿÿH‹L¡!H=՞!1öè^åÿÿH…ÀH‰Åu'HØÇd!¬Ç³¤!%H‰¤¤!é¢êÿÿH‹5`£!H‹=d!H‰Âèéàÿÿ…Ày'H—Ç€¤!¬Çr¤!%H‰c¤!ékHÿMuH‰ïèáÿÿH‹¹ !H="ž!1öèËäÿÿH…ÀH‰Åu'HEÇ.¤!ÞÇ ¤!%H‰¤!éêÿÿH‹5u¢!H‹=.¤!H‰ÂèVàÿÿ…Ày'HÇí£!ÞÇߣ!%H‰У!éØHÿMuH‰ïèmàÿÿH‹& !H=o!1öè8äÿÿH…ÀH‰Åu'H²Ç›£!RǍ£!%H‰~£!é|éÿÿH‹5ʡ!H‹=›£!H‰ÂèÃßÿÿ…Ày'HqÇZ£!RÇL£!%H‰=£!éEHÿMuH‰ïèÚßÿÿH‹“Ÿ!H=¼œ!1öè¥ãÿÿH…ÀH‰Åu'HÇ£!œÇú¢!&%H‰ë¢!ééèÿÿH‹5oŸ!H‹=£!H‰Âè0ßÿÿ…Ày'HÞÿÇǢ!œÇ¹¢!(%H‰ª¢!é²HÿMuH‰ïèGßÿÿH‹=pŸ!è[
H…ÀH‰Åu'H•ÿÇ~¢!÷Çp¢!2%H‰a¢!é_èÿÿH‹5íŸ!H‰ÇèãÿÿH…ÀH‰Ãu'HWÿÇ@¢!÷Ç2¢!4%H‰#¢!é+H‹EHPÿH…ÒH‰UuH‰ïèµÞÿÿH‹nž!H=w›!1öH‰æ!èyâÿÿH…ÀH‰Ãu'HóþÇܡ!ôÇΡ!B%H‰¿¡!é½çÿÿH‹5« !H‹=ܡ!H‰ÂèÞÿÿ…Ày'H²þÇ›¡!ôǍ¡!D%H‰~¡!éYHÿuH‰ßèÞÿÿè—ßÿÿH…ÀH‰Ãu'HqþÇZ¡!ÇL¡!L%H‰=¡!é;çÿÿH‹ٟ!H‹5ʟ!H‰Çè‚Ýÿÿ…Ày'H0þÇ¡!Ç¡!N%H‰ü !é×H‹€Ÿ!H‹5qŸ!H‰ßèAÝÿÿ…Ày'HïýÇؠ!Çʠ!O%H‰» !é–H‹oŸ!H‹5`Ÿ!H‰ßèÝÿÿ…Ày'H®ýÇ— !lj !P%H‰z !éUH‹֞!H‹5Ǟ!H‰ßè¿Üÿÿ…Ày'HmýÇV !ÇH !Q%H‰9 !éH‹}ž!H‹5nž!H‰ßè~Üÿÿ…Ày'H,ýÇ !Ç !R%H‰øŸ!éÓH‹tœ!H‹5eœ!H‰ßè=Üÿÿ…Ày'HëüÇԟ!ÇƟ!S%H‰·Ÿ!é’H‹›ž!H‹5Œž!H‰ßèüÛÿÿ…Ày$HªüÇ“Ÿ!Ç…Ÿ!T%H‰vŸ!ëTH‹5½›!H‹=–Ÿ!H‰Úè¾Ûÿÿ…Ày$HlüÇUŸ!ÇGŸ!U%H‰8Ÿ!ëHÿ…¦åÿÿH‰ßèÕÛÿÿé™åÿÿHÿuH‰ßèÃÛÿÿM…ä„
åÿÿIÿ$…åÿÿL‰çè¨ÛÿÿéöäÿÿI‰ìëäHÄèL‰à[]A\A]Ãf.„H=š!Hš!UH)øH‰åHƒøvH‹ŽS!H…Àt	]ÿàfD]Ã@f.„H=љ!H5ʙ!UH)þH‰åHÁþH‰ðHÁè?HÆHÑþtH‹ÁS!H…Àt]ÿàf„]Ã@f.„€=™™!u'Hƒ=§S!UH‰åtH‹="V!èýÞÿÿèHÿÿÿ]Æp™!óÃ@f.„H=ñP!Hƒ?ué^ÿÿÿfDH‹1S!H…ÀtéUH‰åÿÐ]é@ÿÿÿ@€ÿs@¶Ç‡RH;üHc‚HÐÿàfH	ùÄHŒùHúù…öHDÂÃHlùHóù…öHDÂÃHeùH´ù…öHDÂÃHÖøÃHçøÄHìøÄHTùÄHãøÄH=ùÄHnøÄHvøÄH}øÄHƒøÄHÌøÄHÊøÄHoøÄH“øÄHà÷ÄH¡øÄA‰ðAƒèx_IcȉðHÁá9T|KE…ÀtK1öë€~9pA9ð~'D‰Á)ñ‰ÈÁèÈÑøðHcÈHÁá‹L9Ê}×A‰ÀA9ðÙ9ʟ¶ÒÐóËO1À9ʟ¶ÒÐëê€HƒìL‹GM…Àt{M‹I9ùtC‹w@¾DèïýÿÿI‹PðH58H‹
I‹M‹IH‹L‹H‰ÁH‹ŠP!H‹81ÀHƒÄé¬Ûÿÿ@H‹Lä÷H‹‹w@¾DèŸýÿÿH57I‰ÁM‰ÐL‰Òë¼DL¸÷H
~÷ëÍ„AWAVI‰ÿAUATA‰ÖUSHƒìH…ö„“H‹=T›!I‰ôè´×ÿÿH…ÀI‰Å„è3ÙÿÿH…ÀH‰Ã„1íAƒþÿ„£E‰ðL‰áH‰ÚL‰îL‰ÿè×ÿÿI‰ÆH…ítHƒmt(Hƒ+uH‰ßèj×ÿÿHƒÄL‰ð[]A\A]A^A_ÄH‰ïèH×ÿÿëÎfD1ÿèùÚÿÿH…ÀH‰Å„H‹=®š!è×ÿÿH…ÀI‰Åteè”ØÿÿH…ÀH‰ÃtXAƒþÿI‰ì…dÿÿÿ€A¸L‰áH‰ÚL‰îL‰ÿèqÖÿÿH…ÀI‰Æ…QÿÿÿH‹†O!H‹8è6Øÿÿ…À„:ÿÿÿèØÿÿéÿÿÿHƒmu
H‰ïè¥ÖÿÿDE1öé.ÿÿÿ„H‹¾HЀù	w5HJ¾Rƒè0rÐ@€þ	wfD€HƒÁDBоrÐ@€þ	véH‰ÃHƒì¾ÐH‹N!H587H‹81ÀèžÙÿÿ¸ÿÿÿÿHƒÄÃ@USH‰þH‰ýHƒìH‹=…™!è(ÚÿÿH…ÀH‰ÃtHƒÄH‰Ø[]ÃfDH‹yN!H5»õH‰êH‹81ÀèEÙÿÿHƒÄH‰Ø[]Ðf.„H…öATUStI‰üH‹?H‰óH9þu9½‰è[]A\ÃDH‹9N!H5|õ1íH‹8èp×ÿÿ‰è[]A\Ãf„è;Ùÿÿ…	Åu¼I‹$H‹K H5–6H‹P H‹kM!H‹81Àè±Øÿÿë›Df.„USH‰õHƒìèBÙÿÿH…ÀH‰Ãt
HƒÄH‰Ø[]ÃH‹YM!H‹8èqÖÿÿ…ÀtãH‹®M!H5õôH‰êH‹81ÀèRØÿÿëÆSH‰þH‰ûH‹=R˜!è}ÕÿÿH…ÀtHƒ[ÃfèÖÿÿH‰ß[é’þÿÿfAWAVI‰þAUATI‰ÍUS‰ó‰ÕHƒì8è3×ÿÿ…ÛI‰Ä…A‰ï1ÛE…ÿ„¢L‹
{—!M…É„’‹
d—!D‰úL‰ÏL‰L$‰Ή$è?ûÿÿ9$~rL‹L$H˜HÁàIÁE;yu^I‹HƒH‹¨—!1ÉL‰çH‰Þèk×ÿÿH…ÀI‰Ä„Ÿ‰h0H‰Çè¤×ÿÿHƒ+„òIƒ,$uL‰çèëÓÿÿHƒÄ8[]A\A]A^A_Ã@L‰ïè ÔÿÿH…ÀI‰Åt݅Û…xL‰÷èˆÔÿÿI‰ÆM…ö„ŒH‹
—!L‹
þ–!HƒìE1À1É1Ò1ö1ÿAQUAVAUPPPPPèŽÕÿÿH‰ÃI‹EHƒÄPHƒèH…ÀI‰E„ÊIƒ.„°H…Û„dÿÿÿH‹P–!E…ÿH‰$„ÿÿÿH…À„§D‹5+–!H‹<$D‰úD‰öèúÿÿLcèE9îD;5
–!…¶AƒÆ@H‹<$IcöHÁæèŸÕÿÿH…ÀH‰$„³þÿÿD‰5ߕ!D‹5ԕ!IcÍHÁáH‰Ε!E9õšH$IcÆD‰òHÁàH$H‹pðH‹xøƒêHƒèH‰pH‰xA9Õ|äEND‰yH‰D‰
z•!HƒéBþÿÿHƒ=ؕ!„ÞHT$(Ht$ H|$èžÔÿÿH‹5Ÿ”!H‹=°•!è[ÖÿÿH…ÀI‰Ç„_H‰ÇègÔÿÿ…ÀI‹thHƒèH…ÀI‰u>H‹•J!H‰ÐL‰ÿH‰T$H‰$èùÑÿÿH‹$H‹T$H9ÐtH;¤J!tJH‰ÇèÔÿÿ…Àt>H‹T$(H‹t$ H‹|$è‚Óÿÿé5ýÿÿDHƒèH…ÀI‰„H‹)J!H9ZJ!tÂH‹T$(H‹t$ H‹|$èDÓÿÿA‰ßA÷ßéöüÿÿf„Hƒ+…{ýÿÿH‰ßè^ÑÿÿHƒÄ8[]A\A]A^A_ÀH]ñH=tñL‰ö‰Ù1ÀèÎÑÿÿI‰ÆéqýÿÿfDIƒm…*ýÿÿL‰ïè
Ñÿÿéýÿÿ„IcÍHÁáH$D;y„®D;5è“!…%þÿÿéÖýÿÿf„è+ÒÿÿH‹LI!H‹5“!H‹=&”!èÓÿÿéÖþÿÿ@L‰÷è ÐÿÿéCýÿÿL‰ïèÐÿÿé)ýÿÿ¿è¡ÐÿÿH…À„IüÿÿH‰y“!Çk“!@Ç]“!D‰xH‰HƒéüÿÿH‹$IÁåLéé±ýÿÿH‹9H‰Hƒ/…þûÿÿè(ÐÿÿéôûÿÿHÁéýÿÿH‹ÔH!H‹•H!éþýÿÿH‰ßèÐÿÿéüÿÿf.„AWAVI‰ÿAUATI‰ÔUSHÎH‰õHƒìHHD$(Lt$0L‰D$HÇD$(HÇD$0H‰D$HD$8HÇD$8H‰D$@H‹T$H‹t$L‰ñL‰ÿèÐÿÿ…À„H‹H‹|$(H…ÒtH;:H‰Øuë|@H9:tsHƒÀH‹H…ÒuïèzÑÿÿ…À„H‹H…Àt}I‰ÝëDtWIƒÅI‹EH…ÀtdH‹8H‹t$(H9÷t=èÐÿÿ…ÀyÛè–ÒÿÿH…ÀtӸÿÿÿÿHƒÄH[]A\A]A^A_ÃDH‹T$0H)èI‰é?ÿÿÿL‰èH‹L$0H)èIƒ}I‰…%ÿÿÿH9ÝuëJfD„›HƒÅH9ët5H‹EH‹t$(H‹8H9÷„‚è‡Ïÿÿ…ÀyÓèÒÿÿH…À…tÿÿÿHƒÅH9ëuËH‹L$(H‹T$H50H‹tF!H‹81ÀèºÑÿÿHƒÄH¸ÿÿÿÿ[]A\A]A^A_ÃH‹OF!H‹T$H5»/H‹81Àè‰Ñÿÿ¸ÿÿÿÿéÿÿÿH‹|$(H‰ùH‹T$H5[/ëžf„AUATUSH‰ûHƒìL‹%F!H‹I‹4$èOÍÿÿ…ÀtH‹{HƒÄH‰Þ[]A\A]éuÍÿÿDH‹Cö€³€tsöƒ³@tj1ÿèSÐÿÿH…ÀI‰Åt{1ÒH‰ÆH‰ßèþÏÿÿIƒmH‰ÅtoH…ít_H‹}I‹4$èâÌÿÿ…ÀtcH‰îH‰ßèÍÿÿHƒmu<HƒÄH‰ï[]A\A]é:Íÿÿf.„H‹IE!H5Z/H‹8HƒÄ[]A\A]éÏÿÿHƒÄ[]A\A]ÃL‰ïèýÌÿÿë‡H‹E!H‹MH5Ù.H‰ÚH‹81ÀèLÐÿÿë‡f.„SH‰ûHƒìH‹Gö€³tCè–ÌÿÿHcÈH9ÈuHƒÄ[ÄHƒøÿtIH‹óD!H5Ü/H‹8ètÎÿÿ¸ÿÿÿÿëÏDH;¹D!t	èZÏÿÿ…Àt!èñÏÿÿH…À„Ǹÿÿÿÿë£èÜÏÿÿH…Àt­ëíH‰ßèíÍÿÿH…ÀH‰ÃtÏH‹@H;‚D!u0H‰ßèPÿÿÿH‹3HVÿH…ÒH‰…_ÿÿÿH‰߉D$èÌÿÿ‹D$éJÿÿÿö€³t<H‹H H‹LD!HU.¾H‹81ÀènÍÿÿ…Àt¢Hƒ+…hÿÿÿH‰ßè¸Ëÿÿé[ÿÿÿL‹@ H‹ÈC!H5Á.1É1ÒH‹81ÀèÏÿÿëÇH‹ªC!H5ÈëH‹8èkÍÿÿƒÈÿéÅþÿÿGÁ<4wiH
ï¶ÀHcHÈÿàfD¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„HƒìH‹5C!@¾×H5b.H‹81ÀèPÎÿÿ1ÀHƒÄÃf„¾WD1Ò„ÖAWAVAUATUSH‰ûHƒì(H‹GH‹(H‹uHƒ~„ó€ús„²€úp„©¶GG1ÿ„À„‹NXA¿…É~#ƒéHFA¿HLÎ @L¯8HƒÀH9ÁuóÆCGHÇC0B¾‹{@<1‡±H
žî¶ÀHcHÈÿàfDH…ÒHÇC…gÆCDÇC@1ÀHƒÄ([]A\A]A^A_óÃf.„ƒ~XH‹K0¿”CGH‹uL‹FL9Á„9ÿÿÿL‰ÂH5Z-é,DA¿é^ÿÿÿDˆT$IGÿL-™ïL5¾îH‹MH‰D$¶CF<@„D<^„BÁ<4‡u¶ÀIc†Lðÿàf„A¼f.„H‹Q¶A\L9â„<C„<Ht€|$H…hL9â…_H‹CH‹MH‹S HHH9Ñ…^LáM…ÿt	L¯d$LáH‹C0H‰K HPÿH‰S0H9Ý„¤þÿÿH‹MH‹CH}H…ÉH‰8„Ü€y\Su)H‹qHƒ>„àH‹}(H‹HLXL‰[H‰pHùH‰HH…Ò„eþÿÿH‹C‹{@¾SDH‹(¶CFH‹M<@…æþÿÿr¾@€þ1‡a@¶öIctµLîÿæH‹QA¼¶A\L9â…úþÿÿf„:D$„ÿÿÿ<C…çþÿÿH‹IH…É„ÞþÿÿH‹CH‹UHPHpH‰sH‰HH‰PH‹S0éWÿÿÿ@ƒÿMäIƒäüIƒÄé…þÿÿDƒÿMäIƒäøIƒÄémþÿÿDH‹Ñ?!H5‚+H‰L$E1äH‹8èjÉÿÿ¶CFH‹L$<@…8þÿÿ¾{DH‰L$èêûÿÿH…ÀH‰Æ„ÞH‹{ 1ÒH‹L$H‰øH÷öH…Òt
HþH)ÖH‰s Hƒ{8…óýÿÿ¾{DH‰L$è¥ûÿÿH‹L$H‰C8é×ýÿÿ€A¼éÅýÿÿDA¼éµýÿÿDH‹?!H5J*H‰L$E1äH‹81Àè0Êÿÿ¶CFH‹L$éBÿÿÿÆD$HéýÿÿÆD$Ié
ýÿÿƒÿàƒÀCˆD$éöüÿÿÆD$UéìüÿÿH‹¹>!H5ê)H‹81ÀèØÉÿÿH‹C‹{@¾SDÆD$H‹(é¼üÿÿA¼éÕþÿÿDA¼éÅþÿÿDA¼éµþÿÿDƒÿMäIƒäðIƒÄ éþÿÿDA¼éþÿÿDƒÿMäIƒäøIƒÄéuþÿÿDƒÿMäIƒäüIƒÄé]þÿÿDHHðH‹hðH‰Kéòüÿÿ€H‰ýéãüÿÿ„H‰ßèíÿÿ¸ÿÿÿÿé”ûÿÿfDH5É)H‹º=!H‹81ÀèàÈÿÿ¸ÿÿÿÿélûÿÿH‹Ÿ=!‹VX‰ùH5+)H‹81Àè¹Èÿÿ¸ÿÿÿÿéEûÿÿDf.„AWAVAUATI‰ýUSHôëHƒì(HD$Hl$H‰t$H‰$¶€ú}‡¶ÂHcƒHØÿàDI‹EHƒÆIƒ}(H‹H‹H‰t$D‹`X…6L‰ïèîùÿÿƒøÿ„GH‹t$E1öA¿¶„Étz€ù)tu€ù wL‰øH¿>HÓàH…øuÝH‰ïèéíÿÿƒøÿ„E9ô~I‹UIcÎH‹H‹H‹TÊHcÈH9Ñ…[H‹t$¶€ù,t	€ù)…Ç€ù,„^AƒÆ„Éu†E9ô…Ý„É„\AÆEGIÇE(„HƒÆH‰t$¶€ú}†òþÿÿH‹<$èOíÿÿƒøÿ„hH˜I‰E(H‹t$éÁþÿÿfDE1äL‰ïèåøÿÿƒøÿ„>I‹E(H‹t$I‰E0A¶EEHƒÆAˆEF¶FÿE‰e@H‰t$IÇE(AˆEDéoþÿÿ@E1äA8UDuªE;e@u¤A¶EEA8EFu™HƒÆI‹E(IÇE(IE0H‰t$é3þÿÿ„A€}DtIƒ}„fL‰ïèFøÿÿƒøÿ„ŸIƒ}…JH‹D$HƒÄ([]A\A]A^A_ÃfDL‰ïèøÿÿƒøÿ„iI‹E(IE A¶EEIÇE(IÇE0AÆEDAˆEFH‹D$HpH‰t$é™ýÿÿfDHƒÆL‰ïI‹]8H‰t$è³÷ÿÿƒøÿ„H…ÛAÆED„jÿÿÿI‹M 1ÒH‰ÈH÷óH…Ò„UÿÿÿHËH)ÓI‰] éFÿÿÿ„HƒÆAÆEE=H‰t$é(ýÿÿDHFH‰D$¶VJš€ùv	€úd…ôH‰ÆA¼éþÿÿ@HFM‹e(IÇE(M‹u8H‰D$€~{…ÿL‰ïèýöÿÿƒøÿtZH‹D$M…äAÆEDIÇE0IÇE8HpH‰t$„ôE1ÿë€IƒÇM9ü„ÛH‹t$L‰ïèFüÿÿH…ÀH‰ÆuÞ1ÀHƒÄ([]A\A]A^A_ÃDHFH‰D$¶H‰ÆAˆUEé;üÿÿH‹y9!H5Â%H‹8èÃÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„HFH‰D$€~:tHƒÆDH‰t$H‰ðHƒÆ€~ÿ:uîHpH‰t$éÓûÿÿ„HFH‰D$¶NH‰ÆéüÿÿL‰ïè èÿÿ1Àë„@M…öH‰t$„•ûÿÿM‰u8éŒûÿÿH‹É8!H5‚%H‹8èjÂÿÿ1ÀéKÿÿÿH‹©8!H5Â%¾ÑH‹81ÀèÅÃÿÿH…À…|üÿÿ1ÀéÙþÿÿDI‹EH5Å%D‰ñH‹H‹‹PXH‹b8!H‹81ÀèˆÃÿÿëÁH‹O8!H5€#ºZH‹81ÀèiÃÿÿ1ÀéÊþÿÿ‰ÁH‹)8!H5%H‹81ÀèHÃÿÿëH‹8!H5˜$H‹8è°Áÿÿ1Àé‘þÿÿH‹ò7!H5c%H‹8è“Áÿÿ1Àétþÿÿff.„AUATI‰ÔUSH‰ý‰ÊH‰÷H‰îHƒìXHÇEE‰ÅL‰ËèEÁÿÿƒøÿ„\‹M$D9é…àH‰#HÇCHšßA€|$\SL‰$$H‰çH‰D$HÇD$LKH‰\$HÇD$ L‰àÆD$E@ÆD$F@HÇD$(HÇD$0ÆD$DÇD$@ÆD$GHÇD$8u*DH‹@L‰ÊIÇAIƒÁI‰AðH‹€x\StàH‰T$H‹u(èrùÿÿH…ÀtHH‹UM‹L$L9Ê…Ã1ÀHƒ}@tbHƒÄX[]A\A]ÀH‹©6!H5J$D‰êH‹81ÀèÅÁÿÿHƒ}¸ÿÿÿÿtÇH’g!H9E@„¹H‰ïèÀÿÿHƒÄX¸ÿÿÿÿ[]A\A]ÃHig!H‰]@HƒÄX[]A\A]Ãf.„H	!HBg!HÇEHÇEH‰U8H‰U0H‰]@HƒÄX[]A\A]ÃH²ÞH
qÝIƒùM‹$H‰ÆHBñHƒúHMÈH‹Ü5!HƒìVH5¸#H‹81ÀèöÀÿÿXZé*ÿÿÿHÇE@é:ÿÿÿfSH‰ûHƒì H|$HT$Ht$褿ÿÿH‹|$H…ÿtHƒH‹t$H…ötHƒH‹T$H…ÒtHƒèå¾ÿÿ¿è;ÀÿÿH‰ßèã½ÿÿH‹T$H‹t$H‰ÃH‹|$輾ÿÿH…Ût'H‰ßè_¿ÿÿHƒ+t	HƒÄ [ÃH‰ßèؼÿÿHƒÄ [ÃfH‹=I5!è4¿ÿÿHƒÄ [Ã@f.„AWAVI‰÷AUATUSHƒìH‹È|!H‹=€!H‰Þè9½ÿÿH…À„pHƒI‰ÄH‹5}!L‰çèŠÀÿÿH…ÀH‰Ã„ŽIƒ,$„ãH‹5Ì|!H‰ßèdÀÿÿH…ÀI‰Æ„pHƒ+„ÎH‹-ç}!H‹= !H‰îèȼÿÿH…ÀH‰Ã„lHƒL‹%1|!H‹=z!L‰æ袼ÿÿH…ÀH‰Å„–HƒH‹5;|!H‰ïèó¿ÿÿH…ÀH‰Â„¿Hƒm„l¿H‰T$èm¾ÿÿH…ÀI‰ÅH‹T$„|IƒH‰ÆH‰P(L‰x 1ÒH‰ßè¾ÿÿH…ÀH‰Å„ŸIƒm„Hƒ+„1ÀH‰î¿胾ÿÿH…ÀH‰Ã„1ÒH‰ÆL‰÷躽ÿÿH‹HQÿH…ÒH‰uH‰ßH‰D$è»ÿÿH‹D$H‹MHQÿH…ÒH‰U„ÜH…À„SI‹HQÿH…ÒI‰umL‰÷H‰D$èߺÿÿH‹D$HƒÄ[]A\A]A^A_ÃHƒ+H&ÛÇ~!€Ç~!H‰ò}!tpH‹
