Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / scipy   python

Repository URL to install this package:

Version: 1.3.3 

/ sparse / csgraph / _traversal.pypy3-71-x86_64-linux-gnu.so

ELF>`3@HB@8@tt ``!`!(@`C xx!x!$$Ptd44QtdRtd``!`!GNUV1l{;Xn-ycc.&"A+Ww r5_iviXHAO3- M \vI8,Om[|U ., q_#>F"\5M__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassesPyPyExc_ValueErrorPyPyErr_FormatPyPyObject_GetAttrStringPyPyExc_TypeErrorPyPyOS_snprintfPyPyErr_WarnEx_PyPy_DeallocPyPyObject_GetAttrPyPyExc_NameErrorPyPyExc_SystemErrorPyPyErr_SetStringPyPyType_IsSubtypePyPyExc_AttributeErrorPyPyErr_ExceptionMatchesPyPyExc_ImportErrorPyPyObject_GetItemPyPyErr_ClearPyPyThreadState_GetPyPyFrame_NewPyPyTraceBack_HerePyPyUnicode_FromStringPyPyCode_NewPyPyMem_ReallocPyPyErr_FetchPyPyObject_Not_PyPy_FalseStruct_PyPy_TrueStructPyPyErr_RestorePyPyUnicode_FromFormatPyPyObject_SetAttrPyPyMem_MallocPyPyList_NewPyPyModule_GetDictPyPyDict_NewPyPyImport_ImportModuleLevelObjectPyPyDict_NextPyPyUnicode_CheckPyPyUnicode_ComparePyPyErr_OccurredPyPyExc_DeprecationWarningPyPyErr_WarnFormatPyPyObject_RichCompareBoolPyPyLong_AsUnsignedLongPyPyExc_OverflowErrorPyPyBytes_TypePyPyUnicode_CheckExactPyPyNumber_LongPyPyLong_TypePyPyObject_GetBufferPyPyBuffer_ReleasePyPyErr_PrintExPyPyErr_WriteUnraisable_PyPy_NoneStructPyPyExc_IndexErrorPyPyExc_StopIterationPyPyLong_AsLongPyPyTuple_PackPyPyObject_CallPyPyLong_FromLongPyPyTuple_NewPyPyDict_SetItemPyPyNumber_InPlaceMultiplyPyPyNumber_InPlaceAddPyPySequence_CheckPyPySequence_GetItemPyPyExc_BaseExceptionPyPyObject_IsSubclassPyPyErr_SetObjectPyPyDict_SizePyPyDict_GetItemPyPyLong_FromSsize_tPyPyObject_IsTruePyPySlice_NewPyPyList_TypePyPyTuple_TypePyPyObject_GetIterPyPySequence_SizePyPySequence_ITEMPyInit__traversalPyPy_GetVersionPyPyBytes_FromStringAndSizePyPyUnicode_FromStringAndSizePyPyModule_Create2PyPyImport_AddModulePyPyObject_SetAttrStringPyPyUnicode_InternFromStringPyPyObject_HashPyPyUnicode_DecodePyPyImport_GetModuleDictPyPyDict_GetItemStringPyPyDict_SetItemStringPyPyImport_ImportModulePyPyList_SET_ITEMPyPyCFunction_NewExlibpthread.so.0libc.so.6GLIBC_2.2.5ui	`!Nh!@N!!`!x!h!!p!0!x!H!!x!!!!0!!H!!x!!0!!!!P! !x!(!!0!0!@!x!H!!P!0!`!"h!w!"!m!"! l!"!q!!!x(!!0!`mP!!X!hx!!!!!!!!!!!!