é}!‹ï}!H=!‹5Þ}!èÑåÿÿ1ÀHƒÄ[]A\A]A^A_ÃL‰çèhºÿÿéþÿÿH‰ßèXºÿÿé%þÿÿH‰ïH‰D$èCºÿÿH‹T$é}þÿÿf„H‰ßè(ºÿÿë†fDH‚ÚÇk}!€Ç]}!=1íH‰L}!@M‰ôI‰ÖIƒ,$t[H…ÛtHƒ+tpH…ítHƒmtTM…ötIƒ.t)M…í„ ÿÿÿIƒm…ÿÿÿL‰ï譹ÿÿéÿÿÿ„L‰÷蘹ÿÿëÍfDL‰ç船ÿÿë›fDH‰ïèx¹ÿÿë¢fDH‰ßèh¹ÿÿë†fDH‰ßèX¹ÿÿéñýÿÿL‰ïèH¹ÿÿé×ýÿÿH‹EHƒèH…ÀH‰E…ƒH‰ïH‰D$è¹ÿÿH‹D$é
þÿÿèkºÿÿH‰ßèãâÿÿH…ÀI‰Ä…~üÿÿHYÙÇB|!€Ç4|!H‰%|!é0þÿÿH2ÙÇ|!€Ç
|!E1íE1ö1íH‰ö{!é¯þÿÿèû¹ÿÿH‰ïèsâÿÿH…ÀH‰Ã…üÿÿHéØÇÒ{!€ÇÄ{!E1í1Ò1íH‰®{!éaþÿÿf„諹ÿÿL‰çè#âÿÿH…ÀH‰Å…UüÿÿH™ØÇ‚{!€Çt{!E1í1ÒH‰`{!éþÿÿHjØÇS{!€ÇE{!E1íH‰3{!éæýÿÿfDH:ØÇ#{!€Ç{!H1ÒH‰{!é·ýÿÿ€H
ØÇóz!€Çåz!ZE1í1Ò1íH‰Ïz!1Ûé€ýÿÿ„AWAVAUATUSH‰õHƒì8H‹0!L‹-±v!H…ÒHÇD$L‰l$H‰\$ H‰\$(…¸H‹FHƒø„*ŽlHƒøtHƒø…iH‹^8L‹u0L‹m(H‹E H‰D$H‹-ðx!H‹=iz!H‰î葷ÿÿH…ÀI‰Ä„%HƒH‹-²x!H‹=Cz!H‰îèk·ÿÿH…ÀI‰Ç„oHƒ¿èa¹ÿÿH…ÀH‰Å„õH‹D$1ÒH‰îL‰ÿHƒH‰E IƒEL‰m(IƒL‰u0HƒH‰]8èâ¸ÿÿH…ÀH‰Ã„æHƒm„›Iƒ/„1ÀH‰޿èb¹ÿÿH…ÀH‰Å„61ÒH‰ÆL‰ç虸ÿÿH‹MHQÿH…ÒH‰UuH‰ïH‰D$èûµÿÿH‹D$H‹HQÿH…ÒH‰„H…À„’I‹$HQÿH…ÒI‰$„%HƒÄ8[]A\A]A^A_ÃfDHƒøI‰Þ„£þÿÿHÖH5LÕH
ÖL
xÖH…ÀHNÊŸÂLNÎHƒì¶ÒPH‹Š-!LDRH56HÜÕH‹81À轸ÿÿH¯Õǘx!¬ÇŠx!O
¾O
H‰vx!XZH
†ÕH=¾º¬è\àÿÿHƒÄ81À[]A\A]A^A_ÃI‰ÞéìýÿÿH‹HƒèH…ÀH‰…•DH‰ßH‰D$è˴ÿÿH‹D$éÞþÿÿL‰ÿ踴ÿÿérþÿÿH‰ï訴ÿÿéXþÿÿL‰çH‰D$蓴ÿÿH‹D$HƒÄ8[]A\A]A^A_ÀH‹^Hƒû‡$I‰ÔH0ÝHcšHÐÿà€H‹F8H‰D$(H‹E0H‰D$ H‹E(H‰D$H‹E H‰D$L‰çèdµÿÿHƒûI‰Å„!ŽñHƒû„7Hƒûu&M…í~*H‹5Õt!L‰ç轳ÿÿH…À„CH‰D$(IƒíM…í1H‹D$L‹l$L‹t$ H‹\$(H‰D$é½üÿÿ@èµÿÿH‰ïèƒÝÿÿH…ÀI‰Ä…ÆüÿÿHùÓÇâv!ØÇÔv!x
H‰Åv!H‹
¾v!‹Äv!H=	‹5³v!è¦ÞÿÿHƒÄ81À[]A\A]A^A_ÃD蛴ÿÿH‰ïèÝÿÿH…ÀI‰Ç…|üÿÿH‰ÓÇrv!ØÇdv!z
H‰Uv!I‹$E1ÿ1íHƒèH…ÀI‰$…vÿÿÿL‰çèã²ÿÿM…ÿtIƒ/t(H…í„ZÿÿÿHƒm…OÿÿÿH‰ï輲ÿÿéBÿÿÿ€L‰ÿ訲ÿÿëÎfDHÓÇëu!ØÇÝu!¡
H‰Îu!Iƒ,$u™ëŠDHÒÒÇ»u!ØÇ­u!²
H‰žu!ëÎ@HªÒÇ“u!ØÇ…u!Ä
H‰vu!éÿÿÿH…Û…<þÿÿH‹58s!L‰çIƒíèԱÿÿH…ÀH‰D$„§M…íŽþÿÿH‹5r!L‰ç讱ÿÿH…ÀtH‰D$IƒíM…íŽõýÿÿH‹5r!L‰ç舱ÿÿH…À„³ýÿÿH‰D$ Iƒíé ýÿÿHT$LÒH5^[!H‰ÙL‰çè“áÿÿ…À‰©ýÿÿHÝÑÇÆt!¬Ç¸t!9
¾9
H‰¤t!é+üÿÿH‹Eé£ûÿÿH‰Øé›ûÿÿ@f.„AWAVI‰ÖAUATI‰õUSI‰ü‰ËHì(
H…ÿò„$€HDŽ$èHDŽ$àHDŽ$HDŽ$HDŽ$ÈHDŽ$À„ÚH;=3)!„ÍH¬$°H¼$èHÆn!A¸¹L‰æI‰éèððÿÿƒøÿ„'H‹”$ H‹„$H‹
H‹0M…íH‹@H‰L$H‹JH‰t$H‰D$ H‰L$„œL;-µ(!„H¬$°H¼$HÈm!A¸¹L‰îI‰éèrðÿÿƒøÿ„	H‹”$@H‹„$8H‹
H‹0M…öH‹@H‰L$HH‹JH‰t$0H‰D$PH‰L$(„nL;57(!„aH¬$°H¼$ÈHÊm!A¸¹L‰öI‰éèôïÿÿƒøÿ„«H‹”$H‹„$øH‹H‹@…ÛH‹2H‰$I‹D$(H‰t$`H‹rH‰L$8L‹(H‰t$XD‰¬$ˆ„2E…íŽáL‹´$èH‹„$E1ÿH‰D$xH‹„$ÈH‰D$@H‹D$0H‰D$hH‹D$8H‰D$pL‹T$hH‹\$pD‰ýL‰¼$˜L‹,$M‰ÓI÷ÓIÁû?L‰ÚE1ÛL9|$0AŸÃD‰Ø÷ØM…ÿHÂMI×1ÒL¯T$HL9|$8A‰ÃH‰ØH÷ПÂHÁø?÷ÚA‰ÄM…ÿDIâIIßH‹D$@H¯\$`LT$xL‹|$PE1ÉD‰¤$ŒHØH‰„$A9éIcÁ„ÇM…ÉL‰îºIIñH¯t$XHÞHt$@H…ÀH‰ÁˆrI9ÇŽrAƒûÿ…ÇH¯D$(E‹AøñØÿÿ„àIcÀH…ÀH‰Âˆé1ÿH9D$@ŸÇ÷ßH…Ɉ{H9L$ Ž{ƒÿÿ…÷L9$ŽAƒüÿ…ëH¯T$H¯L$òLòòX
1ÒA9èò…VÿÿÿIƒÁIƒÅD9Œ$ˆÿÿÿL‹¼$˜HƒD$hHƒD$pIƒÇD9¼$ˆXþÿÿHƒ¼$Èt"H†V!H9„$„
H¼$Èèë®ÿÿHƒ¼$èt"HYV!H9„$(„ú	H¼$è辮ÿÿHƒ¼$„H(V!H9„$H„§	H¼$荮ÿÿéX„Lø‰ŽþÿÿºH‹%!H5¬H¬$°H‹81Àèò¯ÿÿHäÌÇÍo!jÇ¿o!H‰°o!é3HL$ ‰…þÿÿºH‹¹$!H5RH¬$°H‹81À蘯ÿÿHŠÌÇso!mÇeo!ÑH‰Vo!éِH‹T$HÂH‰×H÷×HÁÿ?é
þÿÿf„Hén!H5"U!HDŽ$ðH‰„$ H‰„$H‰ÂH‰´$(é?ûÿÿfDH©n!H5âT!HDŽ$HDŽ$H‰„$@H‰„$8H‰ÂH‰´$Héqûÿÿf.„HYn!H5’T!HDŽ$ÈHDŽ$ÐH‰„$H‰„$øH‰ÂH‰´$éŸûÿÿf.„H‹-)k!H‹=rn!H‰î蚫ÿÿH…ÀI‰Ç„>HƒH‹5»k!L‰ÿèë®ÿÿH…ÀI‰Æ„ïIƒ/„eH‹5j!ºL‰ç衮ÿÿH…ÀH‰Å„L‰òH‰ÆL‰çèç­ÿÿ…Àˆ†Hƒm„œIƒ.„‚E…íŽýÿÿH‹D$ L‹|$AƒíL‹´$è1ÿHpM‰üI‰ÀAƒýÿ„ûÿÿH‹l$L‹\$HFIƒÄE‰êH‰D$@IÂM‰áH¯ïL¯ßH‰ñL)Áˆ‘1ÒL9ùH‰ÈœÂ÷ÚL9Ǎ#ƒúÿ…H…ɈL9Á„H‰ÊL9ÿ}H¯D$H¯T$HèLÚLðLòòò
f.È‚ZL9ǍLH…ɈL9ÁòHƒÆIƒÁL9Ö…]ÿÿÿHƒÇAƒíH‹t$@éÿÿÿ„H²ÉÇ›l!LǍl!|H‰~l!fDH´$¨H¼$ H‰êè`«ÿÿHƒ¼$Èt"HNR!H9„$„hH¼$È質ÿÿHƒ¼$èt"H!R!H9„$(„H¼$è膪ÿÿHƒ¼$t"HôQ!H9„$H„öH¼$èYªÿÿH‹¼$ H‹”$°H‹´$¨è,ªÿÿH=­èðêÿÿHÄ(
[]A\A]A^A_ÃfD1ÒéŸûÿÿH…Ɉ÷L9Á÷L9Ǎmòé¡þÿÿ@ºH‹„ !H5H¬$°H‹81Àèc«ÿÿHUÈÇ>k!mÇ0k!àH‰!k!é¤þÿÿ@1Òéyûÿÿ1Òë©@HDŽ$(éäþÿÿ€HDŽ$Héùþÿÿ€HDŽ$é‡þÿÿ€L‰ÊL‰ÈH÷ÒHÁú?éjýÿÿfDH…öH‰ò‰ýÿÿ»H‹¸!H5Q‰ÚH¬$°H‹81À蕪ÿÿH‡ÇÇpj!_Çbj!éH‰Sj!éÖýÿÿfDHZÇÇCj!LÇ5j!H‰&j!é©ýÿÿH2ÇÇj!LÇ
j!†H‰þi!éýÿÿf„èû§ÿÿH‰ïèsÐÿÿH…ÀI‰Ç…­ûÿÿHéÆÇÒi!\ÇÄi!¤H¬$°H‰­i!é0ýÿÿ„L‰ÿèH¦ÿÿéŽûÿÿH…ö‰	þÿÿH‹¨!H5A
ºH¬$°H‹81À肩ÿÿHtÆÇ]i!bÇOi!4H‰@i!éÃüÿÿL‰÷èà¥ÿÿéqûÿÿH‰ïèХÿÿéWûÿÿ»H‹4!H5Í‰ÚH¬$°H‹81Àè©ÿÿHÆÇìh!_ÇÞh!ÚH‰Ïh!éRüÿÿf.„H…ö‰èûÿÿH‹Ø!H5qºH¬$°H‹81À貨ÿÿH¤ÅǍh!`Çh!H‰ph!éóûÿÿ…Ò„Œ÷ÿÿL9$Žœƒ¼$Œÿ…ŒH‹D$XH‹Œ$ò”$€I¯ÁòéP÷ÿÿ@Iƒ/H.ÅÇh!\Ç	h!¦H‰úg!…tL‰ÿH¬$°蔤ÿÿégûÿÿHñÄÇÚg!\ÇÌg!©H‰½g!I‹H¬$°HƒèH…ÀI‰…*ûÿÿL‰÷èJ¤ÿÿéûÿÿH‹¶!H5OºH¬$°H‹81À萧ÿÿH‚ÄÇkg!`Ç]g!H‰Ng!éÑúÿÿHƒmHVÄÇ?g!\Ç1g!ªH‰"g!…_ÿÿÿH‰ïèģÿÿéRÿÿÿ€H‹)!H5Â
ºH¬$°H‹81Àè§ÿÿHõÃÇÞf!bÇÐf!CH‰Áf!éDúÿÿ1ÒH‹Û!H5t
H‹81Àè¦ÿÿH´Ãǝf!qǏf!H‰€f!H¬$°éûùÿÿHDŽ$HéHöÿÿHDŽ$éÙõÿÿHDŽ$(éõõÿÿAWAVI‰öAUATI‰ÕUSH‰ÍHìøH…ÿH‹L!òD$HÇD$xHÇD$pHDŽ$¸HDŽ$°HDŽ$Ø	HDŽ$Ð	HDŽ$˜HDŽ$„ÖH9ß„ÍHD$xLd$`H|`!H‰þA¸¹<M‰áH‰Çè£âÿÿƒøÿH‹”$¨„:H‹I9ÞH‰D$ „ÄM…ö„»Ld$`H¬_!H¼$¸A¸¹<L‰öM‰áèNâÿÿƒøÿH‹”$è„H‹M…íH‰D$(„¾I9Ý„µLd$`HW_!H¼$Ø	A¸¹<L‰îM‰áèùáÿÿƒøÿH‹”$
„ðH‹H9ÝH‰D$0„¸H…턯Ld$`H¼$˜Hz_!A¸¹=H‰îM‰áè¤áÿÿƒøÿ„ÓH‹”$ÐH‹„$ÈH‹
L‹%Aa!H‹=Šd!H‰L$HH‹L‰æH‹@H‰L$@H‰D$8H‹E(H‹H‰D$萡ÿÿH…ÀI‰Ç„tHƒH‹5Ñ`!L‰ÿèá¤ÿÿH…ÀI‰Ä„¥Iƒ/„³‹D$H‰ÇH‰D$èú ÿÿH…ÀI‰Æ„¾H‹|$èä ÿÿH…ÀI‰Å„(¿è.£ÿÿH…ÀI‰Ç„JL‰h(L‰p ¿è£ÿÿH…ÀI‰Å„TL‰x 軡ÿÿH…ÀI‰Æ„oH‹À!H‹5qa!H‰Çèɟÿÿ…Àˆ±H‹êb!H‹5`!L‰÷諟ÿÿ…ÀˆkL‰òL‰îL‰çèe¢ÿÿH…ÀI‰Ç„ÓIƒ,$„^Iƒm„CIƒ.„)I9ß…H‹D$…ÀA‰Ä„	Hƒ|$0ŽµH‹„$Ø	M‹OE1ÒL‹D$ H‹t$(E1ÛL‹l$8»‹xB‹˜9úƒC‰ÐH9ƆôH‹Œ$¸I9AÆ	vdL;\$@ƒŽI9͆L‹t$xòAÆIÊH„$˜òf.ÈvòƒÂ9úƒß‰ÐH9ðƒH‹Œ$¸L9AÆ	r§H‹L!H5å1ÒL‰ûLd$`H‹81Àè)¢ÿÿH¿Çb!•Çöa!WH‰ça!é fH™a!HÒG!I9ÞHDŽ$€H‰„$¸H‹H‰”$°H‰”$¨H‰D$ …<üÿÿHVa!HG!M…íHDŽ$¸HDŽ$ÀH‰„$øH‹H‰”$ðH‰”$èH‰D$(…BüÿÿHa!H@G!H9ÝHDŽ$Ø	HDŽ$à	H‰„$
H‹H‰”$
H‰”$
H‰D$0…HüÿÿH¸`!H
ñF!HDŽ$˜HDŽ$ H‰„$ÐH‰„$ÈH‰ÂH‰Œ$ØéNüÿÿf„H½Ç«`!ŒÇ`!õH‰Ž`!Iƒ,$„+M…í„OI‹E1ÛHƒèH…ÀI‰E„ëM…ö„,I‹Ld$`HƒèH…ÀI‰„ÚHt$XH|$PL‰âè0ŸÿÿHƒ|$xtH!F!H9„$¸„óH|$x艞ÿÿHƒ¼$˜t"H÷E!H9„$Ø„±H¼$˜è\žÿÿHƒ¼$¸t"HÊE!H9„$ø„´H¼$¸è/žÿÿHƒ¼$Ø	t"HE!H9„$
„ŸH¼$Ø	èžÿÿH‹T$`H‹t$XH‹|$PèޝÿÿH=—è¢ÞÿÿH…ÛtHƒ+uH‰ßèÿ›ÿÿHÄø[]A\A]A^A_ÃDHJ¼Ç3_!ƒÇ%_!º1ÛH‰_!éÍþÿÿ€H¼Ç_!ƒÇõ^!¿1ÛH‰ä^!éþÿÿ€Hê»ÇÓ^!ƒÇÅ^!Ä1ÛH‰´^!émþÿÿ€Hº»Ç£^!ƒÇ•^!É1ÛH‰„^!é=þÿÿ€L‰ïè ›ÿÿéþÿÿL‰÷è›ÿÿéþÿÿL‰çè›ÿÿéÈýÿÿL‰ÿèðšÿÿé@úÿÿHDŽ$Øé>þÿÿ€HDŽ$¸éüýÿÿ€HDŽ$øé;þÿÿ€HDŽ$
éPþÿÿ€HêºÇÓ]!ŒÇÅ]!öH‰¶]!é#ýÿÿ軛ÿÿL‰çè3ÄÿÿH…ÀI‰Ç…wùÿÿH©ºÇ’]!ŒÇ„]!Ý1ÛLd$`H‰n]!é'ýÿÿf„HrºÇ[]!ŒÇM]!ß1ÛH‰<]!Iƒ/uL‰ÿèޙÿÿLd$`éâüÿÿ@H2ºÇ]!ŒÇ
]!âE1íH‰û\!éhüÿÿ1ÒH9L$8†‰H‹
!H5£L‰ûLd$`H‹81ÀèéœÿÿH۹ÇÄ\!•Ç¶\!`H‰§\!é`üÿÿfH²¹Ç›\!ŒÇ\!äH‰~\!Iƒ.„PE1öéÞûÿÿ@Hz¹Çc\!ŒÇU\!æH‰F\!ëÆ@HR¹Ç;\!ŒÇ-\!îM‰þH‰\!éˆûÿÿfDH"¹Ç\!ŒÇý[!óH‰î[!é[ûÿÿf„L‰÷舘ÿÿéÊøÿÿL‰ïèx˜ÿÿé°øÿÿL‰çèh˜ÿÿé•øÿÿH‹Ñ!H5jÿ1ÒL‰ûLd$`H‹81À讛ÿÿH ¸Ç‰[!’Ç{[!>H‰l[!é%ûÿÿ€ºémþÿÿHh¸ÇQ[!ŒÇC[!÷H‰4[!é¡úÿÿH‹P!H5éþ1ÒL‰ûLd$`H‹81Àè-›ÿÿH¸Ç[!‘ÇúZ!$H‰ëZ!é¤úÿÿH‹Z!H…Û„ÛI‹H9û„É÷ÿÿH‰ÞèA›ÿÿ…À…¹÷ÿÿI‹GH‹K H5šøH‹P H‹o!H‹81À赚ÿÿH§·ÇZ!ŒÇ‚Z!ü1ÛH‰qZ!é0ýÿÿLL$A9ÜtySH9T$0H‰ÓŽ"ÿÿÿIƒÃLT$HL;\$0H‹„$Ø	‹<…w÷ÿÿH‹S!H5ìý1ÒL‰ûLd$`H‹81Àè0šÿÿH"·ÇZ!‘ÇýY!,H‰îY!é§ùÿÿòD$èþ•ÿÿH…ÀI‰Ä„2H‰ÂL‰þH‰ïèԙÿÿ…Àˆ\Iƒ,$„ÑHƒ|$xtH¢?!H9„$¸„ãH|$xè
˜ÿÿHƒ¼$˜t"Hx?!H9„$Ø„—H¼$˜èݗÿÿHƒ¼$¸tHK?!H9„$øtH¼$¸贗ÿÿHƒ¼$Ø	„òH?!H9„$
„ŸH¼$Ø	L‰û耗ÿÿéžùÿÿH‹L!H5µH‹8腗ÿÿéKþÿÿL‰ç舕ÿÿé"ÿÿÿHDŽ$ØéXÿÿÿHDŽ$øépÿÿÿHDŽ$¸éÿÿÿH²µÇ›X!™ÇX!™L‰ûLd$`H‰vX!é/øÿÿHDŽ$
éPÿÿÿHrµL‰ûÇXX!™ÇJX!›M‰çH‰8X!é÷úÿÿL‰ûéÎøÿÿ1ÛéÁ÷ÿÿL‰÷E1öèɔÿÿé†÷ÿÿ@AWAVAUATUSH‰óHƒìXH‹h
!H…ÒHÇD$0HÇD$8H‰D$@H‹ÏS!H‰D$H‰D$H…H‹FHƒø„ÂHƒø„¯Hƒø„H´H
ĴHƒøH5ûL
&µHNÊŸÂHƒìPH‹B!¶ÒLDH«´H‹81Àèy—ÿÿHk´ÇTW!ôÇFW!¾H‰2W!XZH
B´H=‚ûºô1Ûè¿ÿÿHƒÄXH‰Ø[]A\A]A^A_Ã@H‹F8H‰D$H‹C0H‰$L‹c(H‹k HƒE¿Iƒ$èC—ÿÿH…ÀH‰Ã„çH‹èR!1öH‰ÇHƒè•ÿÿH‹=ËR!ºH‰Þè^»ÿÿH…ÀI‰Å„¢Hƒ+„ˆH‹5©R!L‰ïèù½ÿÿH…ÀH‰Ã„-Hƒ8„ƒIƒm„h¿辕ÿÿH…ÀI‰Å„BHƒEH‰h H‹$HƒI‰E(èX”ÿÿH…ÀI‰Ç„$H‹U!H‹=>V!H‰ÆH‰D$èa“ÿÿH…ÀI‰Æ„-HƒH‹5êS!L‰òL‰ÿè?’ÿÿ…ÀˆïIƒ.„ýH‹þ
!H‹5÷S!L‰ÿè’ÿÿ…Àˆ/
H‹$H;
!”ÀH;
Ò
!”ÂÂu
H;
¼
!…¶À„ûH‹¬
!HƒI‰ÆH‹5>T!L‰òL‰ÿ軑ÿÿ…Àˆƒ
Iƒ.„YL‰úL‰îH‰ßèk”ÿÿH…ÀI‰Æ„ï
Iƒm„$Iƒ/„
Hƒm„ïH‹-èQ!H‹=1U!H‰îèY’ÿÿH…ÀI‰Ç„í
HƒH‹5
T!L‰ÿ誕ÿÿH…ÀI‰Å„Iƒ/„´1ÀL‰æ¿蕔ÿÿH…ÀH‰Å„!1ÒH‰ÆL‰ïè̓ÿÿHƒmH‰D$uH‰ïè8‘ÿÿHƒ|$„ô
Iƒm„±Iƒ,$„–H‹5¿P!H‹|$è%•ÿÿH…ÀI‰Å„ñ
H‹5¢P!L‰÷è
•ÿÿH…ÀI‰À„ºH‰ÆL‰ïH‰D$èɔÿÿH…ÀI‰ÇL‹D$„PIƒm„	Iƒ(„s	L;=\	!”ÀL;=	!”ÂÂu
L;=	!…¶èIƒ/„q	…í…yH‹-’P!H‹=ÛS!H‰îè‘ÿÿH…ÀI‰Ç„÷HƒH‹5¤O!L‰ÿèT”ÿÿH…ÀH‰D$„Iƒ/„\	H‹5ÅO!L‰÷è-”ÿÿH…ÀI‰Ç„(¿跒ÿÿH…ÀI‰À„IL‰x H‰D$ è]‘ÿÿH…ÀI‰ÇL‹D$ „³H‹-R!H‹=>S!L‰D$ H‰îèaÿÿH…ÀI‰ÃL‹D$ „¾HƒH‹5åP!L‰ÚL‰ÿL‰D$(L‰\$ è0ÿÿ…ÀL‹\$ L‹D$(ˆ‹Iƒ+„ÌH‹|$L‰ÆL‰úL‰D$ èϑÿÿH…ÀI‰ÅL‹D$ „¹H‹L$H‹H‰D$ HƒèH…ÀH‰„¡Iƒ(„ÇIƒ/„­H‹-†!I9î…MH9l$…¯I9í…ºH‹<$H‹Gö€³„c诎ÿÿHcÐA‰ÄH9Ð…D
Aƒüÿ„°H‹|$èÿÿf.Ì÷z„ÙH‹t$D‰áL‰êL‰÷èYÝÿÿIƒEHƒ+„z	I‹EL‰õL‹d$L‰ëHƒèH…ÀI‰E…3f.„L‰ïèHŽÿÿéH‹ù!H‰$é‘úÿÿH‹é!HƒI‰ÆéüÿÿDH‰Ïè`ÿÿ…À‰ÕûÿÿHj®ÇSQ!?ÇEQ!yE1ÀE1öH‰0Q!Iƒ/„pIƒm……L‰ïL‰$迍ÿÿL‹$épfDH‰ß訍ÿÿékúÿÿL‰ï蘍ÿÿé‹úÿÿH‰Ç舍ÿÿépúÿÿL‰÷èxÿÿéöúÿÿH‹nHƒý‡@I‰ÔH<¶HcªHÐÿà€H‹F8H‰D$HH‹C0H‰D$@H‹C(H‰D$8H‹C H‰D$0L‰çè\ŽÿÿHƒýI‰Å„!ŽñHƒý„2Hƒýu&M…í~*H‹5M!L‰ç赌ÿÿH…À„q	H‰D$HIƒíM…í_	H‹D$@H‹l$0L‹d$8H‰$H‹D$HH‰D$éùÿÿ„L‰÷蘌ÿÿéšúÿÿHò¬ÇÛO!<ÇÍO!DE1íH‰»O!H‹
±O!‹·O!H=ô‹5¦O!虷ÿÿH…ÛtHƒ+tV1ÛM…ítIƒm„ÜýÿÿH…ítHƒmt(M…ä„QøÿÿIƒ,$…FøÿÿL‰çèŒÿÿé9øÿÿ€H‰ïèð‹ÿÿëÎfDE1ÿH‰ßL‰ûèڋÿÿ뜄H‰ïèȋÿÿéúÿÿL‰ÿ踋ÿÿééùÿÿL‰ï訋ÿÿéÏùÿÿH¬I‰ßÇèN!<ÇÚN!I1ÛH‰ÉN!Iƒ/…e
E1ÀE1öE1íL‰ÿL‰$èZ‹ÿÿM…íL‹$tIƒm„{ýÿÿM…ötIƒ.t3M…À„(
I‹E1íHƒèH…ÀI‰…´þÿÿL‰Çè‹ÿÿé§þÿÿ€L‰÷L‰$èüŠÿÿL‹$ë»fDHR«Ç;N!<Ç-N!LE1öH‰N!E1ÀérÿÿÿL‰ÿ踊ÿÿé?ùÿÿH«ÇûM!=ÇíM!ZH‰ÞM!é!þÿÿf„L‰çèxŠÿÿé]ùÿÿL‰ïèhŠÿÿéBùÿÿL‰ÿ訋ÿÿ…	ʼnÓùÿÿH°ªÇ™M!BÇ‹M!¹L‹d$L‰õH‰tM!é¦þÿÿ€H…í…<ýÿÿH‹50K!L‰çIƒíè̉ÿÿH…ÀH‰D$0„E	H‹5×I!L‰ç诉ÿÿH…ÀH‰D$8„zIƒíM…íŽúüÿÿH‹5K!L‰ç腉ÿÿH…À„¸üÿÿH‰D$@Iƒíé¥üÿÿfDL‰ßL‰D$ 苉ÿÿL‹D$ éúÿÿH‰ÏL‰D$ ès‰ÿÿL‹D$ éHúÿÿf„L‰ÿèX‰ÿÿéFúÿÿL‰ÇèH‰ÿÿé,úÿÿL‹%,L!M…ä„	H‹D$H‹xI9ü„/úÿÿL‰æèéŒÿÿ…À…úÿÿH‹D$I‹L$ H5@êH‹@H‹P H‹!H‹81ÀèWŒÿÿHI©Ç2L!FÇ$L!üL‹d$L‰õH‰
L!éPüÿÿ„L‹%™K!M…䄐I‹~I9ü„–ùÿÿL‰æè[Œÿÿ…À…†ùÿÿI‹FI‹L$ H5³éH‹P H‹ˆ!H‹81Àè΋ÿÿH(Ç©K!FÇ›K!ûL‹d$L‰õH‰„K!éÇûÿÿH‹-K!H…í„*I‹}H9ý„)ùÿÿH‰îèڋÿÿ…À…ùÿÿI‹EH‹M H53éH‹P H‹!H‹81ÀèN‹ÿÿH@¨Ç)K!FÇK!ýL‹d$L‰õH‰K!éGûÿÿ€H
¨ÇóJ!=ÇåJ!bE1öH‰ÓJ!é³üÿÿfDèӈÿÿH‹|$èI±ÿÿH…ÀI‰Æ…¼ôÿÿH¿§Ç¨J!=ÇšJ!dE1ÀH‰ˆJ!éSùÿÿL‰Çè(‡ÿÿé€öÿÿL‰ïL‰D$è‡ÿÿL‹D$é\öÿÿf„L‰ÿèø†ÿÿé‚öÿÿHR§Ç;J!=Ç-J!†E1ÀH‰J!éæøÿÿfDL‰ÿ踆ÿÿé—öÿÿèˆÿÿH‰ï胰ÿÿH…ÀI‰Å…}Hù¦ÇâI!@ÇÔI!”L‰õH‰ÂI!éúÿÿDHʦdzI!@Ç¥I!–L‰õH‰“I!éÅúÿÿfDHš¦L‰õÇ€I!@ÇrI!¥E1öH‰`I!é@ûÿÿHj¦ÇSI!BÇEI!²L‹d$L‰õH‰.I!éqùÿÿf„H2¦L‰õÇI!BÇ
I!´M‰îL‹d$H‰óH!é]úÿÿfDHú¥ÇãH!=ÇÕH!fE1ÀH‰ÃH!éŽ÷ÿÿfDHʥL‰õÇ°H!BM‰îÇŸH!¶L‹d$H‰‹H!M‰ÅéhúÿÿH’¥Ç{H!=ÇmH!pE1ÀE1öH‰XH!é#÷ÿÿM‰ïL‹d$L‰õéùÿÿH‹5ùC!H‹=ÊG!1Òè[‡ÿÿH…ÀI‰Å„/H‰Çè׶ÿÿIƒm„ÌH¥ÇH!CÇùG!ÈL‹d$L‰õE1íH‰ßG!é"øÿÿf.„Hâ¤ÇËG!=ǽG!|E1ÀH‰«G!évöÿÿfD諅ÿÿH‰ïè#®ÿÿH…ÀI‰Å…%H™¤Ç‚G!EÇtG!ÚL‹d$L‰õH‰]G!é ÷ÿÿHj¤ÇSG!EÇEG!ÜL‹d$L‰õH‰.G!é`øÿÿH;¤L‰õÇ!G!EÇG!ßL‹d$E1öH‰üF!L‹l$é×øÿÿH¤L‰õÇêF!EÇÜF!áL‹l$E1öH‰ÅF!L‹d$é‹õÿÿHT$0L÷£H5¨-!H‰éL‰çè]³ÿÿ…À‰{öÿÿH§£ÇF!ôÇ‚F!¾H‰nF!é9ïÿÿH{£L‰õÇaF!EÇSF!æL‹d$M‰ÆH‰<F!L‹l$éøÿÿL‰D$ è8„ÿÿH‰ï谬ÿÿH…ÀI‰ÃL‹D$ …#óÿÿH!£L‰õÇF!EM‰ÆÇöE!èL‹l$H‰âE!L‹d$E1Àé¥ôÿÿHç¢L‰õÇÍE!EM‰ÆǼE!ìL‹d$H‰¨E!E1ÀL‹l$ékôÿÿö€³„ÕH‹H H‹›ú H¤ä¾H‹81À轃ÿÿ…À„£HƒmuH‰ïè‚ÿÿ葅ÿÿH…ÀA¼ÿÿÿÿ„<óÿÿHT¢Ç=E!GÇ/E!L‹d$L‰õH‰E!é[õÿÿò$èI…ÿÿH…Àò$„óÿÿH
¢ÇöD!GÇèD!L‹d$L‰õH‰ÑD!éõÿÿHƒøÿ„˜H‹Ëù H5´äH‹8èLƒÿÿéQÿÿÿH‹pù HƒìH
¹¡jH5èL
&¢HơA¸H‹81À莄ÿÿH€¡ÇiD!ôÇ[D!óYH‰KD!^¾óéíÿÿL‰ïèè€ÿÿé'üÿÿHE¡L‰õÇ+D!EM‰ÆÇD!êL‹l$H‰D!L‹d$M‰ØéÉòÿÿH‹CéKìÿÿH¡ÇëC!CÇÝC!ÄL‹d$L‰õH‰ÆC!é	ôÿÿL‹%²ø L9àtH‹<$èLƒÿÿ…À„è߃ÿÿH…À…@þÿÿH‹_ø H5} H‹8è ‚ÿÿé%þÿÿH‹Ìø H5 H‹8è‚ÿÿé)÷ÿÿH‹±ø H5ôŸH‹8èêÿÿé—÷ÿÿH‹–ø H5ٟH‹8èρÿÿéü÷ÿÿèeƒÿÿH…À„ZþÿÿéÁýÿÿH‹<$ènÿÿH…ÀH‰Å„^ÿÿÿH‹@H;ÿ÷ …Výÿÿö€³t\H‰ïèpÿÿHcÐA‰ÄH9ÐuHƒm…ºðÿÿH‰ïèrÿÿé­ðÿÿHƒÀ„™H‹¼÷ H5¥âH‹8è=ÿÿHƒm…<ýÿÿAƒÌÿëÂL9àtH‰ïè‚ÿÿ…Àt"趂ÿÿH…ÀuÔH‹:÷ H5XŸH‹8èû€ÿÿë¼H‰ï豀ÿÿH…ÀI‰ÇtÎH‹@H;F÷ u5L‰ÿè²ÿÿIƒ/A‰Ä…RÿÿÿL‰ÿèÏ~ÿÿéEÿÿÿèU‚ÿÿH…À„Yÿÿÿéjÿÿÿö€³tjH‹H H‹÷ Há¾H‹81Àè-€ÿÿ…ÀtIƒ/…2ÿÿÿL‰ÿèw~ÿÿé%ÿÿÿH‹EéÈþÿÿL‹@ H‹~ö H5wá1É1ÒH‹81À蹁ÿÿé/üÿÿL‹@ H‹Yö H5Rá1É1ÒH‹81À蔁ÿÿë™H‰èéÅéÿÿI‰ÇéyìÿÿI‰ÇéÇíÿÿE1íéšñÿÿfAWAVAUATUSH‰õHƒìxH‹¨ö H‹A=!H…ÒHÇD$@H‰\$HH‰D$PH‰D$XH‰D$`…“
H‹FHƒø‡ÍH
ž¦HcHÊÿâDL‹=Qö H‹E8H‰D$H‹E0H‰D$H‹](L‹e H‹D$Iƒ$HƒH‹-’=!H‹=Û@!HƒH‰îH‹D$Hƒèö}ÿÿH…ÀI‰À„ú
HƒH‹5¯?!L‰ÇL‰D$èBÿÿH…ÀI‰ÆL‹D$„!Iƒ(„׿è½ÿÿH…À„ôIƒ$L‰` H‰D$èa~ÿÿH…ÀI‰ÅL‹D$„
H‹5ù>!L‰úH‰ÇL‰D$èi|ÿÿ…ÀL‹D$ˆœ
L‰ÆL‰êL‰÷L‰D$èÿÿH…ÀI‰ÇL‹D$„ðIƒ.„ŽIƒ(„tIƒm„YIƒ,$„>H‹5—<!L‰ÿèo€ÿÿH…ÀI‰Á„óH‹5Œ;!H9ð„‰H‹dô I9A„RL‰ϺL‰L$è€ÿÿH…ÀH‰ÅL‹L$„ßI‹HƒèH;-±ô I‰A”ÅH…ÀE¶å„cH;-^ô ”ÁH;-Lô ”ÂÑuE„íuH‰ïè}ÿÿ…ÀA‰Äˆ½H‹EHPÿH…ÒH‰U„ðE…ä…×H‹58;!L‰ÿè ÿÿH…ÀI‰Å„$H‰Çèl~ÿÿ…À„ü1öL‰ïèj{ÿÿH‰ÅH…í„.Iƒm„3H‹5ì:!L‰ÿèTÿÿH…À„;H‰ÇH‰D$è~ÿÿ…ÀL‹L$„yL‰Ͼè{ÿÿL‹L$I‰ÅM…í„SIƒ)„aºH‰îL‰ïèÙ~ÿÿH…ÀI‰Á„]Iƒm„’L;
{ó H‹
<ó H‰L$ ”ÀI9É”ÂÂu
L;
ó …D¶àIƒ)„'
E…ä…†H;÷ò „¹L‹%B=!H‹=ã=!L‰æè{ÿÿH…ÀI‰Å„cHƒ1ÀH‰޿èl}ÿÿH…ÀI‰Ä„Í1ÒH‰ÆL‰ïè£|ÿÿIƒ,$H‰D$„;Hƒ|$„¤Iƒm„LHƒ+„2H‹:!H‹=d=!H‰ÞèŒzÿÿH…ÀI‰Å„¯HƒH‹5:!L‰ïèÝ}ÿÿH…ÀI‰Á„ÕIƒm„H‹t$1?L‰L$(èÀ|ÿÿH…ÀH‰ÃL‹L$(„Ò1ÒL‰ÏH‰ÆL‰L$(èí{ÿÿHƒ+I‰ÄL‹L$(„»
M…ä„¥Iƒ)„Ø
L;%ò ”ÀL;d$ ”ÂÂu
L;%«ñ …å
¶ØIƒ,$„ÿ…Û„H‹Èñ H‹t$HƒH‹H‰D$(HƒèH…ÀH‰„OH‹`ñ H‹t$HƒH‹HƒèH‰H‹5†ñ H…ÀH‰t$„H‹á8!H‹=*<!H‰ÞèRyÿÿH…ÀI‰Á„—HƒH‹5ó7!L‰ÏL‰L$èž|ÿÿH…ÀI‰ÅL‹L$„êIƒ)„üH‹58!L‰ÿèt|ÿÿH…ÀI‰Á„ö¿H‰D$èùzÿÿH…ÀL‹L$„9L‰H H‰D$èyÿÿH…ÀI‰ÁL‹D$„KH‹m:!H‹5N9!H‰ÇL‰D$(H‰D$èœwÿÿ…ÀL‹L$L‹D$(ˆpL‰ÊL‰ÆL‰ïL‰L$(L‰D$èBzÿÿH…ÀI‰ÂL‹D$L‹L$(„Iƒm„ÎIƒ(„£Iƒ)„‚H‹¶7!H‹=ÿ:!L‰T$H‰Þè"xÿÿH…ÀI‰ÅL‹T$„(HƒH‹5ö7!L‰ïL‰T$èi{ÿÿH…ÀI‰ÁL‹T$„·Iƒm„&H‹5®7!L‰ÏL‰T$(L‰L$è4{ÿÿH…ÀI‰ÆL‹L$L‹T$(„àIƒ)„`¿L‰T$è¥yÿÿH…ÀI‰ÁL‹T$„äIƒL‰x IƒL‰P(L‰T$(H‰D$è5xÿÿH…ÀL‹L$L‹T$(„ãH‹T$ H‹5Æ8!H‰ÇL‰T$0L‰L$(H‰D$è/vÿÿ…ÀL‹D$L‹L$(L‹T$0ˆÚL‰ÂL‰ÎL‰÷L‰T$0L‰D$(L‰L$èËxÿÿH…ÀI‰ÄL‹L$L‹D$(L‹T$0„ÓIƒ.„FIƒ)„Iƒ(„úI‹H‹5ˆî HƒèH‰t$H…ÀI‰„¸H‹t$H;5¤î ”ÀH;t$ ”ÂÂu
H;5Nî …À¶À…5
H‹t$H;5qî ”ÀH;t$ ”ÂÂu
H;5î …é¶À…ºIƒ$H‹\$M‰ç鱄L‹=)î L‰|$L‰|$éß÷ÿÿf.„L‹=	î L‰|$L‰|$é»÷ÿÿf.„L‹=éí L‰|$é—÷ÿÿ€L‹~@é~÷ÿÿ€H‹5)6!L‰çIƒíèÅtÿÿH…ÀH‰D$@…‡H‹EHM•H5‰”H
H•L
µ•H…ÀHNÊŸÂLNÎHƒì¶ÒPH‹Çì L•H5pÛH?•H‹81Àè÷wÿÿHé”ÇÒ7!SÇÄ7!
¾
H‰°7!XZH
H=8ܺSE1ä蓟ÿÿHƒÄxL‰à[]A\A]A^A_ÐL‰Çè(tÿÿé÷ÿÿL‰çètÿÿéµ÷ÿÿL‰ïètÿÿéš÷ÿÿL‰Çèøsÿÿé÷ÿÿL‰÷L‰D$èãsÿÿL‹D$é[÷ÿÿf„L‰ÏL‰L$è£tÿÿf.ëÜL‹L$Šè…âH‹+ì HƒH;Xì H‰ÅA”ÅE¶åI‹HPÿH…ÒI‰…Í÷ÿÿL‰Ïèrsÿÿé÷ÿÿD1ÿèwÿÿH…ÀI‰Ä„5H‰ÆL‰ïèúsÿÿIƒ,$H‰Å…å÷ÿÿL‰çè4sÿÿéØ÷ÿÿ€H‹^Hƒû‡uI‰ÔH œHcšHÐÿà€H‹F@H‰D$`H‹E8H‰D$XH‹E0H‰D$PH‹E(H‰D$HH‹E H‰D$@L‰çètÿÿHƒûI‰Å‡îHߛHcšHÐÿàfDH‰ïè rÿÿé÷ÿÿ¿L‰L$è9vÿÿH…ÀI‰ÄL‹L$„ØL‰ÏH‰ÆL‰L$èsÿÿIƒ,$I‰ÅL‹L$…Y÷ÿÿL‰çèMrÿÿL‹L$éG÷ÿÿè›sÿÿH‰ïèœÿÿH…ÀH‰Å…rH‰’Çr5!‰Çd5!¼
E1ÒM‰çH‰O5!€H‹
A5!‹G5!H=Ìً565!L‰T$E1äè!ÿÿH…íL‹T$tHƒm„œM…Òt
Iƒ*„­Iƒ/tWH…ÛtHƒ+t\H‹\$H‹H‰D$HƒèH…ÀH‰tSH‹L$H‹H‰D$HƒèH…ÀH‰…#ýÿÿH‰Ïè^qÿÿéýÿÿf„L‰ÿèHqÿÿëŸfDH‰ßè8qÿÿëšfDH‰ßè(qÿÿë£fDH‰ïL‰T$èqÿÿL‹T$éMÿÿÿf„L‰×èøpÿÿéFÿÿÿHR‘Ç;4!‰Ç-4!¾
E1ÉE1íE1ÒH‰4!1íM‰çIƒ(u*E1öL‰ÇL‰T$ L‰L$è¥pÿÿM…öL‹L$L‹T$ tIƒ.t`M…ítIƒmt4M…É„ƒþÿÿIƒ)…yþÿÿL‰ÏL‰T$èdpÿÿL‹T$ébþÿÿf.„L‰ïL‰T$ L‰L$è>pÿÿL‹T$ L‹L$ë®fL‰÷L‰T$ L‰L$èpÿÿL‹T$ L‹L$ë‚fL‰ïèpÿÿéÀôÿÿHbÇK3!‰Ç=3!Á
E1Ò1íM‰çH‰&3!E1ÉE1íé5ÿÿÿH*Ç3!‰Ç3!Æ
E1ÉE1Ò1íH‰î2!M‰çIƒ(…ûþÿÿéÕþÿÿ@L‰Ïè€oÿÿé’ôÿÿL‰ÏL‰L$è»pÿÿ…ÀA‰ÄL‹L$‰ÊôÿÿH½Ç¦2!Ç˜2!E1ÒH‰†2!é­þÿÿL‰ïH‰D$è#oÿÿL‹L$éWôÿÿf„HrÇ[2!‰ÇM2!È
M‰çE1ÉE1ÒH‰52!1íéCÿÿÿfDL‰çèÐnÿÿé¸ôÿÿH‹ç A½A¼HƒH‰Åéûÿÿf„H‰ßè˜nÿÿL‹L$(é3õÿÿfDL‰ïH‰D$(è{nÿÿL‹L$(éËôÿÿL‰ÏèhnÿÿéõÿÿM…펐H‹5x.!L‰çènÿÿH…ÀtH‰D$HIƒíM…í~nH‹5†.!L‰çèömÿÿH…ÀtH‰D$PIƒíM…í~LH‹5ì.!L‰çèÔmÿÿH…ÀtH‰D$XIƒíM…í~*H‹50!L‰çè²mÿÿH…À„°H‰D$`IƒíM…폞H‹D$PL‹d$@H‹\$HL‹|$`H‰D$H‹D$XH‰D$é(ðÿÿ€HúÇã0!‰ÇÕ0!É
E1ÉE1Ò1íH‰¾0!M‰çéËýÿÿfDL‰ÏèXmÿÿéÌòÿÿH²Ç›0!ŒÇ0!Ø
E1Ò1íH‰y0!é,ûÿÿ@H‚Çk0!ŒÇ]0!Ú
E1ÒH‰K0!érüÿÿfDHRI‰íÇ80!ŒÇ*0!Ý
E1Ò1íH‰0!E1Éé.üÿÿfDH‹5ñ+!H‹=’/!1Òè#oÿÿH…ÀH‰Å„¤H‰Ç蟞ÿÿHƒm„NHæŒÇÏ/!ÇÁ/!ì
E1Ò1íH‰­/!é`úÿÿ„H²ŒÇ›/!ŽÇ/!þ
E1Ò1íH‰y/!é,úÿÿ@H‚ŒÇk/!ŽÇ]/!E1Ò1íE1ÉH‰F/!éaûÿÿHRŒÇ;/!Ç-/!
E1ÒH‰/!éÎùÿÿfDH‰ßè¸kÿÿéÁñÿÿL‰ïè¨kÿÿé§ñÿÿHŒÇë.!ÇÝ.!E1ÒH‰Ë.!éòúÿÿfDHҋÇ».!Ç­.!E1ÒH‰›.!é¶úÿÿfDL‰çèˆlÿÿ…	ÉòÿÿH‹Çy.!•Çk.!oH‹\$M‰áE1ÒH‰Q.!éxúÿÿ@H‹5*!H‹=Ò-!1ÒècmÿÿH…ÀI‰Â„ˆH‰ÇH‰D$èڜÿÿL‹T$Iƒ*„¤
H‹Ç.!Çø-!#E1ÒH‰æ-!é™øÿÿH‹¹*!H‹=.!H‰Þè*kÿÿH…ÀI‰À„ˆHƒH‹53+!L‰ÇL‰D$(èvnÿÿH…ÀI‰ÂL‹D$(„
Iƒ(„1
H‹t$1?L‰T$(èUmÿÿH…ÀH‰ÃL‹T$(„\
1ÒL‰×H‰ÆL‰T$(è‚lÿÿHƒ+I‰ÁL‹T$(uH‰ßL‰T$0H‰D$(èâiÿÿL‹T$0L‹L$(M…É„
Iƒ*„ü	L;
~â ”ÀL;L$ ”ÂÂu
L;
(â …ð	¶ØIƒ)„;
…Û„H‹Fâ H‹t$HƒH‹H‰D$(HƒèH…ÀH‰„ÄH‹Þá H‹L$H‹5â HƒH‹H‰t$HƒèH…ÀH‰…~ðÿÿH‰Ïè.iÿÿH‹çá H‰D$éeðÿÿDL‰çèiÿÿéôïÿÿH‰÷L‰T$(èKjÿÿ…ÀL‹T$(‰)óÿÿHP‰Ç9,!£Ç+,!XH‹\$M‰çH‰,!éÇöÿÿ€H‹|$è®hÿÿH‹gá H‰D$éåïÿÿDH‰÷èhÿÿé¤ïÿÿH‹5)!L‰çL‰T$(è”lÿÿH…ÀI‰ÆL‹T$(„BH‹Œ(!H‹=Õ+!L‰T$(H‰ÞèøhÿÿH…ÀI‰ÅL‹T$(„§HƒH‹5ü(!L‰ïL‰T$(è?lÿÿH…ÀI‰ÀL‹T$(„Y
Iƒm„¶1ÀL‰æ¿L‰T$0L‰D$(èkÿÿH…ÀH‰ÃL‹D$(L‹T$0„W
1ÒL‰ÇH‰ÆL‰T$0L‰D$(è=jÿÿHƒ+I‰ÁL‹D$(L‹T$0u&H‰ßL‰T$8L‰D$0H‰D$(è“gÿÿL‹T$8L‹D$0L‹L$(M…É„þIƒ(„EL‰ÎL‰÷L‰T$0L‰L$(èìgÿÿH…ÀI‰ÅL‹L$(L‹T$0„
Iƒ.„«Iƒ)„ŠH‹5»'!L‰êL‰çL‰T$(èëiÿÿ…ÀL‹T$(ˆâIƒm…FñÿÿL‰ïL‰T$(èöfÿÿL‹T$(é/ñÿÿèGhÿÿL‰ç运ÿÿH…ÀI‰Â…&H5‡Ç*!”Ç*!@H‰*!é´ôÿÿH‰÷L‰T$ èïgÿÿ…ÀL‹T$ ‰ñÿÿHô†ÇÝ)!¦ÇÏ)!H‹\$M‰çH‰¸)!ékôÿÿHņÇ®)!”Ç )!NE1ÒE1ÉH‰‹)!é¦õÿÿH‰ïè.fÿÿé¥ùÿÿHT$@LˆH5¦!H‰ÙL‰çè–ÿÿ…À‰<øÿÿHe†ÇN)!SÇ@)!v
¾v
H‰,)!éyñÿÿ€H‹5Y&!L‰çL‰T$ èÜiÿÿH…ÀI‰ÅL‹T$ „cH‹Ô%!H‹=)!L‰T$ H‰Þè@fÿÿH…ÀI‰ÁL‹T$ „fHƒH‹5<&!L‰ÏL‰T$(L‰L$ è‚iÿÿH…ÀI‰ÀL‹L$ L‹T$(„dIƒ)„Ò1ÀL‰æ¿L‰T$(L‰D$ èYhÿÿH…ÀH‰ÃL‹D$ L‹T$(„`1ÒL‰ÇH‰ÆL‰T$(L‰D$ è|gÿÿHƒ+I‰ÁL‹D$ L‹T$(u&H‰ßL‰T$0L‰D$(H‰D$ èÒdÿÿL‹T$0L‹D$(L‹L$ M…É„Iƒ(„ˆL‰ÎL‰ïL‰T$(L‰L$ è+eÿÿH…ÀI‰ÀL‹L$ L‹T$(„8Iƒm„Iƒ)„óH‹5ù$!L‰ÂL‰çL‰T$(L‰D$ è$gÿÿ…ÀL‹D$ L‹T$(ˆH
Iƒ(…®îÿÿL‰ÇL‰T$ è+dÿÿL‹T$ é—îÿÿè|eÿÿH‰ßèôÿÿH…ÀI‰Â…C
Hj„ÇS'!•ÇE'![H‹\$H‰1'!éäñÿÿH>„Ç''!•Ç'!]E1ÒH‹\$H‰'!éóÿÿH„M‰ÈÇõ&!•Çç&!lH‹\$E1ÉH‰Ð&!E1íE1ÒéµòÿÿH‹D$H;éÛ „«êÿÿH‹Œ#!H‹=Õ&!H‰ÞèýcÿÿH…ÀI‰Å„ÂHƒH‹5Ö#!L‰ïèNgÿÿH…ÀI‰Á„èIƒm„H‹5ˆ#!L‰ÏL‰L$(è#gÿÿH…ÀI‰ÅL‹L$(„çIƒ)„¿èžeÿÿH…ÀI‰À„üIƒL‰x H‹D$L‰D$(HƒI‰@(è3dÿÿH…ÀI‰ÁL‹D$(„þH‹T$ H‹5Æ$!H‰ÇL‰D$0H‰D$(è4bÿÿ…ÀL‹L$(L‹D$0ˆ,L‰ÊL‰ÆL‰ïL‰L$0L‰D$(èÚdÿÿH…ÀI‰ÄL‹D$(L‹L$0„ÏIƒm„™Iƒ(tsIƒ)t]I‹E1ÒHƒèH…ÀI‰…'ìÿÿL‰ÿL‰T$(è
bÿÿL‹T$(éìÿÿL‰ïH‰D$(èóaÿÿL‹L$(éÒþÿÿf„L‰ÏèØaÿÿéëþÿÿL‰ÏèÈaÿÿë™fDL‰ÇL‰L$(è³aÿÿL‹L$(évÿÿÿf„L‰ïL‰D$0L‰L$(èŽaÿÿL‹D$0L‹L$(éFÿÿÿèÚbÿÿH‰ßèR‹ÿÿH…ÀI‰Â…É
HȁDZ$!¡Ç£$!4H‹\$H‰$!éBïÿÿHœÇ…$!¡Çw$!6E1ÒH‹\$H‰`$!é{ðÿÿHmM‰ÈÇS$!¡ÇE$!9E1ÉE1ÒH‰0$!H‹\$éðÿÿH8Ç!$!¡Ç$!<E1ÒH‹\$E1ÉH‰ù#!éðÿÿHÇï#!¡Çá#!DE1ÒH‹\$H‰Ê#!éµïÿÿH׀ÇÀ#!¡Ç²#!GE1ÒH‹\$H‰›#!é†ïÿÿH¨€Ç‘#!¡Çƒ#!FH‹\$E1ÒH‰l#!éWïÿÿL‰×è`ÿÿéOõÿÿL‰ÇH‰D$(èý_ÿÿL‹T$(é¸õÿÿHU€Ç>#!Ç0#!è
E1ÒH‰#!éÑíÿÿL‰×L‰L$(è¼_ÿÿL‹L$(éíõÿÿL‰ÏL‰L$(èõ`ÿÿ…	ÃL‹L$(‰÷õÿÿHøÇá"!˜ÇÓ"!¬H‹\$E1ÒH‰¼"!éãîÿÿL‰Ïè__ÿÿé÷æÿÿL‰ÏèR_ÿÿé¸õÿÿL‰ïL‰T$0H‰D$(è;_ÿÿL‹T$0L‹D$(é)÷ÿÿL‰ÇL‰T$0L‰L$(è_ÿÿL‹T$0L‹L$(éš÷ÿÿL‰ÏL‰T$èþ^ÿÿL‹T$égçÿÿL‰ÇL‰T$(L‰L$èâ^ÿÿL‹T$(L‹L$é<çÿÿL‰ïL‰D$(L‰L$H‰D$0è¼^ÿÿL‹T$0L‹D$(L‹L$éçÿÿL‰ÏL‰T$(è›^ÿÿL‹T$(é_÷ÿÿL‰÷L‰T$0L‰L$(è^ÿÿL‹T$0L‹L$(é4÷ÿÿL‰ÏL‰T$(L‰D$ è^^ÿÿL‹T$(L‹D$ é
ùÿÿH±~Çš!!ÇŒ!!H‰}!!é0ìÿÿL‰ÇL‰T$(L‰L$ è^ÿÿL‹T$(L‹L$ éWùÿÿL‰ïL‰T$(L‰L$èõ]ÿÿL‹T$(L‹L$é¹æÿÿèA_ÿÿH‰ß蹇ÿÿH…ÀI‰Â…8H/~Ç!!˜Ç
!!˜H‹\$H‰ö !é©ëÿÿH‰÷è™]ÿÿé/ôÿÿL‰ÏL‰T$è‡]ÿÿL‹T$é‰æÿÿL‰ÏL‰T$(L‰D$ èk]ÿÿL‹T$(L‹D$ éìøÿÿL‰ïL‰T$0L‰L$ H‰D$(èE]ÿÿL‹T$0L‹D$(L‹L$ é·øÿÿH“}Ç| !˜Çn !šE1ÉE1íH‹\$H‰T !é?ìÿÿèZ^ÿÿH‰ßè҆ÿÿH…ÀI‰Â…)HH}Ç1 !žÇ# !éH‹DÕ H‰
 !éÀêÿÿH}M‰ÕÇ !˜Çò!©H‹\$E1ÒH‰Û!E1ÉéóëÿÿHå|ÇÎ!žÇÀ!ëE1ÒH‹ÞÔ H‰§!éÎëÿÿH´|ǝ!žÇ!îE1ÒH‹­Ô H‰v!é‘ëÿÿHƒ|Çl!¤Ç^!bH‹\$M‰çH‰G!éúéÿÿHT|Ç=!žÇ/!ðE1ÒH‹MÔ H‰!é1ëÿÿH#|Ç!žÇþ!õE1ÒH‹Ô H‰å!éÐêÿÿL‰T$(èæ\ÿÿH‰ßè^…ÿÿH…ÀI‰ÅL‹T$(…:óÿÿHÏ{Ǹ!¤Çª!dH‹\$M‰çE1ÉH‰!é¥êÿÿL‰ÿL‰T$(è.[ÿÿH‹§Ó L‹T$(H‰D$é(åÿÿL‰ÇL‰T$è[ÿÿL‹T$éïäÿÿL‰ÏL‰T$(L‰D$èïZÿÿL‹T$(L‹D$éÄäÿÿL‰÷L‰T$0L‰D$(L‰L$èÉZÿÿL‹T$0L‹D$(L‹L$éäÿÿH{M‰èÇý!¤Çï!fE1ÉE1íH‰Ú!H‹\$M‰çéâêÿÿHßzÇÈ!¤Çº!uH‹\$M‰çM‰ÅH‰ !E1Éé²éÿÿHªzÇ“!§Ç…!™H‹\$M‰çH‰n!é!èÿÿL‰T$ èo[ÿÿH‰ßèçƒÿÿH…ÀI‰ÁL‹T$ …{ôÿÿHXzÇA!§Ç3!›H‹\$M‰çH‰!é7éÿÿH)zÇ!¤Ç!xH‹\$M‰çH‰í!ééÿÿHúyÇã!žÇÕ!øH‹öÑ H‰¿!éªèÿÿHÌyǵ!žÇ§!÷E1ÒH‹ÅÑ H‰Ž!éyèÿÿL‰T$èZÿÿH‰ßèƒÿÿH…ÀI‰ÅL‹T$…¹áÿÿHxyÇa!ŸÇS!H‹tÑ H‰=!éðæÿÿHJyM‰ÎÇ0!§Ç"!H‹\$M‰çH‰!E1ÉéèÿÿHyÇþ!§Çð!¬H‹\$M‰çE1ÉH‰Ö!éÁçÿÿHãxM‰îÇÉ!ŸÇ»!	E1íH‹ÙÐ H‰¢!é·çÿÿH¯xǘ!§ÇŠ!¯H‹\$M‰çH‰s!éŽçÿÿH€xÇi!ŸÇ[!H‹|Ð H‰E!élçÿÿHRxÇ;!ŸÇ-!E1íH‹KÐ H‰!é)çÿÿH!xÇ
!ŸÇü!E1íH‹Ð H‰ã!éøæÿÿHðwÇÙ!ŸÇË!E1íH‹éÏ H‰²!éÂçÿÿH¿wǨ!ŸÇš!E1íH‹¸Ï H‰!é‘çÿÿHŽwÇw!¤Çi!|H‹\$M‰çE1ÉH‰O!éjæÿÿH\wÇE!§Ç7!³H‹\$M‰çE1ÉH‰!E1íéæÿÿI‰ÅéñÜÿÿI‰Áé#ÞÿÿI‰ÀéwÙÿÿI‰ÅéZÜÿÿH‰Øé½áÿÿI‰ÅéXóÿÿI‰Àé#ìÿÿf.„AWAVAUATUSH‰õHƒìHH‹È!H…ÒHÇD$0H‰D$H‰D$8…œH‹FHƒø„ÇHƒø„´H¡vH5ÝuH
œvL
	wH…ÀHNÊŸÂLNÎHƒì¶ÒPH‹Î LBH5ȼH±vH‹81ÀèOYÿÿHAvÇ*!ÞÇ!!¾!H‰!XZH
vH=ȽºÞE1öèë€ÿÿHƒÄHL‰ð[]A\A]A^A_Ãf„H‹F(H‰D$L‹} IƒH‹ !H‹=á!H‰Þè	VÿÿH…ÀI‰Æ„uHƒ1ÀL‰þ¿èjXÿÿH…ÀH‰Ã„¾1ÒH‰ÆL‰÷è¡WÿÿHƒ+I‰Å„4	M…í„›Iƒ.„
L;-ºÍ L‹%{Í ”ÀM9å”ÂÂu
L;-_Í …		¶ØIƒm„û
…Û„H‹5T!L‰ÿèÔXÿÿH…ÀH‰Ã„˜H‹5	!1ÒH‰ÇèWÿÿH…ÀH‰D$„©Hƒ+„Iƒ/„H‹5!H‹|$è„XÿÿH…ÀH‰Å„ÈH‰ÇèPWÿÿ…À„X1öH‰ïèNTÿÿH‰ÃH…Û„òHƒm„?
H‹5Ð!H‹|$è6XÿÿH…ÀH‰Å„úH‰ÇèWÿÿ…À„Ò¾H‰ïèýSÿÿI‰ÅM…í„AHƒm„V
ºH‰ÞL‰ïèÆWÿÿH…ÀH‰Å„ÚIƒm„ß
H;-hÌ ”ÀL9å”ÂÂu
H;-Ì …f
D¶àHƒm„/E…ä…L‹%Ÿ!H‹=è!L‰æèTÿÿH…ÀI‰Æ„THƒH‹5Á!L‰÷èaWÿÿH…ÀI‰Å„…Iƒ.„{H‹5œ!H‹|$è:WÿÿH…ÀH‰Å„Þ¿èÄUÿÿH…ÀI‰Ã„8H‰h H‰D$èjTÿÿH…ÀI‰ÆL‹\$„iL‹%ª!H‹=K!L‰\$L‰æènSÿÿH…ÀI‰ÂL‹\$„–HƒH‹5ò!L‰ÒL‰÷L‰\$ L‰T$è=Rÿÿ…ÀL‹T$L‹\$ ˆYIƒ*„H‹J!H‹5c!L‰÷L‰\$èRÿÿ…ÀL‹\$ˆÏL‰ÞL‰òL‰ïL‰\$è¶TÿÿH…ÀH‰ÅL‹\$„ãIƒm„ª
Iƒ+„
Iƒ.„v
L‹%/!H‹=x!L‰æè RÿÿH…ÀI‰Â„*HƒH‹5Q!L‰×L‰T$èìUÿÿH…ÀI‰ÆL‹T$„`Iƒ*„a
H‹5¢!H‹|$èÀUÿÿH…ÀI‰Â„Q
¿H‰D$èETÿÿH…ÀI‰ÃL‹T$„OL‰P H‰D$èæRÿÿH…ÀI‰ÂL‹\$„sL‹%!H‹=Ç!L‰\$ H‰D$L‰æèåQÿÿH…ÀI‰ÅL‹T$L‹\$ „¡HƒH‹5d!L‰×L‰êL‰\$ L‰T$è¯Pÿÿ…ÀL‹T$L‹\$ ˆœIƒm„ªH‹»!H‹5Ô!L‰×L‰\$ L‰T$èrPÿÿ…ÀL‹T$L‹\$ ˆ!L‰ÒL‰ÞL‰÷L‰T$(L‰\$ èSÿÿH…ÀH‰D$L‹\$ L‹T$(„ÄIƒ.„ÛIƒ+„ºIƒ*„£L‹%‹!H‹=Ô!L‰æèüPÿÿH…ÀI‰Å„çHƒH‹5­!L‰ïèMTÿÿH…ÀI‰Â„Iƒm„¤H‹5ÿ!H‹|$L‰T$ è TÿÿH…ÀI‰ÄL‹T$ „¿L‰T$ è RÿÿH…ÀI‰ÃL‹T$ „L‰` L‰T$(H‰D$ è<QÿÿH…ÀI‰ÅL‹\$ L‹T$(„!L‹%_!H‹=!L‰\$(L‰T$ L‰æè6PÿÿH…ÀI‰ÆL‹T$ L‹\$(„KHƒH‹5µ!L‰òL‰ïL‰\$(L‰T$ èOÿÿ…ÀL‹T$ L‹\$(ˆ>Iƒ.„•H‹
!H‹5&!L‰ïL‰\$(L‰T$ èÄNÿÿ…ÀL‹T$ L‹\$(ˆL‰ÞL‰×L‰êL‰\$(L‰T$ èjQÿÿH…ÀI‰ÄL‹T$ L‹\$(„¶Iƒ*„÷Iƒ+„àIƒm„ÈL‹=Þ!H‹='!L‰þèOOÿÿH…ÀI‰Æ„ÆHƒH‹5Ð!L‰÷è RÿÿH…ÀI‰Ç„(Iƒ.„TH‹5!H‹|$èyRÿÿH…ÀI‰Â„L¿H‰D$ èþPÿÿH…ÀI‰ÃL‹T$ „YL‰P H‰D$ èŸOÿÿH…ÀI‰ÆL‹\$ „jL‹-ß!H‹=€!L‰\$ L‰îè£NÿÿH…ÀI‰ÂL‹\$ „kHƒH‹5'!L‰ÒL‰÷L‰\$(L‰T$ èrMÿÿ…ÀL‹T$ L‹\$(ˆ´Iƒ*„ÕL‰ÞL‰òL‰ÿL‰\$ èPÿÿH…ÀI‰ÅL‹\$ „XIƒ/„öIƒ+„Iƒ.„ùH‹5!L‰ïèuQÿÿH…ÀI‰Æ„L‹=r
!H‹=»!L‰þèãMÿÿH…ÀI‰Ã„*HƒH‹5!L‰ßL‰\$ è/QÿÿH…ÀI‰ÂL‹\$ „˜Iƒ+„gL‰Ö1?L‰T$ èPÿÿH…ÀI‰ÇL‹T$ „Y1ÒH‰ÆL‰÷èBOÿÿI‹L‹T$ HQÿH…ÒI‰uL‰ÿL‰T$(H‰D$ èœLÿÿL‹T$(H‹D$ I‹
HQÿH…ÒI‰„H…À„ãI‹HQÿH…ÒI‰„KH‹HQÿH…ÒH‰„+L‹=ÉÄ L9ý…L9|$…¶M9ü…mM9ý…%H‹|$è‰Lÿÿf.9µz„ÊH‹t$L‰éL‰âH‰ïM‰îè©ÿÿIƒEééf„H‰ßèØKÿÿé¿öÿÿL‰ïèMÿÿ…	ÉèöÿÿH lÇ	!=Çû!XH‰ì!L‰|$E1ÒE1ÛE1äHÇD$1í1ÛIƒm…ÈE1öL‰ïL‰\$ L‰T$E1íè^KÿÿM…öL‹T$L‹\$ t
Iƒ.„5M…Ût
Iƒ+„NM…Òt
Iƒ*„H‹
p!‹v!H=3³‹5e!E1öèUvÿÿH…Ût
Hƒ+„†H…ítHƒm„†H‹L$H…ÉtH‹H‰D$HƒèH…ÀH‰txM…ätIƒ,$t|M…ítIƒm„|H‹L$H‹H‰D$HƒèH…ÀH‰…ôôÿÿH‰Ïè‡JÿÿéçôÿÿfL‰÷èxJÿÿérõÿÿH‰ßèhJÿÿémÿÿÿH‰ïèXJÿÿémÿÿÿH‰ÏèHJÿÿé{ÿÿÿL‰çè8JÿÿéwÿÿÿL‰ïè(JÿÿéwÿÿÿL‰×èJÿÿéìþÿÿL‰÷L‰\$ L‰T$èþIÿÿL‹T$L‹\$ éªþÿÿ€L‰ßL‰T$èÛIÿÿL‹T$é›þÿÿL‰ïèÈIÿÿ…Û…ýôÿÿH‹a
!H‹=2
!H‰ÞèZJÿÿH…ÀI‰Æ„&	Hƒ1ÀL‰þ¿è»LÿÿH…ÀH‰Ã„	1ÒH‰ÆL‰÷èòKÿÿHƒ+I‰ÅuH‰ßèaIÿÿM…í„h	Iƒ.„®L;- ”ÀM9å”ÂÂu
L;-³Á …
¶ØIƒm„Ï…Û…TôÿÿH‹À	!H‹=‰!H‰Þè±IÿÿH…ÀI‰Æ„¥Hƒ1ÀL‰þ¿èLÿÿH…ÀH‰Ã„61ÒH‰ÆL‰÷èIKÿÿHƒ+I‰ÅuH‰ßè¸HÿÿM…í„Iƒ.„åL;-^Á ”ÀM9å”ÂÂu
L;-
Á …Ô¶ØIƒm„¶…ÛL‰|$…ôóÿÿH‹5‚!H‹=C!1ÒèÔJÿÿH…ÀH‰Ã„ŽH‰ÇèPzÿÿHƒ+„ŠH˜hǁ!@Çs!ÃL‰|$E1íE1äH‰Y!HÇD$1í1ÛéÐüÿÿ€1ÿè™KÿÿH…ÀI‰Ç„H‰ÆH‰ïè‚HÿÿIƒ/H‰Ã…ŠóÿÿL‰ÿè½Gÿÿé}óÿÿ„H‹^I‰ÔHƒû„hHƒû„UH…ÛH‰Ø…UñÿÿL‰çèÁHÿÿH…ÛI‰Å„¥Hƒûu&M…í~*H‹5‹!L‰çè+GÿÿH…À„F	H‰D$8IƒíM…í4	H‹D$8L‹|$0H‰D$é¹ñÿÿ@¿èÎJÿÿH…ÀI‰Ç„rH‰ÆH‰ïè·GÿÿIƒ/I‰Å…óÿÿL‰ÿèòFÿÿéóÿÿDH‰ïèàFÿÿé´òÿÿè3HÿÿH‰ßè«pÿÿH…ÀH‰Ã…AH!gÇ

!=Çü	!GH‰í	!E1íE1äHÇD$1íL‰|$é[ûÿÿfH‰ïèxFÿÿéòÿÿHÒfÇ»	!=Ç­	!UH‰ž	!L‰|$E1äHÇD$1í1ÛE1íE1ÒE1ÛéÜúÿÿH‰ïèpGÿÿ…ÀA‰Ä‰‹òÿÿHwfÇ`	!CÇR	!ìH‰C	!I‰îE1íE1äHÇD$1íE1ÒE1Ûé…úÿÿ@L‰ïèÈEÿÿéòÿÿL‰÷è¸EÿÿéýÿÿL‰ïèøFÿÿ…	ÉýÿÿHfÇé!?ÇÛ!³H‰Ì!éÛùÿÿ€L‰ÿèhEÿÿéîðÿÿH‰ßèXEÿÿéÔðÿÿH‰ïèHEÿÿéÄñÿÿH‹F(H‰D$8H‹E H‰D$0é ýÿÿf„L‰ïèhFÿÿ…	ÉäûÿÿHpeÇY!=ÇK!pH‰<!éKùÿÿ€HBeI‰ÞÇ(!>Ç!‹E1íE1äH‰!HÇD$1íE1ÒE1Û1ÛL‰|$éIùÿÿ„L‰÷èˆDÿÿé}òÿÿL‰ßèxDÿÿécòÿÿL‰ïL‰\$ècDÿÿL‹\$é?òÿÿf„L‰×èHDÿÿé’òÿÿH¥dÇŽ!HÇ€!4E1íE1äHÇD$H‰b!E1Ûé»øÿÿf.„IƒmH]dÇF!IÇ8!aH‰)!„-E1íE1äéyøÿÿ„L‰ïè¸Cÿÿé=ûÿÿL‰÷è¨CÿÿéxðÿÿL‰÷è˜CÿÿéEúÿÿHòcÇÛ!BÇÍ!ÖE1íE1äHÇD$H‰¯!1Ûé1øÿÿ„L‰ïèHCÿÿé$úÿÿH¢cÇ‹!BÇ}!ØI‰íH‰k!é÷ÿÿfDHrcÇ[!CÇM!åE1íE1äHÇD$H‰/!é³÷ÿÿf.„H‹5é!L‰çIƒíèBÿÿH…ÀH‰D$0…@ûÿÿH‹EérìÿÿfDHcÇë!CÇÝ!çH‰Î!é†üÿÿf„L‰×L‰\$ècBÿÿL‹\$éèïÿÿf„è«CÿÿH‰ßè#lÿÿH…ÀH‰Ã…©
H™bÇ‚!?Çt!¢H‰e!ésûÿÿHrbÇ[!>ÇM!}H‰>!éLûÿÿf„HBbÇ+!CÇ!êE1ÒE1ÛE1äH‰!HÇD$é&öÿÿ€HbÇë!?ÇÝ!°H‰Î!é+ûÿÿf„H‹5!H‹=J!1ÒèÛCÿÿH…ÀH‰Å„ôH‰ÇèWsÿÿHƒm„MHžaLJ!DÇy!ûE1íE1äHÇD$H‰[!1íéÝõÿÿ@è[BÿÿL‰çèÓjÿÿH…ÀH‰Å…IHIaÇ2!GÇ$!
E1íE1äHÇD$H‰!éŠõÿÿHaÇû!GÇí!E1äHÇD$1íH‰Ð!éBúÿÿèÓAÿÿH‰ßèKjÿÿH…ÀH‰Ã…©HÁ`Ǫ!=Çœ!_H‰!é›ùÿÿ„H’`Ç{!GÇm!E1ÒE1ÛE1äH‰U!HÇD$évôÿÿ€HR`Ç;!=Ç-!mH‰!é{ùÿÿf„H"`I‰îÇ!GÇú!E1ÒE1äH‰å!HÇD$1íIƒm„ôÿÿE1íé(ôÿÿ€HÒ_Ç»!GÇ­!E1ÒE1äHÇD$H‰!1íé·óÿÿL‰ïL‰\$ L‰T$è&?ÿÿL‹\$ L‹T$é5îÿÿL‰\$èm@ÿÿL‰çèåhÿÿH…ÀI‰ÂL‹\$…KìÿÿHV_Ç?!GÇ1!E1äHÇD$1íH‰!é5ÿÿÿL‰×è·>ÿÿéPîÿÿL‰ßL‰T$ è¥>ÿÿL‹T$ é/îÿÿL‰÷L‰\$(L‰T$ è‰>ÿÿL‹\$(L‹T$ éîÿÿHÜ^ÇÅ!GÇ·!E1ÒE1äHÇD$H‰™!1íé¸þÿÿH¤^Ǎ!GÇ! E1ÒE1äHÇD$H‰a!é‚þÿÿHT$0LÈ^H5ùç H‰ÙL‰çèþmÿÿ…À‰¦öÿÿHH^Ç1!ÞÇ#!¾H‰!éèÿÿè?ÿÿL‰çègÿÿH…ÀH‰D$…ßH^Çê!HÇÜ!/E1íE1äH‰Ç!éKòÿÿL‰ïH‰D$ èe=ÿÿL‹T$ éEíÿÿH½]Ǧ!Hǘ!1E1íE1äHÇD$H‰z!éïñÿÿH‡]Çp!HÇb!6E1íE1äHÇD$H‰D!é ñÿÿH‰ïèç<ÿÿé¦ûÿÿHD]Ç-!HÇ!;E1íE1äHÇD$H‰!é]ñÿÿH‰ßè¤<ÿÿéiôÿÿL‰÷L‰\$(L‰T$ è<ÿÿL‹\$(L‹T$ éJíÿÿL‰\$(L‰T$ èÏ=ÿÿL‰çèGfÿÿH…ÀH‰D$L‹T$ L‹\$(……H
±\Çšÿ HÇŒÿ =I‰ÅE1äH‰
wÿ éÓðÿÿH„\Çmÿ GÇ_ÿ E1äHÇD$1íH‰Bÿ écüÿÿL‰ïèå;ÿÿé+íÿÿL‰ßèØ;ÿÿéíÿÿL‰×L‰\$ èÆ;ÿÿL‹\$ éòìÿÿH\Çÿ HÇùþ BE1íE1äH‰äþ é@ðÿÿHñ[ÇÚþ HÇÌþ AE1íE1äHÇD$H‰®þ é
ðÿÿè´<ÿÿL‰çè,eÿÿH…ÀI‰Ä…ºH¢[Ç‹þ IÇ}þ QM‰åH‰kþ éïïÿÿL‰÷è;ÿÿéŸìÿÿHk[ÇTþ IÇFþ SE1ÛE1äH‰1þ é[ïÿÿH>[Ç'þ IÇþ VE1íH‰þ é|ïÿÿH[M‰åÇúý IÇìý XE1äH‰Úý éïÿÿHçZÇÐý IÇÂý ]E1äH‰°ý éïÿÿH½ZǦý Dǘý ÷E1íE1äHÇD$H‰zý éþîÿÿL‰\$(L‰T$ èv;ÿÿL‰çèîcÿÿH…ÀI‰ÄL‹T$ L‹\$(…&HZZÇCý IÇ5ý _H‰&ý éPîÿÿL‰×L‰\$ èÄ9ÿÿL‹\$ éìÿÿHZÇý @Ç÷ü ¿E1íE1äHÇD$H‰Ùü 1íé[îÿÿL‰ÿL‰\$ èu9ÿÿL‹\$ éóëÿÿL‰÷èc9ÿÿéúëÿÿL‰ßèV9ÿÿéãëÿÿH³YÇœü HÇŽü ?E1äHÇD$H‰sü é”ùÿÿH€YÇiü IÇ[ü dH‰Lü évíÿÿHYYÇBü IÇ4ü cE1äH‰"ü éLíÿÿè(:ÿÿL‰ÿè bÿÿH…ÀI‰Å…HYÇÿû LÇñû sH‰âû éfíÿÿL‰ßH‰D$ è€8ÿÿL‹T$ é‚ëÿÿI‹HƒèH…ÀI‰…ÐL‰×H‰D$ èV8ÿÿH‹D$ éÍëÿÿH®XÇ—û Lljû uH‰zû éìñÿÿH‰Çè8ÿÿéÈëÿÿL‰÷H‰D$ è8ÿÿH‹D$ éžëÿÿHcXÇLû LÇ>û xE1ÛM‰ýH‰)û éSìÿÿH6XM‰ÖÇû LÇû zE1ÒM‰ýH‰ùú éøÿÿHXÇïú LÇáú E1ÒM‰ýH‰Ìú éöëÿÿL‰\$ èÍ8ÿÿL‰ïèEaÿÿH…ÀI‰ÂL‹\$ …véÿÿH¶WÇŸú LÇ‘ú M‰ýH‰ú é ÷ÿÿHŒWÇuú LÇgú …E1ÒM‰ýH‰Rú és÷ÿÿèX8ÿÿL‰ÿèÐ`ÿÿH…ÀI‰Ã…ÁéÿÿHFWÇ/ú MÇ!ú –E1ÒH‰ú ékëÿÿHWÇú MÇ÷ù ”H‰èù élëÿÿHõVÇÞù MÇÐù ¨E1ÒE1ÛH‰»ù éëÿÿHÈVDZù MÇ£ù ˜H‰”ù éðêÿÿòD$èÄ9ÿÿH…ÀòD$„êÿÿH‡VÇpù NÇbù ¸H‰Sù é×êÿÿH‹5çø I}è.`ÿÿ…À…ÃéÿÿHHVÇ1ù NÇ#ù ·H‰ù é˜êÿÿH‹5¨ø I|$èî_ÿÿ…À…zéÿÿHVÇñø NÇãø ¶H‰Ôø éXêÿÿH‹D$H‹5cø Hxèª_ÿÿ…À…-éÿÿHÄUÇ­ø NÇŸø µH‰ø éêÿÿH‹5$ø H}èk_ÿÿ…À…ãèÿÿH…UÇnø NÇ`ø ´H‰Qø éÕéÿÿH^UÇGø LÇ9ø ƒM‰ýH‰'ø éHõÿÿI‰Æé^åÿÿL‹l$é¥ãÿÿL‹T$éÖâÿÿI‰ÆéëÿÿE1íéaéÿÿE1äé+éÿÿI‰ÆéFáÿÿI‰ÆéÿåÿÿI‰Æé•ëÿÿI‰ÅéBäÿÿI‰Æé-ßÿÿfDAWAVAUATI‰ôUSHƒìHHƒH‹„ô H‹=Í÷ H‰Þèõ4ÿÿH…À„HƒI‰ÇH‹5Îô L‰ÿèF8ÿÿH…ÀH‰Ã„bIƒ/„8H‹5ö H‰ßè!8ÿÿH…ÀI‰Æ„…Hƒ+„#1ÀL‰æ¿è7ÿÿH…ÀH‰Ã„ 1ÒH‰ÆL‰÷èC6ÿÿHƒ+H‰Å„VH…í„ýIƒ.„ë
Iƒ,$„ó
H‹5Ñó H‰ïè©7ÿÿH…ÀI‰Á„=H‹5Æò H9ð„CH‹ž« I9A„L‰ϺL‰L$èJ7ÿÿH…ÀH‰ÃL‹L$„QI‹L‹%ï« HƒèL9ãA”ÆH…ÀI‰E¶î„Ä
H;•« ”ÂH;ƒ« ”ÀÂ…õE„ö…ìH‰ßè74ÿÿ…ÀA‰Å‰ÙH>SI‰ßÇ$ö =Çö PHÇD$ E1íH‰ûõ 1ÛHÇD$HÇD$E1äHÇD$E1öE1ÉIƒ/„»
M…Ét
Iƒ)„Ì
M…öt
Iƒ.„}
M…ätIƒ,$„}
H‹
–õ ‹œõ H=‰š‹5‹õ E1ÿè{]ÿÿH…Ût
Hƒ+„ÜM…ítIƒm„ÜH‹L$ H…ÉtH‹H‰D$(HƒèH…ÀH‰„ÊH‹L$H…ÉtH‹H‰D$ HƒèH…ÀH‰„¸H‹T$H…ÒtH‹H‰D$HƒèH…ÀH‰„¦Hƒ|$tH‹L$H‹H‰D$HƒèH…ÀH‰„‘HƒmuH‰ïèr1ÿÿHƒÄHL‰ø[]A\A]A^A_ÃH‰ßèX1ÿÿéýÿÿL‰ÏL‰L$è#2ÿÿf.kšL‹L$ŠÐ…ÊH‹«© L‹%ܩ HƒL9ãA”ÆE¶îIƒ)„³H‹HPÿH…ÒH‰„ E…í…wH‹5ð H‰ïèø4ÿÿH…ÀI‰Æ„ôH‰ÇèÄ3ÿÿ…À„,1öL‰÷èÂ0ÿÿH‰ÃH…Û„6Iƒ.„\H‹5Eð H‰ïè­4ÿÿH…ÀI‰Æ„AH‰Çèy3ÿÿ…À„á
¾L‰÷èt0ÿÿI‰ÇM…ÿ„ˆIƒ.„ÎºH‰ÞL‰ÿè>4ÿÿH…ÀI‰Æ„’Iƒ/„h
M9æ”ÀL;5£¨ ”ÂÂu
L;5¨ …÷D¶àIƒ.„©
E…ä…¨H‹59ò H‰ïè4ÿÿH…ÀI‰Æ„=H‹56ó 1ÒH‰ÇèD2ÿÿH…ÀI‰Å„HIƒ.„.H‹57ð H‰ïè¿3ÿÿH…ÀI‰Æ„{H‰Çè»0ÿÿH…ÀH‰D$ „½Iƒ.„óL‹%œï H‹=åò L‰æè
0ÿÿH…ÀI‰Ç„éHƒH‹5¾ñ L‰ÿè^3ÿÿH…ÀI‰Ã„BIƒ/„@¿L‰\$èÙ1ÿÿH…ÀI‰ÇL‹\$„HIƒEL‰h L‰\$èu0ÿÿH…ÀI‰ÁL‹\$„oL‹%µñ H‹=Vò L‰\$H‰D$L‰æèt/ÿÿH…ÀI‰ÆL‹\$L‹L$„˜HƒH‹5óï L‰ÏL‰òL‰\$L‰L$è>.ÿÿ…ÀL‹L$L‹\$ˆŸIƒ.„²H‹Ëð H‹5dî L‰ÏL‰\$L‰L$è.ÿÿ…ÀL‹L$L‹\$ˆ¿L‰ÊL‰ßL‰þL‰L$L‰\$è¨0ÿÿH…ÀH‰D$L‹\$L‹L$„¶Iƒ+„
Iƒ/„ÜIƒ)„ÂIƒm„§L‹%î H‹=Yñ L‰æè.ÿÿH…ÀI‰Æ„·HƒH‹5ï L‰÷èÒ1ÿÿH…ÀI‰Á„Iƒ.„¼¿L‰L$èM0ÿÿH…ÀI‰ÆL‹L$„³H‹¿I‰^ L‰L$HƒÀH‰I‰^(è0ÿÿH…ÀI‰ÇL‹L$„1L‰p L‰L$è¼.ÿÿH…ÀI‰ÆL‹L$„—L‹%äï H‹=ð L‰L$L‰æèÀ-ÿÿH…ÀI‰ÃL‹L$„²HƒH‹5Dî L‰ÚL‰÷L‰L$L‰\$è,ÿÿ…ÀL‹\$L‹L$ˆIƒ+„–L‰ÏL‰òL‰þL‰L$è0/ÿÿH…ÀH‰D$L‹L$„Iƒ)„øIƒ/„ûIƒ.„×L‹%¨ì H‹=ñï L‰æè-ÿÿH…ÀI‰Ã„HƒH‹5âî L‰ßL‰\$èe0ÿÿH…ÀI‰ÆL‹\$„4Iƒ+„¿èà.ÿÿH…À„^HƒH‰X H‰D$è…-ÿÿH…ÀI‰ÇL‹\$„£L‹%­î H‹=fï L‰\$(L‰æè‰,ÿÿH…ÀH‰D$L‹\$(„ÐHƒH‹T$H‹5í L‰ÿL‰\$(èY+ÿÿ…ÀL‹\$(ˆ6H‹T$H‹H‰D$(HƒèH…ÀH‰„OL‰ÞL‰úL‰÷L‰\$(èì-ÿÿH…ÀH‰D$L‹\$(„þIƒ.„—Iƒ+„€Iƒ/„iH‹T$H‹5gê H‹|$è….ÿÿ…Àˆ$H‹T$H‹H‰D$(HƒèH…ÀH‰„_L‹%)ë H‹=rî L‰æèš+ÿÿH…ÀI‰Á„ÕHƒH‹5Kí L‰ÏL‰L$èæ.ÿÿH…ÀI‰ÇL‹L$„LIƒ)„ÁH‹t$ H‹|$èL+ÿÿH…ÀI‰Á„h¿H‰D$èA-ÿÿH…ÀI‰ÆL‹L$„‰L‰H èç+ÿÿH…ÀI‰Á„²L‹%í H‹=Íí H‰D$(L‰æèð*ÿÿH…ÀH‰D$L‹L$(„HƒH‹T$H‹5më L‰ÏL‰L$(èÀ)ÿÿ…ÀL‹L$(ˆ}H‹T$H‹H‰D$(HƒèH…ÀH‰„ÙH‹?ì H‹5Øé L‰ÏL‰L$è{)ÿÿ…ÀL‹L$ˆL‰ÊL‰öL‰ÿL‰L$è+,ÿÿH…ÀH‰D$(L‹L$„xIƒ/„Iƒ.„ûIƒ)„äL‹-£é H‹=ìì L‰îè*ÿÿH…ÀI‰Æ„¥HƒH‹5µè L‰÷èe-ÿÿH…ÀI‰Á„^Iƒ.„H‹5€è H‰ßL‰L$è«+ÿÿH…ÀI‰ÆL‹L$„Ö¿L‰L$è»+ÿÿH…ÀL‹L$„L‰p L‰L$0H‰D$èZ*ÿÿH…ÀI‰ÆL‹\$L‹L$0„“L‹-}ë H‹=6ì L‰L$8L‰\$0L‰îèT)ÿÿH…ÀH‰D$L‹\$0L‹L$8„ðHƒH‹T$H‹5Ìé L‰÷L‰L$8L‰\$0è(ÿÿ…ÀL‹\$0L‹L$8ˆ—H‹T$H‹H‰D$0HƒèH…ÀH‰„ÙL‰ÞL‰ÏL‰òL‰\$8L‰L$0è£*ÿÿH…ÀH‰D$L‹L$0L‹\$8„^Iƒ)„ÍIƒ+„¶Iƒ.„3H‹5Žç H‹|$ èü+ÿÿH…ÀI‰Á„“H‹5!ç H‰D$0¿1Àèè*ÿÿH…ÀI‰ÅL‹L$0„Š1ÒL‰ÏH‰ÆL‰L$0è*ÿÿIƒmI‰ÆL‹L$0u
L‰ïè~'ÿÿL‹L$0M…ö„SIƒ)„%H‹5ßè L‰÷èw+ÿÿH…ÀI‰Á„¼Iƒ.„éH‹5¢ê 1ÒL‰ÏL‰L$0è«)ÿÿH…ÀI‰ÇL‹L$0„IIƒ)„(H‹59æ H‹|$L‰úè\*ÿÿ…Àˆ÷Iƒ/„õH‹=sè èþQÿÿH…À„|¿H‰D$0è†)ÿÿH…ÀI‰ÆL‹\$0„ÝH‹D$¿L‰\$0HƒI‰F H‹D$(HƒI‰F(H‹D$HƒI‰F0è?)ÿÿH…ÀI‰ÁL‹\$0„ÕH‹¿I‰Y L‰\$8L‰L$0HƒÀH‰I‰Y(è)ÿÿH…ÀI‰ÄL‹L$0L‹\$8„ü1ÒL‰ßL‰p L‰H(H‰ÆL‰\$0è˜(ÿÿH…ÀI‰ÇL‹\$0„•Iƒ,$„Iƒ+„îH‹D$(L‹l$H‰D$é¸óÿÿfDL‰ÿèÐ%ÿÿé»ñÿÿH‰ßèÀ%ÿÿéÐñÿÿL‰÷è°%ÿÿIƒ,$…
òÿÿL‰çè%ÿÿéòÿÿ„¿è6)ÿÿH…ÀI‰Å„ªH‰ÆL‰÷è&ÿÿIƒmI‰Ç…õÿÿL‰ïèY%ÿÿéóôÿÿ@L‰ÏèH%ÿÿé/òÿÿH‰ßè8%ÿÿéóÿÿL‰ïè(%ÿÿéóÿÿH‰Ïè%ÿÿé)óÿÿH‰Ïè%ÿÿé;óÿÿH‰×èø$ÿÿéMóÿÿH‰Ïèè$ÿÿébóÿÿL‰÷èØ$ÿÿévòÿÿL‰çèÈ$ÿÿévòÿÿL‰ÿL‰L$(è³$ÿÿL‹L$(é.òÿÿf„L‰Ïè˜$ÿÿé'òÿÿ1ÿè9(ÿÿH…ÀI‰Å„
H‰ÆL‰÷è"%ÿÿIƒmH‰Ã…µóÿÿL‰ïè\$ÿÿé¨óÿÿ€H‰ßèH$ÿÿéSóÿÿL‰÷è8$ÿÿé—óÿÿè‹%ÿÿH‰ßèNÿÿH…ÀI‰Á…ÉHyDÇbç ;ÇTç *HÇD$HÇD$E1íH‰0ç HÇD$1ÛHÇD$ L‰åE1öE1äéCñÿÿfDHDÇç ;Çõæ ,HÇD$ E1íL‰åH‰×æ éÙðÿÿfL‰÷èx#ÿÿé%óÿÿHÒCI‰ÙǸæ ;Ǫæ /HÇD$E1íH‰æ HÇD$L‰åHÇD$HÇD$ 1ÛéTÿÿÿf.„L‰÷èX$ÿÿ…ÀA‰Ä‰úòÿÿH_CÇHæ @Ç:æ ‡H‰+æ M‰óE1äE1öE1ÉE1ÿé€L‰ÿè¸"ÿÿé‹òÿÿHCÇûå ;Çíå >L‰åH‰Ûå M‰÷HÇD$HÇD$HÇD$HÇD$ E1í1ÛE1öE1ÉE1äéÌïÿÿL‰÷èH"ÿÿéJòÿÿH¢BÇ‹å =Ç}å KH‰nå HÇD$HÇD$E1íHÇD$HÇD$ 1ÛE1öé'þÿÿDHJBM‰ËÇ0å =Ç"å ME1äE1öH‰
å E1ÿE1ÉHÇD$HÇD$E1íHÇD$HÇD$ Iƒ+tM…ÿ…üîÿÿéïÿÿ@L‰ßL‰L$(èk!ÿÿL‹L$(ëÚ@L‹%š A½A¾Iƒ$L‰ãé3ðÿÿL‰ïè8!ÿÿéLóÿÿL‰Ïè(!ÿÿé1óÿÿL‰ÿL‰L$è!ÿÿL‹L$é
óÿÿf„L‰ßL‰L$èó ÿÿL‹L$éãòÿÿf„L‰÷H‰D$èÓ ÿÿL‹L$é-óÿÿH+AL‹l$Çä IÇä ÷HÇD$H‰éã HÇD$HÇD$é¼üÿÿfL‰÷èx ÿÿéÅðÿÿH‹5©ß H‹=Jã 1ÒèÛ"ÿÿH…ÀI‰Á„øH‰ÇH‰D$èRRÿÿL‹L$Iƒ)„3H•@Ç~ã >Çpã _HÇD$HÇD$E1íH‰Lã HÇD$1ÛHÇD$ E1öE1ÉéüÿÿDH:@Ç#ã ?Çã qHÇD$HÇD$E1íH‰ñâ HÇD$1ÛHÇD$ E1Éé¿ûÿÿDL‰÷èxÿÿéðÿÿHÒ?Ç»â ?Ç­â sH‰žâ é¾üÿÿf„H¢?Ç‹â @Ç}⠀H‰nâ HÇD$HÇD$E1íHÇD$HÇD$ E1Éé)ûÿÿ€L‰ÿH‰D$èÛÿÿL‹\$é©ïÿÿH2?Çâ @Ç
⠂H‰þá éÎûÿÿf„H?Çëá @ÇÝá …HÇD$HÇD$E1íH‰¹á HÇD$E1ÉHÇD$ éöûÿÿ€H‹5iÝ H‹="á 1Òè³ ÿÿH…ÀI‰Æ„¯H‰Çè/PÿÿIƒ.„jHw>Ç`á AÇRá –HÇD$HÇD$E1íH‰.á HÇD$E1öHÇD$ E1ÉéûùÿÿL‰÷L‰L$L‰\$è®ÿÿL‹L$L‹\$é-ïÿÿ€Hú=Çãà DÇÕà ¨H‰Æà éSþÿÿHÒ=M‰÷Ǹà DÇªà ¶HÇD$E1ÉH‰à HÇD$E1öHÇD$HÇD$ éÃúÿÿ@Hz=Çcà EÇUà ÃHÇD$HÇD$E1ÉH‰1à HÇD$HÇD$ éùÿÿf.„H"=M‰óÇà EÇúß ÅE1äE1ÉH‰åß E1ÿE1öHÇD$HÇD$HÇD$éßúÿÿ€èÃÿÿL‰çè;FÿÿH…ÀI‰Æ…çH±<Çšß GÇŒß ÒHÇD$HÇD$E1ÉH‰hß HÇD$éDøÿÿf.„L‰ÏèøÿÿéÀûÿÿHR<Ç;ß GÇ-ß ÔH‰ß é éÿÿf„H"<Çß GÇýÞ ×E1äE1öE1ÉH‰åÞ HÇD$HÇD$HÇD$éåùÿÿH×;ÇÀÞ GÇ²Þ ÜH‰£Þ E1äE1öHÇD$HÇD$HÇD$éùÿÿL‰ßL‰L$è ÿÿL‹L$éSîÿÿL‰L$L‰\$ègÿÿL‰çèßDÿÿH…ÀH‰D$L‹\$L‹L$…mHI;Ç2Þ GÇ$Þ ÞE1äI‰ÆHÇD$H‰Þ HÇD$éùÿÿL‰÷è ÿÿéîÿÿL‰Ïè“ÿÿéûíÿÿL‰ÿè†ÿÿéøíÿÿHã:ÇÌÝ GÇ¾Ý âH‰¯Ý éÿÿÿH¼:Ç¥Ý GÇ—Ý ãE1äE1öHÇD$H‰yÝ HÇD$é‹øÿÿL‰ßèÿÿéäíÿÿèiÿÿL‰çèáCÿÿH…ÀI‰Æ…4ìÿÿHW:L‹l$Ç;Ý IÇ-Ý òHÇD$E1ÉH‰Ý HÇD$HÇD$éåõÿÿL‰÷è£ÿÿé‰ûÿÿH:L‹l$ÇäÜ IÇÖÜ ôHÇD$H‰¾Ü HÇD$HÇD$é‘õÿÿH¹9Ç¢Ü >Ç”Ü [H‰…Ü é÷ÿÿH‰×L‰\$(è#ÿÿL‹\$(éšíÿÿH{9L‹l$Ç_Ü IÇQÜ ÿHÇD$H‰9Ü HÇD$HÇD$éõÿÿL‰ÿèÊÿÿéŠíÿÿL‰ßè½ÿÿésíÿÿL‰÷L‰\$(è«ÿÿL‹\$(éRíÿÿH‰×è™ÿÿé”íÿÿHö8L‹l$ÇÚÛ IÇÌÛ 	HÇD$H‰´Û HÇD$HÇD$éôõÿÿL‰L$è£ÿÿL‰çèBÿÿH…ÀH‰D$L‹L$…ÐHŠ8L‹l$ÇnÛ IÇ`Û 	HÇD$H‰HÛ HÇD$é‘õÿÿL‰Ïèâÿÿé2íÿÿH?8Ç(Û GÇÛ àE1äHÇD$HÇD$H‰öÚ HÇD$éöÿÿHú7L‹l$ÇÞÚ IÇÐÚ 
	HÇD$H‰¸Ú HÇD$éõÿÿèµÿÿL‰çè-AÿÿH…ÀI‰Æ…á
H£7L‹l$Ç‡Ú JÇyÚ 	HÇD$E1ÉH‰^Ú HÇD$é:óÿÿHb7L‹l$ÇFÚ JÇ8Ú 	E1äE1ÉH‰#Ú E1ÿHÇD$HÇD$é)õÿÿH7L‹l$ÇÿÙ JÇñÙ 	HÇD$E1ÉH‰ÖÙ HÇD$é²òÿÿHÚ6ÇÃÙ Aǵ٠’H‰¦Ù é3÷ÿÿH³6L‹l$Ç—Ù Jlj٠#	E1äE1ÉH‰tÙ HÇD$HÇD$é}ôÿÿH‰×L‰L$(èÿÿL‹L$(éìÿÿL‰\$(èLÿÿL‰çèÄ?ÿÿH…ÀH‰D$L‹\$(…êÿÿH36L‹l$ÇÙ JÇ	Ù %	E1äE1ÉH‰ôØ HÇD$éôÿÿL‰ÏèŽÿÿéìÿÿL‰÷L‰L$è|ÿÿL‹L$éîëÿÿL‰ÿL‰L$èeÿÿL‹L$éÍëÿÿH½5L‹l$Ç¡Ø JÇ“Ø )	E1äE1ÉH‰~Ø HÇD$éóÿÿL‰÷H‰D$èÿÿL‹L$éÚëÿÿèdÿÿL‰çèÜ>ÿÿH…ÀI‰Æ…€HR5E1ÉL‹l$Ç3Ø KÇ%Ø 8	H‰Ø HÇD$L‰L$éíðÿÿH5L‹l$Çù× IÇë× 	E1äHÇD$H‰Ð× HÇD$HÇD$éÙòÿÿHË4L‹l$Ç¯× KÇ¡× :	HÇD$E1öH‰†× HÇD$ébðÿÿHŠ4L‹l$Çn× KÇ`× =	HÇD$E1öH‰E× HÇD$éŽñÿÿHI4L‹l$Ç-× KÇ× ?	HÇD$H‰× HÇD$éPñÿÿH4ÇôÖ KÇæÖ D	H‰×Ö M‰óL‹l$E1äE1öHÇD$HÇD$éÒñÿÿH‰×L‰L$8L‰\$0èPÿÿL‹L$8L‹\$0éëÿÿL‰ßè9ÿÿé=ëÿÿL‰ÏL‰\$0è'ÿÿL‹\$0éëÿÿL‰L$(èsÿÿL‰çèë<ÿÿH…ÀH‰D$L‹L$(…ÏèÿÿHZ3M‰óL‹l$Ç;Ö KÇ-Ö F	E1äH‰Ö E1öHÇD$é*ñÿÿL‰÷è²ÿÿéÀêÿÿH3M‰óL‹l$ÇðÕ KÇâÕ J	E1äH‰ÐÕ E1öHÇD$HÇD$éÖðÿÿHÈ2L‹L$L‹l$Ç§Õ JÇ™Õ '	E1äH‰‡Õ HÇD$HÇD$éðÿÿH‚2ÇkÕ KÇ]Õ K	H‰NÕ érþÿÿH[2L‹l$L‹L$Ç:Õ JÇ,Õ .	E1öH‰Õ HÇD$HÇD$éííÿÿèÿÿL‰ïè†;ÿÿH…ÀI‰Æ…FèÿÿHü1L‹l$ÇàÔ MÇÒÔ Z	HÇD$E1ÉH‰·Ô H‹D$(H‰D$é’íÿÿL‰÷H‰D$0èKÿÿL‹L$0éêÿÿL‰Ïè9ÿÿéÎéÿÿH–1L‹l$ÇzÔ MÇlÔ _	HÇD$H‰TÔ H‹D$(H‰D$é/íÿÿL‰ÿèíÿÿéþéÿÿL‰ÏèàÿÿéËéÿÿH=1L‹l$Ç!Ô MÇÔ \	HÇD$H‰ûÓ H‹D$(H‰D$éÖìÿÿL‰L$8L‰\$0èíÿÿL‰ïèe:ÿÿH…ÀH‰D$L‹\$0L‹L$8…åçÿÿHÏ0Ç¸Ó MÇªÓ h	H‰›Ó H‹D$(L‹l$E1äE1ÿH‰D$é¡îÿÿH“0L‹l$ÇwÓ MÇiÓ f	E1äE1ÿH‰TÓ H‹D$(HÇD$H‰D$é\îÿÿHN0L‹l$Ç2Ó MÇ$Ó a	HÇD$H‰Ó H‹D$(H‰D$éçëÿÿH0ÇøÒ MÇêÒ l	H‰ÛÒ é;ÿÿÿHè/M‰óL‹l$L‹t$ÇÄÒ KE1äH‰®Ò Ç¬Ò H	HÇD$HÇD$é­íÿÿHŸ/L‹l$ÇƒÒ NÇuÒ {	E1öH‰cÒ H‹D$(H‰D$é>ëÿÿL‰ßèüÿÿH‹D$(L‹l$H‰D$éÂÜÿÿL‰çL‰\$0èÛÿÿL‹\$0éÕèÿÿH3/M‰ËL‹l$ÇÒ NÇÒ ›	E1äH‰ôÑ H‹D$(E1öE1ÉH‰D$éÿìÿÿHñ.L‹l$ÇÕÑ NÇÇÑ Œ	H‰¸Ñ H‹D$(H‰D$é“êÿÿH».L‹l$ÇŸÑ PÇ‘Ñ ©	E1öE1ÉH‰|Ñ H‹D$(H‰D$éWêÿÿH.M‰ËL‹l$Ç`Ñ NÇRÑ ‰	E1äH‰@Ñ H‹D$(E1öE1ÉE1ÿH‰D$éHìÿÿH:.L‹l$ÇÑ PÇÑ «	E1äE1ÉH‰ûÐ H‹D$(E1ÿH‰D$é	ìÿÿHû-ÇäÐ PÇÖÐ ¶	H‰ÇÐ é'ýÿÿHÔ-L‹l$ǸРPǪРê	E1öE1ÉH‰•Ð H‹D$(H‰D$é¦ëÿÿH˜-L‹l$Ç|Ð PÇnÐ ß	E1ÿH‰\Ð H‹D$(H‰D$émëÿÿH_-L‹l$ÇCÐ NÇ5Ð ž	E1öE1ÉH‰ Ð H‹D$(H‰D$éhêÿÿH#-L‹|$L‹l$ÇÐ MÇôÏ j	E1äH‰âÏ H‹D$(HÇD$H‰D$éêêÿÿL‹t$éÆÝÿÿI‰ÁéŽáÿÿI‰ÇéÝÿÿI‰ÃéÿßÿÿL‹\$éSßÿÿI‰ÇéØÿÿfDAWAVAUATUSH‰õHƒìxH‹è„ H…ÒHÇD$PHÇD$XH‰D$`… H‹FHƒø„ò
Hƒø…@
H‹F0H‰D$8L‹m(H‹m HƒE¿èÿÿH…ÀI‰Æ„dH‹5Ë 1öH‰ÇHƒèÿÿH‹=Ë ºL‰öè«3ÿÿH…ÀH‰Ã„ÏIƒ.„í
H‹5öÊ H‰ßèF6ÿÿH…ÀI‰Ä„:Hƒ8„è
Hƒ+„Î
¿èÿÿH…ÀH‰Ã„ðHƒEH‰h H‹D$8HƒH‰C(è¥ÿÿH…ÀI‰Æ„IH‹šƒ H‹5sÌ H‰Çè³
ÿÿ…Àˆ{L‰òH‰ÞL‰çèm
ÿÿH…ÀH‰D$„ÏHƒ+„UIƒ.„;Hƒm„ H‹5iÊ H‹|$èÏÿÿH…À„H‰ÇH‰D$è™
ÿÿ…ÀL‹L$„œL‰Ï1öè’
ÿÿL‹L$H‰D$Hƒ|$„\Iƒ)„ò
H‹5»É 1ÒL‰ïèQÿÿH…À„¸H‹5éÉ H‰ÇH‰D$èTÿÿH…ÀH‰ÃL‹L$„ûIƒ)„IH‹5zÍ 1ÒH‰ßèˆÿÿH…ÀH‰D$(„:Hƒ+„°H‹Ê H‹=bÍ H‰ÞèŠ
ÿÿH…ÀI‰Á„žHƒH‹5KÌ L‰ÏL‰L$èÖ
ÿÿH…ÀI‰ÇL‹L$„åIƒ)„»1ÀL‰î¿è¼ÿÿH…ÀH‰Å„1ÒH‰ÆL‰ÿèóÿÿHƒmH‰ÃuH‰ïèa	ÿÿH…Û„èIƒ/„®H‹ǁ H‹|$(H‰ÖèzÿÿH…ÀH‰Å„NH‰ÆH‰ßèÓ	ÿÿHƒmI‰ÇuH‰ïè	ÿÿM…ÿ„(Hƒ+„nH‹5gË L‰ÿè
ÿÿH…ÀH‰Ã„sIƒ/„1H‹-’Ë H‹=KÌ H‰îès	ÿÿH…ÀI‰Æ„‡Hƒ1ÀL‰ö¿èÔÿÿH…ÀH‰Å„ø1ÒH‰ÆH‰ßèÿÿHƒmH‰D$ uH‰ïèwÿÿIƒ.„MHƒ|$ „ËHƒ+„·H‹t$ L‰ïèúÿÿH…ÀH‰D$0„ÚH‹5íÇ H‹|$0èKÿÿH…ÀI‰Ç„H‹HÈ H‹=‘Ë H‰Þè¹ÿÿH…ÀI‰Â„,HƒH‹5‚Ê L‰×L‰T$èÿÿH…ÀI‰ÃL‹T$„mIƒ*„
H‹5Ç H‹|$L‰\$èD
ÿÿH…ÀI‰ÅL‹\$„ïH‰ƿ1ÀL‰\$è¿
ÿÿH…ÀH‰ÃL‹\$„Õ1ÒL‰ßH‰Æèñ	ÿÿHƒ+H‰ÅL‹\$u
H‰ßè[ÿÿL‹\$Iƒm„»H…턤Iƒ+„(1ÀH‰î¿èY
ÿÿH…ÀI‰Å„1ÒH‰ÆL‰ÿè	ÿÿIƒmH‰ÃuL‰ïèþÿÿHƒm„H…Û„„Iƒ/„`H‹5IÉ H‰ßèñ
ÿÿH…ÀI‰Ç„¦Hƒ+„{H‹tÉ H‹=-Ê H‰ÞèUÿÿH…ÀI‰Å„Hƒ1ÀL‰î¿è¶	ÿÿH…ÀH‰Ã„Þ1ÒH‰ÆL‰ÿèíÿÿHƒ+H‰D$@uH‰ßèZÿÿIƒm„ŸHƒ|$@„²Iƒ/„Ê¿èïÿÿH…ÀI‰Æ„¹H‹D$0H‹|$L‰öHƒI‰F H‹D$ HƒI‰F(è¬ÿÿH…ÀI‰Å„ÑIƒ.„rH‹ŸÆ H‹=XÉ H‰Þè€ÿÿH…ÀI‰Æ„òHƒ1ÀL‰î¿èáÿÿH…ÀH‰Ã„-1ÒH‰ÆL‰÷èÿÿHƒ+I‰ÇuH‰ßè‡ÿÿM…ÿ„Iƒ.„\L;=-~ ”ÀL;=ë} ”ÂÂu
L;=Õ} …D¶ØIƒ/„Ï…ÛtTH‹5ÇÄ L‰ïèO	ÿÿH…ÀI‰Æ„H‹5„È 1ÒH‰Çè’ÿÿH…ÀH‰D$„¯Iƒ.„áIƒm„ÄL‹l$H‹5Æ L‰ïèûÿÿH…ÀI‰Æ„ÃH‹50È 1ÒH‰Çè>ÿÿH…ÀH‰Ã„îIƒ.„˜Iƒm„€H‹t$8H;5Q} ”ÀH;5} ”ÂÂu
H;5ù| …ž¶À…B¿èÿÿH…ÀI‰Ç„H‹D$ H‹|$L‰þHƒI‰G H‹D$0HƒI‰G(èÛÿÿH…ÀI‰Á„JIƒ/„œH‹-ÎÄ H‹=‡Ç L‰L$H‰îèªÿÿH…ÀI‰ÆL‹L$„\HƒL‰Î1?L‰L$èÿÿH…ÀI‰ÅL‹L$„¤1ÒH‰ÆL‰÷L‰L$è.ÿÿIƒmH‰ÅL‹L$u
L‰ïè—ÿÿL‹L$H…í„mIƒ.„>H;-8| ”ÀH;-ö{ ”ÂÂu
H;-à{ …0D¶èHƒm„ˆE…ítcH‹5Ï L‰ÏL‰L$èRÿÿH…ÀI‰ÇL‹L$„XH‹5‚Æ 1ÒH‰ÇL‰L$è‹ÿÿH…ÀI‰ÆL‹L$„
Iƒ/„ØIƒ)„¾M‰ñH‹5Ä L‰ÏL‰L$èïÿÿH…ÀI‰ÇL‹L$„ÊH‹5Æ 1ÒH‰ÇL‰L$8è(ÿÿH…ÀH‰D$L‹L$8„àIƒ/„¡Iƒ)„®H‹-ªÂ H‹=óÅ H‰îèÿÿH…ÀI‰Æ„îHƒH‹5<à L‰÷èlÿÿH…ÀI‰Ç„ÒIƒ.„ËH‹5Á H9ó„6H‹Wz H9C„þºH‰ßèÿÿH…ÀI‰Æ„cL‰úL‰öH‰ßèNÿÿ…Àˆ	Iƒ.„Iƒ/„ýH‹-ûÁ H‹=DÅ H‰îèlÿÿH…ÀI‰Á„€HƒH‹5Â L‰ÏL‰L$8è¸ÿÿH…ÀI‰ÆL‹L$8„Iƒ)„|H‹5ÖÀ H9t$„oH‹D$H‹—y H9P„lH‹|$ºèFÿÿH…ÀI‰Á„‚H‹|$L‰ÎL‰òL‰L$8è…ÿÿ…ÀL‹L$8ˆÑIƒ)„êIƒ.„ÓH‹=-Á è,ÿÿH…ÀI‰Ç„ÏH‹5UÁ H‰ÇèýÿÿH…ÀI‰Â„FIƒ/uL‰ÿH‰D$8è¾ÿÿL‹T$8¿L‰T$8èjÿÿH…ÀI‰ÁL‹T$8„èHƒH‰X 1ÒH‹D$L‰ÎL‰×L‰L$HL‰T$8HƒI‰A(èíÿÿH…ÀI‰ÆL‹T$8L‹L$H„aIƒ)„¸Iƒ*„¡Hƒ+„»L‰óH‹-¿Á H‹=¨Ã H‰îèÐÿÿH…ÀI‰Æ„NHƒ¿èÆÿÿH…ÀI‰Ç„áHƒH‰X ¿H‹D$ HƒI‰G(H‹D$@HƒI‰G0èŽÿÿH…ÀI‰Á„dL‰x H‰D$8è4ÿÿH…ÀI‰ÂL‹L$8„*¿L‰L$8H‰D$HèOÿÿH…ÀI‰ÇL‹L$8L‹T$H„¾H‹T$H‹5¿ L‰×L‰L$HL‰T$8H‹I‰W HƒÀH‰I‰W(L‰úèöþþÿ…ÀL‹T$8L‹L$HˆöIƒ/„ÈL‰ÒL‰ÎL‰÷L‰T$HL‰L$8è’ÿÿH…ÀI‰ÇL‹L$8L‹T$H„°Iƒ.„|Iƒ)„[Iƒ*„2H‹D$@H‹l$I‰ÝH‰D$é+€H…Û„H‰Ø@HH
HƒøH5oeL
HNÊŸÂHƒìPH‹v ¶ÒLBHHH‹81ÀèÕÿÿHÇÇ°Á œÇ¢Á ¾H‰ŽÁ XZH
žH=®fºœE1ÿèq)ÿÿHƒÄxL‰ø[]A\A]A^A_ÀH‹Áv H‰D$8éòÿÿ€1ÿL‰L$è”ÿÿH…ÀH‰ÃL‹L$„ÃL‰ÏH‰ÆL‰L$èsþþÿHƒ+H‰D$L‹L$…7óÿÿH‰ßè§ýþÿL‹L$é%óÿÿDL‰÷èýþÿéòÿÿH‰ßè€ýþÿé%òÿÿH‰ÇèpýþÿéòÿÿH‹^I‰ÔHƒût(Ž•þÿÿHƒûtHƒû…ŽþÿÿH‹F0H‰D$`H‹E(H‰D$XH‹E H‰D$PL‰çèbþþÿHƒûI‰Å„eHƒû„|H…Û„¢	M…펙HT$PLÆH5§ H‰ÙL‰çèë,ÿÿ…À‰sH5ÇÀ œÇÀ ù¾ùH‰ü¿ ékþÿÿ€H‰ïè˜üþÿéÓñÿÿL‰÷èˆüþÿé¸ñÿÿH‰ßèxüþÿéžñÿÿL‰ÏèhüþÿéòÿÿHÂÇ«¿ Ôǝ¿ 7HÇD$(E1ÛE1ÒH‰¿ E1ÿHÇD$E1íHÇD$HÇD$0HÇD$ HÇD$E1äf„M…ÿt
Iƒ/„ÑM…Òt
Iƒ*„êM…Ût
Iƒ+„£H‹
¿ ‹¿ H=/d‹5¿ E1ÿèñ&ÿÿM…ätIƒ,$„AH‹L$H…ÉtH‹H‰D$8HƒèH…ÀH‰„/H‹L$(H…ÉtH‹H‰D$HƒèH…ÀH‰„H‹L$ H…ÉtH‹H‰D$HƒèH…ÀH‰„›H‹T$0H…ÒtH‹H‰D$HƒèH…ÀH‰„‰H‹t$H…ötH‹H‰D$HƒèH…ÀH‰t{M…ítIƒmtHƒ|$tH‹L$H‹H‰D$HƒèH…ÀH‰tHƒm…’üÿÿH‰ïè«úþÿé…üÿÿfDH‰Ïè˜úþÿëØfDH‰ÏèˆúþÿéXÿÿÿH‰×èxúþÿéjÿÿÿH‰÷èhúþÿéxÿÿÿL‰ïèXúþÿétÿÿÿL‰çèHúþÿé²þÿÿH‰Ïè8úþÿéÄþÿÿH‰Ïè(úþÿéÖþÿÿL‰ßèúþÿéPþÿÿL‰ÿL‰T$@L‰\$8èþùþÿL‹T$@L‹\$8éþÿÿ€L‰×L‰\$8èÛùþÿL‹\$8éÿýÿÿL‰ÏèÈùþÿéªïÿÿH"ǽ ÔÇý¼ <HÇD$(E1ÛE1ÒH‰߼ E1ÿE1ÉHÇD$E1íHÇD$HÇD$0HÇD$ E1äHÇD$M…ötIƒ.tCH…ÛtHƒ+t`M…É„GýÿÿIƒ)…=ýÿÿL‰ÏL‰T$@L‰\$8èùþÿL‹T$@L‹\$8éýÿÿ@L‰÷L‰T$HL‰\$@L‰L$8èñøþÿL‹T$HL‹\$@L‹L$8ë•H‰ßL‰T$HL‰\$@L‰L$8èÉøþÿL‹T$HL‹\$@L‹L$8éuÿÿÿDH‹5™¸ L‰çèqøþÿH…ÀH‰D$X„IƒíM…í~*H‹5ã¹ L‰çèKøþÿH…À„yûÿÿH‰D$`Iƒíébûÿÿ@H‹D$`H‹l$PL‹l$XH‰D$8éhìÿÿ€H‰ßè8øþÿéCîÿÿH’Ç{» ÔÇm» ?H‰^» HÇD$(E1ÛE1ÒE1ÿE1ÉHÇD$E1íHÇD$HÇD$0HÇD$ HÇD$éyþÿÿ@L‰×H‰D$è³÷þÿL‹\$éßïÿÿIƒm„HH‹l$Çäº ÝÇֺ êE1ÒHÇD$H‰»º E1íHÇD$éjûÿÿf.„H²Ç›º ÕǍº MHÇD$(E1ÛE1ÒH‰oº E1ÿHÇD$E1íHÇD$HÇD$0HÇD$ HÇD$é÷úÿÿ€L‰ÏèØöþÿé8íÿÿH2Ǻ ÕÇ
º UH‰þ¹ é›þÿÿf„L‰ÿè˜öþÿéEíÿÿH‰ßèˆöþÿé…íÿÿHâÇ˹ Õǽ¹ WHÇD$(E1ÛE1ÒH‰Ÿ¹ E1ÿE1ÉHÇD$E1íHÇD$HÇD$0HÇD$ HÇD$é¾üÿÿ@HrÇ[¹ ÕÇM¹ XHÇD$(E1ÛE1ÒH‰/¹ E1ÿE1ÉHÇD$E1íHÇD$0HÇD$ HÇD$éWüÿÿDL‰ÿè õþÿéÂìÿÿHúH‹l$Ç޸ ×Çи fHÇD$(E1ÛH‰µ¸ E1ÒE1ÿHÇD$E1íHÇD$0HÇD$ HÇD$HÇD$é:ùÿÿHÇD$ L‰÷èõþÿé¦ìÿÿHrH‹l$ÇV¸ ×ÇH¸ hHÇD$(E1ÛH‰-¸ E1ÒE1ÿHÇD$E1íHÇD$HÇD$0HÇD$ HÇD$ébûÿÿfH‰ßè˜ôþÿé<ìÿÿHòÇ۷ ÙÇͷ uHÇD$(E1ÛE1ÒH‰¯· E1ÿH‹l$HÇD$E1íHÇD$0HÇD$ HÇD$é;øÿÿHŠÇs· ÙÇe· vHÇD$(E1ÛE1ÒH‰G· E1ÿH‹l$HÇD$E1íHÇD$0HÇD$ HÇD$éƒúÿÿH"H‹l$Ç· ÙÇø¶ …E1ÛE1ÒH‰㶠E1ÿE1ÉHÇD$E1íHÇD$0HÇD$ HÇD$éúÿÿH‹5yµ L‰çIƒíèóþÿH…ÀH‰D$P…úÿÿH‹Eé†ôÿÿfDè‹ôþÿH‰ßèÿÿH…ÀH‰D$ …ˆHwH‹l$Ç[¶ ÛÇM¶ ’E1ÛE1ÒH‰8¶ E1ÿHÇD$E1íHÇD$0HÇD$éÒöÿÿfH"Ƕ ÛÇýµ ”E1ÛE1ÒH‰èµ éŸþÿÿ1íL‰ïL‰\$èƒòþÿL‹\$é.ëÿÿf„HÒH‹l$Ƕµ ÛǨµ £E1ÛE1ÒH‰“µ HÇD$E1íHÇD$HÇD$0HÇD$ é'öÿÿ€L‰ßèòþÿéËêÿÿHƒm…’1ÛfDH‰ïèèñþÿéðêÿÿHBÇ+µ Ûǵ ¦H‰µ H‹l$E1ÛE1ÒE1ÿE1ÉHÇD$E1íHÇD$HÇD$0HÇD$ é6øÿÿL‰ÿèxñþÿé“êÿÿHÒÇ»´ ÛÇ­´ ©E1ÛE1ÒH‰˜´ éçüÿÿH‰ßè8ñþÿéxêÿÿè‹òþÿH‰ïèÿÿH…ÀH‰D$ …SHwH‹l$Ç[´ ÛÇM´ ¬E1ÛE1ÒH‰8´ E1ÿE1ÉHÇD$E1íHÇD$0HÇD$ét÷ÿÿHÇD$@fDL‰ïè¨ðþÿéTêÿÿIƒ.„lûÿÿHøÇá³ ÛÇӳ »H‰ij é±þÿÿL‰ÿègðþÿé)êÿÿHÄH‹l$Ǩ³ ÜÇš³ ÈE1ÛE1ÒH‰…³ E1ÿHÇD$E1íHÇD$é(ôÿÿHzH‹l$Ç^³ ÝÇP³ ÔE1ÛE1ÒH‰;³ HÇD$E1íHÇD$éáóÿÿè,ñþÿH‰ßè¤ÿÿH…ÀI‰Å…i
HH‹l$Çþ² ÝÇð² ÖE1ÛM‰êH‰۲ HÇD$HÇD$é„óÿÿL‰÷èlïþÿééÿÿHÉH‹l$Ç­² ÝÇŸ² ØHÇD$E1íH‰„² HÇD$é6óÿÿHÇD$éâîÿÿL‰÷èïþÿé—éÿÿL‰ÿèSðþÿ…	É­éÿÿH[H‹l$Ç?² äÇ1² BE1ÛE1ÒH‰² H‹D$@HÇD$H‰D$éÄòÿÿHH‹l$Çú± ÝÇì± ÛE1ÒHÇD$H‰ѱ HÇD$éƒòÿÿL‰ÿèkîþÿé$éÿÿHÈDZ± ÝÇ£± úH‰”± H‹l$E1ÛE1ÒHÇD$E1íHÇD$é/òÿÿHH‹l$Çe± ÝÇW± ýE1ÛE1ÒH‰B± E1ÉHÇD$E1íHÇD$éŠôÿÿH‰÷èïþÿ…À‰UéÿÿH'H‹l$DZ èÇý° ŒI‰ÝE1ÛH‰è° H‹D$@E1ÒE1ÿHÇD$H‰D$éŠñÿÿèÕîþÿH‰ßèMÿÿH…ÀI‰Å…ÌæÿÿHÃ
H‹l$ǧ° ÝÇ™° E1ÛE1ÒH‰„° HÇD$HÇD$é-ñÿÿL‰ïèíþÿésèÿÿL‰÷èíþÿé[èÿÿH‹e HƒìH
e
jH5ÀSL
Ò
H³
A¸H‹81Àè:ðþÿH,
Ç° œÇ° ïYH‰÷¯ ^¾ïé`îÿÿIƒm„ÒûÿÿHóÇܯ ÝÇί H‰¿¯ é&þÿÿHÌH‹l$Ç°¯ ßÇ¢¯ E1ÛE1ÒH‰¯ H‹D$@E1ÿHÇD$E1íH‰D$é/ðÿÿHH‹l$Çe¯ ßÇW¯ $E1ÛE1ÒH‰B¯ H‹D$@E1ÿE1É1ÛHÇD$H‰D$é|òÿÿè-íþÿH‰ßè¥ÿÿH…ÀH‰D$…4
HH‹l$Çý® äÇï® 1E1ÛE1ÒH‰ڮ H‹D$@E1ÿH‰D$éˆïÿÿHÚH‹l$Ǿ® äÇ°® ?E1ÛE1ÒH‰›® H‹D$@E1ÿE1É1ÛHÇD$H‰D$éÕñÿÿL‰ïè#ëþÿL‹l$é/æÿÿL‰÷èëþÿéæÿÿHnÇW® æÇI® qH‰:® H‹D$@H‹l$E1ÛE1ÒE1ÿHÇD$H‰D$éÔîÿÿH&H‹l$Ç
® æÇü­ E1ÛE1ÒH‰ç­ H‹D$@E1ÿE1ÉHÇD$H‰D$é#ñÿÿL‰ÿH‰D$èlêþÿL‹L$éMæÿÿL‰ÿL‰T$HL‰L$8èPêþÿL‹T$HL‹L$8éëÿÿL‰÷L‰L$è4êþÿL‹L$é«æÿÿH‰ïL‰L$èmëþÿ…ÀA‰ÅL‹L$‰·æÿÿHo
I‰îI‰ÝH‹l$ÇM­ êE1ÛH‰7­ H‹D$@E1ÒÇ-­ ½E1ÿE1É1ÛH‰D$émðÿÿH‰ïL‰L$è¶éþÿL‹L$éaæÿÿL‰×I‰Ýè¡éþÿH‹D$@H‹l$H‰D$éñíÿÿL‰ÏL‰T$8è€éþÿL‹T$8éŽêÿÿL‰÷L‰T$HL‰L$8èdéþÿL‹T$HL‹L$8écêÿÿH·	H‹l$Ç›¬ åǍ¬ [E1ÛE1ÒH‰x¬ H‹D$@E1ÿE1É1ÛH‰D$é»ïÿÿHs	Ç\¬ åÇN¬ MH‰?¬ éþÿÿL‰ÿL‰L$8èÝèþÿL‹L$8éHæÿÿL‰ÏèËèþÿéEæÿÿè!êþÿH‰ïè™ÿÿH…ÀI‰Æ…èÿÿH	Çø« ñÇê« qH‰۫ H‹D$@H‹l$E1ÛE1ÒE1ÿI‰ÝH‰D$é{ìÿÿL‰÷ècèþÿé(æÿÿHÀI‰ÝH‹l$L‰ûÇž« ñǐ« ~H‰« H‹D$@E1ÛE1ÒE1ÿH‰D$éÃîÿÿH{Çd« ñÇV« sE1ÛE1ÒE1ÉH‰>« H‹D$@I‰ÝH‹l$1ÛH‰D$éîÿÿH7Ç « éÇ« ŸH‰« H‹D$@H‹l$E1ÛE1ÒHÇD$I‰ÝH‰D$éëÿÿL‰L$èãèþÿH‰ïè[ÿÿH…ÀI‰ÆL‹L$……ãÿÿHÌǵª êǧª ¬H‰˜ª é¸þÿÿH¥ÇŽª éÇ€ª —H‰qª éiÿÿÿH~H‹l$Çbª êÇTª ºM‰÷L‰L$H‰=ª H‹D$@I‰ÝE1ÛE1ÒH‰D$éåêÿÿL‰ÿèÍæþÿéöäÿÿL‰÷èÀæþÿéßäÿÿHÇª ñÇø© …H‰é© H‹D$@I‰ÝH‹l$L‰ÓE1ÛE1ÒH‰D$é#íÿÿHÛÇĩ ñǶ© ƒE1ÛH‰¤© E1ÿé^þÿÿH®Ç—© ñlj© H‰z© ëL‰Ïè æþÿM‰ñé5ãÿÿL‰ÿL‰L$èæþÿL‹L$éãÿÿL‰ÏèùåþÿéwäÿÿHVÇ?© ìÇ1© ìH‰"© H‹D$@H‹l$E1ÛE1ÒI‰ÝH‰D$éÅéÿÿHH‹l$Çû¨ ìÇí¨ úE1ÛE1ÒH‰ب H‹D$@I‰ÝL‰L$H‰D$ééÿÿèÌæþÿH‰ïèDÿÿH…ÀI‰Æ…ýâÿÿHºÇ£¨ íÇ•¨ H‰†¨ é¦üÿÿL‰÷è)åþÿé äÿÿL‰Ïèåþÿé	äÿÿH‰ßèïåþÿf.?NztH‹„] HƒI‰ÆéôâÿÿH‹©] HƒI‰ÆéáâÿÿH?Ç(¨ íǨ H‰¨ H‹D$@I‰ÝH‹l$E1ÛE1ÒE1É1ÛH‰D$éCëÿÿHûÇä§ íÇ֧ H‰ǧ é þÿÿHÔH‹l$Ǹ§ îǪ§ E1ÛE1ÒH‰•§ H‹D$@M‰ÏI‰ÝH‰D$é@èÿÿè‹åþÿH‰ïèÿÿH…ÀI‰Á…kâÿÿHyÇb§ îÇT§ H‰E§ éeûÿÿHRÇ;§ ëÇ-§ ÖH‰§ é÷ýÿÿH+ǧ ëǧ ÈH‰÷¦ éÐýÿÿL‰×èšãþÿéRãÿÿL‰ÏL‰T$8èˆãþÿL‹T$8é1ãÿÿH‰ßL‰óèsãþÿé8ãÿÿHÐǹ¦ íÇ«¦ 	E1ÛE1ÒE1ÉH‰“¦ éPûÿÿH I‰ÝH‹l$L‰ÓÇ~¦ ñÇp¦ H‰a¦ H‹D$@E1ÛE1ÒH‰D$é¦éÿÿH‹µ[ HƒI‰Áé¯áÿÿH‰ÇèÁãþÿf.LztÙH‹V[ HƒI‰ÁéˆáÿÿL‹t$ éÚÿÿHÇ¦ îÇõ¥ E1ÛE1ÒH‰ॠé7üÿÿHíH‹l$Çѥ ïÇå -E1ÛI‰ÝH‰®¥ H‹D$@H‰D$é_æÿÿI‰ÂéNÚÿÿH©Ç’¥ îÇ„¥  M‰ÏH‰r¥ ébýÿÿHÇh¥ ïÇZ¥ +H‰K¥ é$üÿÿHXÇA¥ ïÇ3¥ XH‰$¥ H‹D$@I‰ÝH‹l$L‰ÓE1ÛE1ÿE1ÒH‰D$éfèÿÿHÇü¤ ïÇî¤ MH‰ߤ ë¹L‹L$ é¹×ÿÿL‹t$é¹ÛÿÿHƒìHƒÄÃ'char''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''float''double''long double'a structPython objecta pointera stringendunparseable format string'complex long double''complex double''complex float'name '%U' is not definedMissing type objectcannot import name %Sscipy/sparse/csgraph/_tools.c%s (%s:%d)an integer is requiredbuffer dtype_tools.pyxat leastat mostcsgraph_from_denseconstruct_dist_matrixcsgraph_masked_from_densecsgraph_to_densereconstruct_path%d.%d%sscipy.sparse.csgraph._toolsbuiltinscython_runtime__builtins____init__.pxdtype.pxdnumpyflatiterbroadcastndarrayufuncparameters.pxicsgraph_to_maskedcsgraph_from_maskedITYPE_tDTYPE_tpÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿÿÿÿ°ÿÿÿÿÿÿÀÿÿÐÿÿàÿÿÿÿÿÿðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐÿÿàÿÿÿÿøÿÿÿÿ(ÿÿ0ÿÿÿÿÿÿ@ÿÿÿÿÿÿÿÿPÿÿ`ÿÿÿÿPÿÿ0ÿÿ`ÿÿ`ÿÿ0ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ@ÿÿ ÿÿ`ÿÿ`ÿÿÿÿ`ÿÿ`ÿÿÿÿÿÿÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ`ÿÿ0ÿÿ0ÿÿÿÿ`ÿÿ ÿÿPÿÿ@ÿÿ ÿÿ`ÿÿ`ÿÿÿÿ`ÿÿ`ÿÿ`ÿÿ0ÿÿÿÿ`ÿÿ0ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôÿÿôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäÿÿÚÿÿîÿÿÿÿîÿÿîÿÿäÿÿäÿÿÿÿÿÿäÿÿÿÿÿÿÿÿäÿÿäÿÿÿÿäÿÿÔÿÿäÿÿäÿÿÔÿÿäÿÿäÿÿäÿÿäÿÿäÿÿ”ÿÿÄÿÿäÿÿäÿÿÄÿÿäÿÿäÿÿ„ÿÿ„ÿÿ„ÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿäÿÿÔÿÿÔÿÿÿÿäÿÿüÿÿ,ÿÿ”ÿÿÄÿÿäÿÿäÿÿÄÿÿäÿÿäÿÿäÿÿÔÿÿ„ÿÿäÿÿÔÿÿÀÿÿÿÿÿÿÿÿÿÿÿÿ°ÿÿèÿÿÿÿÿÿ ÿÿÿÿÿÿ ÿÿ ÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÀÿÿÀÿÿøÿÿÿÿÿÿÐÿÿ°ÿÿèÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿÀÿÿ ÿÿÿÿÀÿÿøÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ(ÿÿ@ÿÿ@ÿÿ(ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ(ÿÿèÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿÿÿ@ÿÿèÿÿÐÿÿèÿÿ@ÿÿÐÿÿ@ÿÿ¸ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ¸ÿÿ¸ÿÿ@ÿÿ@ÿÿ¸ÿÿ@ÿÿ@ÿÿ¸ÿÿ@ÿÿ¸ÿÿ@ÿÿ@ÿÿ0ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿÿÿ@ÿÿ@ÿÿ@ÿÿÐÿÿ@ÿÿ@ÿÿ@ÿÿ¸ÿÿ¸ÿÿ¸ÿÿ@ÿÿ¸ÿÿ¸ÿÿ¸ÿÿ¸ÿÿ@ÿÿ@ÿÿ¸ÿÿ@ÿÿ@ÿÿ@ÿÿ¸ÿÿ¸ÿÿ@ÿÿhÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿ@ÿÿÿÿ#ÿÿû"ÿÿò"ÿÿé"ÿÿà"ÿÿøIÿÿïIÿÿæIÿÿÝIÿÿÔIÿÿ(bÿÿ˜aÿÿ¸aÿÿØaÿÿpYÿÿðaÿÿdÿÿdÿÿdÿÿdÿÿùcÿÿðcÿÿÐaÿÿxhÿÿžhÿÿÀhÿÿâhÿÿFormat string allocated too short.numpy.core.umath failed to importndarray is not Fortran contiguousgraph should have two dimensionsgraph and predecessors must have the same shapecsgraph should be a square matrixcsgraph must be lil, csr, or csc formatcsgraph_masked_from_dense (line 83)Non-native byte order not supportedFormat string allocated too short, see comment in numpy.pxdunknown dtype code in numpy.pxd (%d)
    reconstruct_path(csgraph, predecessors, directed=True)

    Construct a tree from a graph and a predecessor list.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the directed or undirected graph
        from which the predecessors are drawn.
    predecessors : array_like, one dimension
        The length-N array of indices of predecessors for the tree.  The
        index of the parent of node i is given by predecessors[i].
    directed : bool, optional
        If True (default), then operate on a directed graph: only move from
        point i to point j along paths csgraph[i, j].
        If False, then operate on an undirected graph: the algorithm can
        progress from point i to j along csgraph[i, j] or csgraph[j, i].

    Returns
    -------
    cstree : csr matrix
        The N x N directed compressed-sparse representation of the tree drawn
        from csgraph which is encoded by the predecessor list.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import reconstruct_path

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)	1
      (0, 2)	2
      (1, 3)	1
      (2, 3)	3

    >>> pred = np.array([-9999, 0, 0, 1], dtype=np.int32)

    >>> cstree = reconstruct_path(csgraph=graph, predecessors=pred, directed=False)
    >>> cstree.todense()
    matrix([[ 0.,  1.,  2.,  0.],
            [ 0.,  0.,  0.,  1.],
            [ 0.,  0.,  0.,  0.],
            [ 0.,  0.,  0.,  0.]])

    numpy.core.multiarray failed to import
    csgraph_to_masked(csgraph)

    Convert a sparse graph representation to a masked array representation

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : csr_matrix, csc_matrix, or lil_matrix
        Sparse representation of a graph.

    Returns
    -------
    graph : MaskedArray
        The masked dense representation of the sparse graph.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import csgraph_to_masked

    >>> graph = csr_matrix( [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ])
    >>> graph
    <4x4 sparse matrix of type '<class 'numpy.int64'>'
        with 4 stored elements in Compressed Sparse Row format>

    >>> csgraph_to_masked(graph)
    masked_array(
      data=[[--, 1.0, 2.0, --],
            [--, --, --, 1.0],
            [--, --, --, 3.0],
            [--, --, --, --]],
      mask=[[ True, False, False,  True],
            [ True,  True,  True, False],
            [ True,  True,  True, False],
            [ True,  True,  True,  True]],
      fill_value=1e+20)

    
    csgraph_to_dense(csgraph, null_value=0)

    Convert a sparse graph representation to a dense representation

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : csr_matrix, csc_matrix, or lil_matrix
        Sparse representation of a graph.
    null_value : float, optional
        The value used to indicate null edges in the dense representation.
        Default is 0.

    Returns
    -------
    graph : ndarray
        The dense representation of the sparse graph.

    Notes
    -----
    For normal sparse graph representations, calling csgraph_to_dense with
    null_value=0 produces an equivalent result to using dense format
    conversions in the main sparse package.  When the sparse representations
    have repeated values, however, the results will differ.  The tools in
    scipy.sparse will add repeating values to obtain a final value.  This
    function will select the minimum among repeating values to obtain a
    final value.  For example, here we'll create a two-node directed sparse
    graph with multiple edges from node 0 to node 1, of weights 2 and 3.
    This illustrates the difference in behavior:

    >>> from scipy.sparse import csr_matrix, csgraph
    >>> data = np.array([2, 3])
    >>> indices = np.array([1, 1])
    >>> indptr = np.array([0, 2, 2])
    >>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
    >>> M.toarray()
    array([[0, 5],
           [0, 0]])
    >>> csgraph.csgraph_to_dense(M)
    array([[0., 2.],
           [0., 0.]])

    The reason for this difference is to allow a compressed sparse graph to
    represent multiple edges between any two nodes.  As most sparse graph
    algorithms are concerned with the single lowest-cost edge between any
    two nodes, the default scipy.sparse behavior of summming multiple weights
    does not make sense in this context.

    The other reason for using this routine is to allow for graphs with
    zero-weight edges.  Let's look at the example of a two-node directed
    graph, connected by an edge of weight zero:

    >>> from scipy.sparse import csr_matrix, csgraph
    >>> data = np.array([0.0])
    >>> indices = np.array([1])
    >>> indptr = np.array([0, 1, 1])
    >>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
    >>> M.toarray()
    array([[0, 0],
           [0, 0]])
    >>> csgraph.csgraph_to_dense(M, np.inf)
    array([[ inf,   0.],
           [ inf,  inf]])

    In the first case, the zero-weight edge gets lost in the dense
    representation.  In the second case, we can choose a different null value
    and see the true form of the graph.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import csgraph_to_dense

    >>> graph = csr_matrix( [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ])
    >>> graph
    <4x4 sparse matrix of type '<class 'numpy.int64'>'
        with 4 stored elements in Compressed Sparse Row format>

    >>> csgraph_to_dense(graph)
    array([[ 0.,  1.,  2.,  0.],
           [ 0.,  0.,  0.,  1.],
           [ 0.,  0.,  0.,  3.],
           [ 0.,  0.,  0.,  0.]])

    
    csgraph_masked_from_dense(graph, null_value=0, nan_null=True,
                              infinity_null=True, copy=True)

    Construct a masked array graph representation from a dense matrix.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : array_like
        Input graph.  Shape should be (n_nodes, n_nodes).
    null_value : float or None (optional)
        Value that denotes non-edges in the graph.  Default is zero.
    infinity_null : bool
        If True (default), then infinite entries (both positive and negative)
        are treated as null edges.
    nan_null : bool
        If True (default), then NaN entries are treated as non-edges

    Returns
    -------
    csgraph : MaskedArray
        masked array representation of graph

    Examples
    --------
    >>> from scipy.sparse.csgraph import csgraph_masked_from_dense

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]

    >>> csgraph_masked_from_dense(graph)
    masked_array(
      data=[[--, 1, 2, --],
            [--, --, --, 1],
            [--, --, --, 3],
            [--, --, --, --]],
      mask=[[ True, False, False,  True],
            [ True,  True,  True, False],
            [ True,  True,  True, False],
            [ True,  True,  True,  True]],
      fill_value=0)

    
    csgraph_from_masked(graph)

    Construct a CSR-format graph from a masked array.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : MaskedArray
        Input graph.  Shape should be (n_nodes, n_nodes).

    Returns
    -------
    csgraph : csr_matrix
        Compressed sparse representation of graph,

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse.csgraph import csgraph_from_masked

    >>> graph_masked = np.ma.masked_array(data =[
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ...  ],
    ... mask=[[ True, False, False , True],
    ... [ True,  True , True, False],
    ... [ True , True,  True ,False],
    ... [ True ,True , True , True]],
    ... fill_value = 0)

    >>> csgraph_from_masked(graph_masked)
    <4x4 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

    
    csgraph_from_dense(graph, null_value=0, nan_null=True, infinity_null=True)

    Construct a CSR-format sparse graph from a dense matrix.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : array_like
        Input graph.  Shape should be (n_nodes, n_nodes).
    null_value : float or None (optional)
        Value that denotes non-edges in the graph.  Default is zero.
    infinity_null : bool
        If True (default), then infinite entries (both positive and negative)
        are treated as null edges.
    nan_null : bool
        If True (default), then NaN entries are treated as non-edges

    Returns
    -------
    csgraph : csr_matrix
        Compressed sparse representation of graph,

    Examples
    --------
    >>> from scipy.sparse.csgraph import csgraph_from_dense

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]

    >>> csgraph_from_dense(graph)
    <4x4 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

    
    construct_dist_matrix(graph, predecessors, directed=True, null_value=np.inf)

    Construct distance matrix from a predecessor matrix

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : array_like or sparse
        The N x N matrix representation of a directed or undirected graph.
        If dense, then non-edges are indicated by zeros or infinities.
    predecessors : array_like
        The N x N matrix of predecessors of each node (see Notes below).
    directed : bool, optional
        If True (default), then operate on a directed graph: only move from
        point i to point j along paths csgraph[i, j].
        If False, then operate on an undirected graph: the algorithm can
        progress from point i to j along csgraph[i, j] or csgraph[j, i].
    null_value : bool, optional
        value to use for distances between unconnected nodes.  Default is
        np.inf

    Returns
    -------
    dist_matrix : ndarray
        The N x N matrix of distances between nodes along the path specified
        by the predecessor matrix.  If no path exists, the distance is zero.

    Notes
    -----
    The predecessor matrix is of the form returned by
    `shortest_path`.  Row i of the predecessor matrix contains
    information on the shortest paths from point i: each entry
    predecessors[i, j] gives the index of the previous node in the path from
    point i to point j.  If no path exists between point i and j, then
    predecessors[i, j] = -9999

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import construct_dist_matrix

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)	1
      (0, 2)	2
      (1, 3)	1
      (2, 3)	3

    >>> pred = np.array([[-9999, 0, 0, 2],
    ... [1, -9999, 0, 1],
    ... [2, 0, -9999, 2],
    ... [1, 3, 3, -9999]], dtype=np.int32)

    >>> construct_dist_matrix(graph=graph, predecessors=pred, directed=False)
    array([[ 0.,  1.,  2.,  5.],
           [ 1.,  0.,  3.,  1.],
           [ 2.,  3.,  0.,  3.],
           [ 2.,  1.,  3.,  0.]])

    
Tools and utilities for working with compressed sparse graphs
graph should be a square arrayconstruct_dist_matrix (line 500)scipy.sparse.csgraph._toolsndarray is not C contiguouscsgraph_from_masked (line 18)csgraph_from_dense (line 172)csgraph_to_masked (line 338)reconstruct_path (line 412)csgraph_to_dense (line 222)csgraph_masked_from_denseconstruct_dist_matrixcsgraph_from_maskedcsgraph_from_densecline_in_tracebackcsgraph_to_maskedreconstruct_pathcsgraph_to_densevalidate_graphmasked_invalidisspmatrix_lilisspmatrix_csrisspmatrix_cscmasked_valuesinfinity_nullcopy_if_densesearchsortedscipy.sparsepredecessorsmasked_arraydense_outputRuntimeErrordist_matrixImportError_validationnull_valueisspmatrixcsr_outputcsr_matrixcompressedValueError_tools.pyxnan_nullidx_griddirectedtodenseminimumindicesfloat64csgraphasarrayargsortindptr__import__cumsumastypearangezerostocsrshaperangeordernumpynnullisnanisinfint32graphgetA1emptydtypedata2arrayITYPEDTYPE__test__pindonesndim__name__mask__main__filldatacopyboolsumnaninfnpmacNCBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectDoes not understand character buffer dtype format string ('%c')Cannot convert %.200s to %.200s%s() got multiple values for keyword argument '%U'%.200s() keywords must be strings%s() got an unexpected keyword argument '%U'calling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseException__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)value too large to convert to intUnexpected format string character: '%c'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringExpected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Buffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zd byte%s) does not match size of '%s' (%zd byte%s)scipy.sparse.csgraph._tools.csgraph_to_maskedscipy.sparse.csgraph._tools.csgraph_from_dense%.200s() takes %.8s %zd positional argument%.1s (%zd given)Out of bounds on buffer access (axis %d)scipy.sparse.csgraph._tools._construct_dist_matrixscipy.sparse.csgraph._tools._populate_graphscipy.sparse.csgraph._tools.construct_dist_matrixscipy.sparse.csgraph._tools.csgraph_masked_from_densescipy.sparse.csgraph._tools.csgraph_to_densescipy.sparse.csgraph._tools.csgraph_from_maskedscipy.sparse.csgraph._tools.reconstruct_pathcompiletime version %s of module '%.100s' does not match runtime version %sinit scipy.sparse.csgraph._toolsð¿@; –þÿ ðšþÿH›þÿ°ø›þÿ(
@¼þÿ`°½þÿx0¾þÿоþÿ0ÀþÿX ÀþÿpÁþÿ¨ÁþÿààÁþÿÂþÿ0ÐÆþÿÀÐÈþÿ(ðÉþÿ PËþÿÈðËþÿàÑþÿ@0×þÿÀPÙþÿHÚþÿ€PßþÿèåþÿÐóþÿàÿÿ0Àÿÿ @@ÿÿ	Pbÿÿ`	€Šÿÿ°	zRx$ø”þÿÐFJw€?;*3$"D ™þÿ\غþÿht0¼þÿyŒ˜¼þÿ˜DK
IT¬H™þÿøBŽBE ŒA(†D0ƒP€…ˆIgˆA€X0D(A BBBL<þÿXBBŽE B(ŒD0†A8ƒD@v
8D0A(B BBBITнþÿlGd4l(¾þÿUA†AƒJ X
DAG_DA4¤P¾þÿEŒA†A ƒX
ABF[
ABJ,ܨ¾þÿPA†AƒG Q
DAAȾþÿ.Aƒ\
CIŒ,ؾþÿµBBŽE B(ŒD0†A8ƒHp±
8A0A(B BBBE~xM€AˆBB˜A A¨A°A¸AÀPp
8A0A(B BBBHd¼Ãþÿ÷BBŽE B(ŒD0†A8ƒK€Ý
8A0A(B BBBF¢
8F0A(B BBBAt$ ÄþÿBBŒA †A(ƒG0`
(D ABBJh
(D ABBOU
(A ABBED
(A ABBA$œHÅþÿ]AƒG ^
AIÄ€Æþÿ—tb\ÜÇþÿ‘PBŽB B(ŒA0†A8ƒG`»8AÃ0AÆ(BÌ BÍBÎBÏL`ƒ†ŒŽ|<HÌþÿ”BBŽB B(ŒD0†A8ƒK`
8A0A(B BBBG€
8A0A(B BBBFt
8A0A(B BBBJ„¼hÑþÿBBŒD †A(ƒO€ú
(A ABBHD
(F ABBAO
(A ABBKn
(A ABBDpˆARˆA€4DÓþÿ²AƒG0ƒ
ADL
ACPAd|ˆÓþÿ8BBŽE B(ŒA0†A8ƒDPÉ
8A0A(B BBBDM
8A0A(B BBBA¤ä`Øþÿ2BBŽB B(ŒA0†A8ƒGpž
8A0A(B BBBG{xD€LxAp\
8C0A(B BBBDn
8A0A(B BBBH&
8C0A(B BBBFLŒøÝþÿ@BBŽE B(ŒD0†A8ƒLà»
8A0A(B BBBGLÜèëþÿ,BBŽE B(ŒD0†A8ƒJ°Þ
8A0A(B BBBFl,Èùþÿ¾BBŽB B(ŒA0†A8ƒG…˜A H˜A^
8D0A(B BBBEd˜I A˜H\œÿÿs'BBŽB B(ŒA0†A8ƒG°=	¸DÀO¸A°_
8D0A(B BBBB\ü87ÿÿ
"BBŽB B(ŒA0†A8ƒG€iˆDKˆA€_
8D0A(B BBBJL\èXÿÿ*(BBŽB B(ŒD0†A8ƒD€ñ
8D0A(B BBBAt¬ȀÿÿÇ*BBŽB B(ŒA0†A8ƒG°ª
¸AÀG¸A°_
8D0A(B BBBH¸IÀA¸H°Ô$	ȑþÿ;BBŒA †A(ƒGÔ	˜F J˜B{˜Q B¨F°F¸AÀAÈAÐAØAàN\˜F J˜B{˜Q B¨F°F¸AÀAÈAÐAØAàN’˜Q E¨F°F¸AÀAÈAÐAØAàN\˜F I˜A{˜Q E¨F°F¸AÀAÈAÐAØAàN}˜Q E¨F°F¸AÀAÈAÐAØAàN\˜F F¨F°F¸FÀI~˜Q E¨F°F¸AÀAÈAÐAØAàN~˜] N˜A{˜Q E¨F°F¸AÀAÈAÐAØAàNÑ(D ABB€\@\Zjx6
¸Uh­!p­!õþÿoðx
€°! X/àx	þÿÿoÀÿÿÿoðÿÿoøùÿÿo€­!¦6¶6Æ6Ö6æ6ö677&767F7V7f7v7†7–7¦7¶7Æ7Ö7æ7ö788&868F8V8f8v8†8–8¦8¶8Æ8Ö8æ8ö899&969F9V9f9v9†9–9¦9¶9Æ9Ö9æ9ö9::&:6:F:V:f:v:†:–:¦:¶:Æ:Ö:æ:ö:;;&;6;F;V;€²!
    construct_dist_matrix(graph, predecessors, directed=True, null_value=np.inf)

    Construct distance matrix from a predecessor matrix

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : array_like or sparse
        The N x N matrix representation of a directed or undirected graph.
        If dense, then non-edges are indicated by zeros or infinities.
    predecessors : array_like
        The N x N matrix of predecessors of each node (see Notes below).
    directed : bool, optional
        If True (default), then operate on a directed graph: only move from
        point i to point j along paths csgraph[i, j].
        If False, then operate on an undirected graph: the algorithm can
        progress from point i to j along csgraph[i, j] or csgraph[j, i].
    null_value : bool, optional
        value to use for distances between unconnected nodes.  Default is
        np.inf

    Returns
    -------
    dist_matrix : ndarray
        The N x N matrix of distances between nodes along the path specified
        by the predecessor matrix.  If no path exists, the distance is zero.

    Notes
    -----
    The predecessor matrix is of the form returned by
    `shortest_path`.  Row i of the predecessor matrix contains
    information on the shortest paths from point i: each entry
    predecessors[i, j] gives the index of the previous node in the path from
    point i to point j.  If no path exists between point i and j, then
    predecessors[i, j] = -9999

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import construct_dist_matrix

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)	1
      (0, 2)	2
      (1, 3)	1
      (2, 3)	3

    >>> pred = np.array([[-9999, 0, 0, 2],
    ... [1, -9999, 0, 1],
    ... [2, 0, -9999, 2],
    ... [1, 3, 3, -9999]], dtype=np.int32)

    >>> construct_dist_matrix(graph=graph, predecessors=pred, directed=False)
    array([[ 0.,  1.,  2.,  5.],
           [ 1.,  0.,  3.,  1.],
           [ 2.,  3.,  0.,  3.],
           [ 2.,  1.,  3.,  0.]])

    
    reconstruct_path(csgraph, predecessors, directed=True)

    Construct a tree from a graph and a predecessor list.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the directed or undirected graph
        from which the predecessors are drawn.
    predecessors : array_like, one dimension
        The length-N array of indices of predecessors for the tree.  The
        index of the parent of node i is given by predecessors[i].
    directed : bool, optional
        If True (default), then operate on a directed graph: only move from
        point i to point j along paths csgraph[i, j].
        If False, then operate on an undirected graph: the algorithm can
        progress from point i to j along csgraph[i, j] or csgraph[j, i].

    Returns
    -------
    cstree : csr matrix
        The N x N directed compressed-sparse representation of the tree drawn
        from csgraph which is encoded by the predecessor list.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import reconstruct_path

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)	1
      (0, 2)	2
      (1, 3)	1
      (2, 3)	3

    >>> pred = np.array([-9999, 0, 0, 1], dtype=np.int32)

    >>> cstree = reconstruct_path(csgraph=graph, predecessors=pred, directed=False)
    >>> cstree.todense()
    matrix([[ 0.,  1.,  2.,  0.],
            [ 0.,  0.,  0.,  1.],
            [ 0.,  0.,  0.,  0.],
            [ 0.,  0.,  0.,  0.]])

    
    csgraph_to_masked(csgraph)

    Convert a sparse graph representation to a masked array representation

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : csr_matrix, csc_matrix, or lil_matrix
        Sparse representation of a graph.

    Returns
    -------
    graph : MaskedArray
        The masked dense representation of the sparse graph.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import csgraph_to_masked

    >>> graph = csr_matrix( [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ])
    >>> graph
    <4x4 sparse matrix of type '<class 'numpy.int64'>'
        with 4 stored elements in Compressed Sparse Row format>

    >>> csgraph_to_masked(graph)
    masked_array(
      data=[[--, 1.0, 2.0, --],
            [--, --, --, 1.0],
            [--, --, --, 3.0],
            [--, --, --, --]],
      mask=[[ True, False, False,  True],
            [ True,  True,  True, False],
            [ True,  True,  True, False],
            [ True,  True,  True,  True]],
      fill_value=1e+20)

    
    csgraph_to_dense(csgraph, null_value=0)

    Convert a sparse graph representation to a dense representation

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : csr_matrix, csc_matrix, or lil_matrix
        Sparse representation of a graph.
    null_value : float, optional
        The value used to indicate null edges in the dense representation.
        Default is 0.

    Returns
    -------
    graph : ndarray
        The dense representation of the sparse graph.

    Notes
    -----
    For normal sparse graph representations, calling csgraph_to_dense with
    null_value=0 produces an equivalent result to using dense format
    conversions in the main sparse package.  When the sparse representations
    have repeated values, however, the results will differ.  The tools in
    scipy.sparse will add repeating values to obtain a final value.  This
    function will select the minimum among repeating values to obtain a
    final value.  For example, here we'll create a two-node directed sparse
    graph with multiple edges from node 0 to node 1, of weights 2 and 3.
    This illustrates the difference in behavior:

    >>> from scipy.sparse import csr_matrix, csgraph
    >>> data = np.array([2, 3])
    >>> indices = np.array([1, 1])
    >>> indptr = np.array([0, 2, 2])
    >>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
    >>> M.toarray()
    array([[0, 5],
           [0, 0]])
    >>> csgraph.csgraph_to_dense(M)
    array([[0., 2.],
           [0., 0.]])

    The reason for this difference is to allow a compressed sparse graph to
    represent multiple edges between any two nodes.  As most sparse graph
    algorithms are concerned with the single lowest-cost edge between any
    two nodes, the default scipy.sparse behavior of summming multiple weights
    does not make sense in this context.

    The other reason for using this routine is to allow for graphs with
    zero-weight edges.  Let's look at the example of a two-node directed
    graph, connected by an edge of weight zero:

    >>> from scipy.sparse import csr_matrix, csgraph
    >>> data = np.array([0.0])
    >>> indices = np.array([1])
    >>> indptr = np.array([0, 1, 1])
    >>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
    >>> M.toarray()
    array([[0, 0],
           [0, 0]])
    >>> csgraph.csgraph_to_dense(M, np.inf)
    array([[ inf,   0.],
           [ inf,  inf]])

    In the first case, the zero-weight edge gets lost in the dense
    representation.  In the second case, we can choose a different null value
    and see the true form of the graph.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import csgraph_to_dense

    >>> graph = csr_matrix( [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ])
    >>> graph
    <4x4 sparse matrix of type '<class 'numpy.int64'>'
        with 4 stored elements in Compressed Sparse Row format>

    >>> csgraph_to_dense(graph)
    array([[ 0.,  1.,  2.,  0.],
           [ 0.,  0.,  0.,  1.],
           [ 0.,  0.,  0.,  3.],
           [ 0.,  0.,  0.,  0.]])

    
    csgraph_from_dense(graph, null_value=0, nan_null=True, infinity_null=True)

    Construct a CSR-format sparse graph from a dense matrix.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : array_like
        Input graph.  Shape should be (n_nodes, n_nodes).
    null_value : float or None (optional)
        Value that denotes non-edges in the graph.  Default is zero.
    infinity_null : bool
        If True (default), then infinite entries (both positive and negative)
        are treated as null edges.
    nan_null : bool
        If True (default), then NaN entries are treated as non-edges

    Returns
    -------
    csgraph : csr_matrix
        Compressed sparse representation of graph,

    Examples
    --------
    >>> from scipy.sparse.csgraph import csgraph_from_dense

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]

    >>> csgraph_from_dense(graph)
    <4x4 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

    
    csgraph_masked_from_dense(graph, null_value=0, nan_null=True,
                              infinity_null=True, copy=True)

    Construct a masked array graph representation from a dense matrix.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : array_like
        Input graph.  Shape should be (n_nodes, n_nodes).
    null_value : float or None (optional)
        Value that denotes non-edges in the graph.  Default is zero.
    infinity_null : bool
        If True (default), then infinite entries (both positive and negative)
        are treated as null edges.
    nan_null : bool
        If True (default), then NaN entries are treated as non-edges

    Returns
    -------
    csgraph : MaskedArray
        masked array representation of graph

    Examples
    --------
    >>> from scipy.sparse.csgraph import csgraph_masked_from_dense

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]

    >>> csgraph_masked_from_dense(graph)
    masked_array(
      data=[[--, 1, 2, --],
            [--, --, --, 1],
            [--, --, --, 3],
            [--, --, --, --]],
      mask=[[ True, False, False,  True],
            [ True,  True,  True, False],
            [ True,  True,  True, False],
            [ True,  True,  True,  True]],
      fill_value=0)

    
    csgraph_from_masked(graph)

    Construct a CSR-format graph from a masked array.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    graph : MaskedArray
        Input graph.  Shape should be (n_nodes, n_nodes).

    Returns
    -------
    csgraph : csr_matrix
        Compressed sparse representation of graph,

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse.csgraph import csgraph_from_masked

    >>> graph_masked = np.ma.masked_array(data =[
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 0, 3],
    ... [0, 0, 0, 0]
    ...  ],
    ... mask=[[ True, False, False , True],
    ... [ True,  True , True, False],
    ... [ True , True,  True ,False],
    ... [ True ,True , True , True]],
    ... fill_value = 0)

    >>> csgraph_from_masked(graph_masked)
    <4x4 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿXø!X÷!ˆ÷!ø!`ù!Xø!X÷!ˆ÷!ø!Pù!X÷!Pù! ÷!ø!Xø! ÷!ø!X÷!ú!£–ú!>–ú!Àb<øù!€`#ðù!8–èù!¸”àù!¡–Øù!€b$Ðù!˜”
Èù!(•Àù!ѕ¸ù!¨•°ù!2–¨ù! • ù!ʕ˜ù!ˆ–ù!Ÿ–ˆù!P“€ù!•xù!ð’pù! ˆ©hù!!`ù!ƒ–Xù!8”Pù!˜•Hù!0“@ù!@„A8ù!P’0ù!“(ù!€€µ ù!0’ù!Вù! {Où!@b$ù!b(øø!Àa"ðø!°“èø! nfàø!°’Øø!p“Ðø! jvÈø!p’Àø!•¸ø!ø”°ø!Õ¨ø!~– ø!,–˜ø!ˆ”
ø!h•	ˆø!¨”€ø!&–xø! –pø!y–hø!•`ø!–Xø!–Pø!€a0Hø! ‘@ø!@a!8ø!X•	0ø!¸•(ø!ˆ• ø!°•ø!•–ø!(”ø!–ø!–ø÷!–ð÷!è”è÷!”à÷!ø“Ø÷!è“Ð÷!œ–È÷!p–	À÷!i–¸÷!x”
°÷!ؓ¨÷!” ÷!€•˜÷!`–	÷!‘–ˆ÷!H•	€÷!’x÷!a"p÷![–h÷!ü•`÷!™–X÷!ؔP÷!ö•H÷!ài'@÷!À`"8÷!V–0÷!ð•(÷!Q– ÷!h”
÷!ê•÷!“÷!@cž÷!’øö!X”
ðö!ð‘èö!H”
àö!ä•Øö!–Ðö!H–	Èö!ޕÀö!x•¸ö!8•°ö!c%¨ö!ȓ ö!Ȕ˜ö!ؕ8X`‘ÿÿÿÿÿÿÿÿ ö!ÈWp¢ ²!	Xð*`»!°X€zÂ!øW°à€Æ!µWÀÓ!ÞW0¹`×!ÂXÀÀÜ!ÖXIÞXRGCC: (Debian 6.3.0-18+deb9u1) 6.3.0 20170516ÈðxøÀàX/	x6
6`;p;
¸UàUp x¡h­!p­!x­!€­!P¯!°!€²!àõ!ñÿ
°\h( ^yB ^˜]p;øn@_X{¸ú!ƒ `laU²¨ú!ºpaÐbPáPb.ü°ú!€bµ0ú!(˜ú!:ú!L ú!aˆù!~@g÷§@iÀ`j]ÓÀk—ÿ`l‘r”6 w_€à!@o@ú!@{Ày²¥€z8á`÷!îÐ÷!û°÷!ðø!/÷!=Œú!Jˆú!X€ú!gÀ2¤ö!°0ù!Îù!òø!
Xø!X÷!/ˆ÷!Bá!(Y†@˜`õ!hÚàô!hø!*@”,b8÷!q€ø!ú!0÷! ú!¸p¢¾ùxö!¨ö! ö!2ú!B¸ø!WXù!o¨ù!àö!‘˜ö!¡ ÷!¸ø!Ë@ö!Úú!ó€á!(
0¹s'N°ù!^`ù!mp÷!|€ö!ˆø÷!˜˜ù!§¸÷!¾pö!ËXö!Úø!êÀ÷!ùÀà!0¨÷!(°à
"cè÷!|Èö!Œ¨ø!›(ø!­ðù!½ ø!Îxø!Þpø!íØ÷!	à÷!	Pö!.	Pù!@	Hö!O	0á!f	À*(¤	€ù!¹	ù!Å	Àù!Ö	hö!å	ˆö!ñ	Øö!ÿ	°ø!
`ö!
Àø!4
ð*Ç*p
˜ø!‡
¸ù!™
 ù!ª
èö!Á
ð÷!Ö
Àö!è
`ø!ø
 ÷!
`á! !€ó!p1Àá!¨BÈ÷!Q˜÷!`Èù!u÷!…Ðù!œèù!²@ø!ÞHø!ù!4øø!`Pø!Œ€÷!³x÷!ßØù!
ú!7
øù!e
H÷!
@÷!¼
8ø!Ï
àù!Û
¸ö!ð
Hù!
Øø!) ø!9(÷!Hh÷!X÷!sˆø!‰xù!©P÷!¹øö!Ðhø!âø!òðö!Àô! X ô! ž€ô! Ý`ô! @ô! X ô! –ô! Ù(ù! ù!+ù!Vù!‚@ù!­8ù!Ôèø!ÿàø!$Ðø!OÈø!u÷! ÷!Åpù!ðhù!Ðö!)£–3>–AÀb<j€`#•8–£¸”·¡–Á€b$ꘔ
ÿ(•ѕ!¨•12–? •Oʕ^ˆ–kŸ–uP“•£ð’Á ˆ©é!ƒ–8”3˜•C0“^@„A†P’ª“Æ€€µî0’В4 {O\@b$…b(®Àa"×°“ð nf°’:p“T jv|p’Ÿ•²ø”ÅÕÔ~–á,–
h•	¨”)&–7 –Ey–R•b–p–~€a0§ ‘Î@a!÷X•	0ø!¸•(ˆ•8°•G•–S(”i–w–…–“蔦”½ø“Ôè“뜖öp–	i–x”
%ؓ<”R€•b`–	o‘–{H•	Œ’°a"Ù[–æü•ô™–ÿؔö• ài'HÀ`"qV–~ð•ŒQ–™h”
®ê•¼“Õ@cžý’X”
4ð‘XH”
mä•{–‡H–	”ޕ¢x•²8•Ä°ö!ïc%ȓ.ȔAؕO`‘@w ö! … ²!©Ç`»!žÂ!vA€Æ!f}Ó!A»`×!OÀÜ!µ>ñÿIx­!V°[Xð[k@\àõ!p­!·€\Ãh­!>ñÿâp¬ðx­!ñÿüÈõ! 
¸U	 €²! Àú! ö!O Èõ![ €­!d p w Èõ!ƒ °!™ 	x6Ÿ ´ Ê í ý ! !6!H!Y! u!…!˜!¦!»!Ê!á!ú!	"!"h<;/"A"T"b"w"Ž"¡"¾"Õ"é"##'#:#S#e#s#…#”#¢#»#È#Ø#ë#$$ $0$C$X$j$€$œ$©$¾$Ð$ë$ ú$	%%)%A%Q%`%t%„%’%¥%¸%É%Û%ù%&&0&C&V&f&u&ƒ&‘&¤&³& Ç&Ö&ç&ú&'#'0'C' ]'q'…'•'¬'Å'Ö'"ò'_tools.c__Pyx_BufFmt_DescribeTypeChar__pyx_bisect_code_objects__Pyx_BufFmt_RaiseExpected__Pyx_ImportType__Pyx_Import__pyx_m__Pyx_BufFmt_ExpectNumber__Pyx_GetBuiltinName__pyx_b__Pyx_TypeTest.isra.2__Pyx_ImportFrom__Pyx__GetModuleGlobalName__pyx_d__Pyx_AddTraceback__pyx_code_cache__pyx_empty_tuple__pyx_empty_bytes__pyx_cython_runtime__pyx_n_s_cline_in_traceback__Pyx_ParseOptionalKeywords.constprop.24__Pyx_Raise.constprop.25__Pyx_PyInt_As_int__Pyx_BufFmt_TypeCharToPadding.constprop.28__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx__GetBufferAndValidate.constprop.27__Pyx_minusones__Pyx_zeros__Pyx_WriteUnraisable.isra.4.constprop.33__pyx_pw_5scipy_6sparse_7csgraph_6_tools_9csgraph_to_masked__pyx_n_s_np__pyx_n_s_ma__pyx_n_s_masked_invalid__pyx_n_s_csgraph_to_dense__pyx_n_s_nan__pyx_lineno__pyx_clineno__pyx_filename__pyx_pw_5scipy_6sparse_7csgraph_6_tools_5csgraph_from_dense__pyx_int_0__pyx_n_s_csgraph_from_masked__pyx_n_s_csgraph_masked_from_dense__pyx_n_s_infinity_null__pyx_n_s_graph__pyx_n_s_null_value__pyx_n_s_nan_null__pyx_pyargnames.11231__pyx_f_5scipy_6sparse_7csgraph_6_tools__construct_dist_matrix__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_6_tools_DTYPE_t__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_6_tools_ITYPE_t__pyx_n_s_inf__pyx_f_5scipy_6sparse_7csgraph_6_tools__populate_graph__pyx_n_s_ones__pyx_n_s_dtype__pyx_n_u_C__pyx_n_s_order__pyx_ptype_5numpy_ndarray__pyx_pw_5scipy_6sparse_7csgraph_6_tools_13construct_dist_matrix__pyx_k__7__pyx_n_s_validate_graph__pyx_n_s_validation__pyx_n_s_DTYPE__pyx_n_s_csr_output__pyx_n_s_copy_if_dense__pyx_n_s_asarray__pyx_n_s_shape__pyx_n_s_zeros__pyx_n_s_predecessors__pyx_n_s_directed__pyx_tuple__8__pyx_builtin_ValueError__pyx_pyargnames.11804__pyx_pw_5scipy_6sparse_7csgraph_6_tools_3csgraph_masked_from_dense__pyx_n_s_array__pyx_n_s_copy__pyx_n_s_ndim__pyx_int_2__pyx_n_s_isnan__pyx_n_u_bool__pyx_n_s_masked_array__pyx_tuple___pyx_tuple__2__pyx_n_s_isinf__pyx_n_s_mask__pyx_pyargnames.11057__pyx_n_s_masked_values__pyx_pw_5scipy_6sparse_7csgraph_6_tools_7csgraph_to_dense__pyx_n_s_isspmatrix_csc__pyx_n_s_tocsr__pyx_n_s_data__pyx_n_s_indices__pyx_n_s_ITYPE__pyx_n_s_indptr__pyx_n_s_empty__pyx_n_s_fill__pyx_n_s_isspmatrix_lil__pyx_n_s_isspmatrix_csr__pyx_tuple__5__pyx_n_s_csgraph__pyx_tuple__6__pyx_pyargnames.11315__pyx_pw_5scipy_6sparse_7csgraph_6_tools_1csgraph_from_masked__pyx_n_s_compressed__pyx_n_u_c__pyx_n_s_arange__pyx_slice__3__pyx_int_1__pyx_n_s_sum__pyx_n_s_cumsum__pyx_slice__4__pyx_n_s_csr_matrix__pyx_pw_5scipy_6sparse_7csgraph_6_tools_11reconstruct_path__pyx_n_s_dense_output__pyx_n_s_argsort__pyx_n_s_astype__pyx_n_s_searchsorted__pyx_n_s_isspmatrix__pyx_n_s_todense__pyx_n_s_getA1__pyx_n_s_minimum__pyx_pyargnames.11586__pyx_moduledef__pyx_string_tab__pyx_n_s_main__pyx_n_s_name__pyx_n_s_ValueError__pyx_n_s_range__pyx_n_s_RuntimeError__pyx_n_s_ImportError__pyx_kp_u_graph_should_have_two_dimensions__pyx_kp_u_graph_should_be_a_square_array__pyx_kp_u_csgraph_must_be_lil_csr_or_csc_f__pyx_kp_u_csgraph_should_be_a_square_matri__pyx_kp_u_graph_and_predecessors_must_have__pyx_kp_u_ndarray_is_not_C_contiguous__pyx_kp_u_ndarray_is_not_Fortran_contiguou__pyx_kp_u_Non_native_byte_order_not_suppor__pyx_kp_u_Format_string_allocated_too_shor__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_n_s_idx_grid__pyx_n_s_N__pyx_kp_s_tools_pyx__pyx_n_s_csgraph_from_dense__pyx_n_s_csgraph_to_masked__pyx_n_s_data2__pyx_n_s_pind__pyx_n_s_nnull__pyx_n_s_reconstruct_path__pyx_n_s_dist_matrix__pyx_n_s_construct_dist_matrix__pyx_n_s_numpy__pyx_n_s_scipy_sparse__pyx_n_s_float64__pyx_n_s_int32__pyx_n_s_scipy_sparse_csgraph__tools__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_1csgraph_from_masked__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_3csgraph_masked_from_dense__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_5csgraph_from_dense__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_7csgraph_to_dense__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_9csgraph_to_masked__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_11reconstruct_path__pyx_mdef_5scipy_6sparse_7csgraph_6_tools_13construct_dist_matrix__pyx_kp_u_csgraph_from_masked_graph_Const__pyx_kp_u_csgraph_from_masked_line_18__pyx_kp_u_csgraph_masked_from_dense_graph__pyx_kp_u_csgraph_masked_from_dense_line_8__pyx_kp_u_csgraph_from_dense_graph_null_v__pyx_kp_u_csgraph_from_dense_line_172__pyx_kp_u_csgraph_to_dense_csgraph_null_v__pyx_kp_u_csgraph_to_dense_line_222__pyx_kp_u_csgraph_to_masked_csgraph_Conve__pyx_kp_u_csgraph_to_masked_line_338__pyx_kp_u_reconstruct_path_csgraph_predec__pyx_kp_u_reconstruct_path_line_412__pyx_kp_u_construct_dist_matrix_graph_pre__pyx_kp_u_construct_dist_matrix_line_500__pyx_n_s_test__pyx_k_C__pyx_k_DTYPE__pyx_k_Format_string_allocated_too_shor__pyx_k_Format_string_allocated_too_shor_2__pyx_k_ITYPE__pyx_k_ImportError__pyx_k_N__pyx_k_Non_native_byte_order_not_suppor__pyx_k_RuntimeError__pyx_k_ValueError__pyx_k_arange__pyx_k_argsort__pyx_k_array__pyx_k_asarray__pyx_k_astype__pyx_k_bool__pyx_k_c__pyx_k_cline_in_traceback__pyx_k_compressed__pyx_k_construct_dist_matrix__pyx_k_construct_dist_matrix_graph_pre__pyx_k_construct_dist_matrix_line_500__pyx_k_copy__pyx_k_copy_if_dense__pyx_k_csgraph__pyx_k_csgraph_from_dense__pyx_k_csgraph_from_dense_graph_null_v__pyx_k_csgraph_from_dense_line_172__pyx_k_csgraph_from_masked__pyx_k_csgraph_from_masked_graph_Const__pyx_k_csgraph_from_masked_line_18__pyx_k_csgraph_masked_from_dense__pyx_k_csgraph_masked_from_dense_graph__pyx_k_csgraph_masked_from_dense_line_8__pyx_k_csgraph_must_be_lil_csr_or_csc_f__pyx_k_csgraph_should_be_a_square_matri__pyx_k_csgraph_to_dense__pyx_k_csgraph_to_dense_csgraph_null_v__pyx_k_csgraph_to_dense_line_222__pyx_k_csgraph_to_masked__pyx_k_csgraph_to_masked_csgraph_Conve__pyx_k_csgraph_to_masked_line_338__pyx_k_csr_matrix__pyx_k_csr_output__pyx_k_cumsum__pyx_k_data__pyx_k_data2__pyx_k_dense_output__pyx_k_directed__pyx_k_dist_matrix__pyx_k_dtype__pyx_k_empty__pyx_k_fill__pyx_k_float64__pyx_k_getA1__pyx_k_graph__pyx_k_graph_and_predecessors_must_have__pyx_k_graph_should_be_a_square_array__pyx_k_graph_should_have_two_dimensions__pyx_k_idx_grid__pyx_n_s_import__pyx_k_import__pyx_k_indices__pyx_k_indptr__pyx_k_inf__pyx_k_infinity_null__pyx_k_int32__pyx_k_isinf__pyx_k_isnan__pyx_k_isspmatrix__pyx_k_isspmatrix_csc__pyx_k_isspmatrix_csr__pyx_k_isspmatrix_lil__pyx_k_ma__pyx_k_main__pyx_k_mask__pyx_k_masked_array__pyx_k_masked_invalid__pyx_k_masked_values__pyx_k_minimum__pyx_k_name__pyx_k_nan__pyx_k_nan_null__pyx_k_ndarray_is_not_C_contiguous__pyx_k_ndarray_is_not_Fortran_contiguou__pyx_k_ndim__pyx_k_nnull__pyx_k_np__pyx_k_null_value__pyx_k_numpy__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_ones__pyx_k_order__pyx_k_pind__pyx_k_predecessors__pyx_k_range__pyx_k_reconstruct_path__pyx_k_reconstruct_path_csgraph_predec__pyx_k_reconstruct_path_line_412__pyx_k_scipy_sparse__pyx_k_scipy_sparse_csgraph__tools__pyx_k_searchsorted__pyx_k_shape__pyx_k_sum__pyx_k_test__pyx_k_tocsr__pyx_k_todense__pyx_k_tools_pyx__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_k_validate_graph__pyx_k_validation__pyx_k_zeros__pyx_k_Tools_and_utilities_for_working__pyx_methods__pyx_doc_5scipy_6sparse_7csgraph_6_tools_12construct_dist_matrix__pyx_doc_5scipy_6sparse_7csgraph_6_tools_10reconstruct_path__pyx_doc_5scipy_6sparse_7csgraph_6_tools_8csgraph_to_masked__pyx_doc_5scipy_6sparse_7csgraph_6_tools_6csgraph_to_dense__pyx_doc_5scipy_6sparse_7csgraph_6_tools_4csgraph_from_dense__pyx_doc_5scipy_6sparse_7csgraph_6_tools_2csgraph_masked_from_dense__pyx_doc_5scipy_6sparse_7csgraph_6_tools_csgraph_from_maskedcrtstuff.c__JCR_LIST__deregister_tm_clones__do_global_dtors_auxcompleted.6972__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END____JCR_END___edata_fini__dso_handle_end__pyx_module_is_main_scipy__sparse__csgraph___tools__bss_start_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE__initPyPyFloat_FromDoublePyPyObject_IsSubclassPyPyImport_ImportModuleLevelObjectPyPyOS_snprintfPyPyExc_TypeErrorPyPyDict_SetItemPyPyExc_BaseExceptionPyPyErr_SetObjectPyPyDict_GetItem_ITM_deregisterTMCloneTablePyPyLong_AsLongPyPyModule_GetDict_PyPy_DeallocPyPySequence_GetItemPyPyMem_MallocPyPyDict_GetItemStringPyPyObject_SetAttrStringPyPyFloat_TypePyPyImport_ImportModulePyInit__toolsPyPyLong_FromLongPyPyFloat_AsDoublePyPyDict_NextPyPyNumber_InPlaceOrPyPyUnicode_FromFormatPyPyObject_GetItemPyPyUnicode_InternFromStringPyPyUnicode_FromStringPyPyFloat_AS_DOUBLEPyPyDict_SetItemStringPyPyUnicode_ComparePyPyUnicode_DecodePyPyExc_ValueErrorPyPyObject_GetAttrStringPyPyNumber_InvertPyPyDict_SizePyPyObject_IsTruePyPyBytes_TypePyPyErr_ClearPyPyErr_ExceptionMatchesPyPyDict_NewPyPyObject_HashPyPyErr_WarnFormatPyPyExc_AttributeErrorPyPyLong_TypePyPyNumber_LongPyPyErr_RestorePyPyBuffer_ReleasePyPyObject_GetBufferPyPyErr_SetStringPyPyExc_OverflowErrorPyPyBytes_FromStringAndSizePyPyCode_NewPyPyImport_AddModulePyPyUnicode_CheckPyPyExc_DeprecationWarning__gmon_start__PyPyObject_NotPyPyErr_FetchPyPyList_SET_ITEMPyPyErr_WriteUnraisablePyPyObject_CallPyPyNumber_AddPyPyThreadState_GetPyPyMem_ReallocPyPyTuple_NewPyPyObject_SetAttrPyPyExc_IndexError_PyPy_NoneStruct_PyPy_FalseStructPyPyUnicode_FromStringAndSizePyPyExc_NameErrorPyPyBool_TypePyPyUnicode_CheckExactPyPySequence_CheckPyPyModule_Create2PyPyErr_PrintExPyPyTuple_PackPyPySlice_NewPyPyFrame_NewPyPyObject_SetItemPyPyErr_Format_Jv_RegisterClassesPyPyErr_WarnExPyPyErr_OccurredPyPyTraceBack_HerePyPyLong_FromSsize_tPyPyExc_SystemErrorPyPyList_NewPyPyType_IsSubtype_ITM_registerTMCloneTablePyPyExc_ImportErrorPyPyCFunction_NewExPyPy_GetVersionPyPyObject_RichComparePyPyImport_GetModuleDict_PyPy_TrueStruct__cxa_finalize@@GLIBC_2.2.5PyPyObject_GetAttr.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.dynamic.got.plt.data.bss.commentÈÈ$.öÿÿoðð$8`	@xx€HÿÿÿoøøÈUþÿÿoÀÀ dààxnBX/X/ xx6x6s66Ð~`;`;‡p;p;G¸U¸U	“àUàUJ ›p p ©x¡x¡ü
³h­!h­¿p­!p­Ëx­!x­Ð€­!€­Ð‚P¯!P¯°Ù°!°x′!€²HC èàõ!Èõà í0Èõ-øõ`*a	X (]Hö