`!! !@!!H!h!!p!!!!`!!! !!!!!!@0!!8!X!!`! m!x!!!p!!؝!h!!!`!!X !X!(!xH!P!P!p!H!x!!@!!n!8!!!0!!!(!!k8! !@!e`!!h!!!!!!!!!!0!!!(!!0!&P!!X!_x!!!!!!!!!!!!!! !Y@!!H!h!!p!H!!!!!!!!!l!!!ȝ0!!8!X!!`!S!x!!@n!p!!l!h!!8!`!!M !X!(!H!P!P!p!H!x!@!@!!(!8!!!0!! n!(!!`l8! !@!G`!!h!!!!!!!A!!!!!!m(!!0!؜P!!X!}x!!!;!d!(!`!`!ch! x!!!d!PU!!!)d!X!@!!d!$!`!!c!!! !dH!P!X!	`!h!p!!x!'!(!,!/!4!5!;!A!B!Cȿ!Eп!Rؿ!X![!\!`!a! !(!0!8!@!H!
P!X!`!
h!p!x!!!!!!!!!!!!!!! !"!#!$!%!&!) !*(!+0!-8!.@!0H!1P!2X!3`!6h!7p!8x!9!:!<!=!>!?!@!D!F!G!H!I!J!K!L!M!N!O!P!Q!S !T(!U0!V8!W@!YH!ZP!]X!^`!_h!bHH%!HtH5r!%t!@%r!h%j!h%b!h%Z!h%R!h%J!h%B!h%:!hp%2!h`%*!h	P%"!h
@%!h0%!h %
!h
%!h%!h%!h%!h%!h%ڐ!h%Ґ!h%ʐ!h%!h%!hp%!h`%!hP%!h@%!h0%!h %!h%!h%z!h%r!h %j!h!%b!h"%Z!h#%R!h$%J!h%%B!h&%:!h'p%2!h(`%*!h)P%"!h*@%!h+0%!h, %
!h-%!h.%!h/%!h0%!h1%!h2%ڏ!h3%ҏ!h4%ʏ!h5%!h6%!h7p%!h8`%!h9P%!h:@%!h;0%!h< %!h=%!h>%z!h?%r!h@%j!hA%b!hB%Z!hC%R!hD%J!hE%B!hF%:!hGp%2!hH`%*!hIP%"!hJ@%!fAVAUIATUHSIHEHHHH@u H!H5kLLH81zLK(I9r
Eu(I9t#H!H5kILLH81DAuNI9vIIHHkAQLIML111LpZYyHuH1HH[]A\A]A^USHHHHu.H!H8tH`!H5.HH81HZ[]HAVIAUATUSu16HHIu
E1I1H=!2HIt+HHtE1LHLLHIu&HtE11HHPHHuHHtHEHPHHUuH[L]A\A]A^HU!HtHATUH.SA1HHl$Ld$HyH.H1LD$8D$u
D$8D$
tbH\$LtH1tMHH11Hy'H-l!^!A,HO!,1sHHQ!u'Hk-2!$!E,H!H=,1rHH!u'H*-!!F,H!H=o,1Hu'H,!!G,H!wH=!HH!u'H,s!e!k,HV!HHHo!u'Hq,8!*!m,H!HH=,HH%!u'H/,!!o,H!HH=,UHH!u'H+!!q,H!tHH!H5\,H=!HS!Ny_H+e!W!s,HH!%C 
C!H{ta{"t0lHEHH8HHtyH(H+Hu>HSHsHtH1jHEH,HEHCHp9HEHHH!tHHH!u$H*!!u,Ht!TH!8H!H5|!H=!Ht*;!-!z,H!H=N!tLH=<!tH
!	!H=p5!;H=!Ht7HH	!u'j HuH!H5pH8H!H[]A\@HHu'H)!u!~,Hf!CH5oH"HuAH~!H5oHy'Hg).! !,H!H=]!0HH!u'H()!\!*H!H=!Hu'H(!~!*H!wH=!Hu'He)!Xq!*Hb!?H=!Hu'H-)G!9!*H*!H5!1HHP!u'H:(!\!*H!H5!1|Hu'H(!!*H!H5!1=Hu'Hi(!u!+Hf!CH5!1Hu'H*(D!26!+H'!H5!1Hu'H'!X!+H!H5d!1Hu'H'!p!%+H!H5!1AHu'Hm'!y!0+Hj!GH5N!1Hu'H.'H!:!;+H+!H
'!H!1L
W!L!H5!5!5 !HZYu'H&!!F+H!H!L
!H11AAQj5!5!RRPRRHPHu'H%o!a!I+HR!/L
.!LO!1H
!H!H5!Hu'HM%!{!R+H!H!L
!H11AAQj{5!5A!RRPRR2HPHu'H$!{!U+H!dL
c!L!1H
!H!H5P!Hu'H$I!;!^+H,!	H8!L
)!H11AAQh5!5s!RRPRRdHPHu'H$!!a+H!H=p$HHu'H$!	!+H~![H#H5.$AhH8Hu'HA$N!	@!+H1!'HuHH=$HHu'H#!!+H!H#H5#AhHHu'H#!!+H!H#H5#AP
HVHu'HR#l!^!+HO!EHP#H5:#A8H	Hu'H#!!+H!H
#H5"AXHHHz!u'H"˾!!+H!H"H5"AHhHu$Hd"~!p!+Ha!ZHukHaHMuHH5#!HHHH[!"!
!,H!HHH=!1HHu'H
!Խ!
ƽ!,H!H5!H=Խ!Hy)H !
!,1Ht!|
HMuHHHu'H J!
<!,H-!
H	!H1HHm!HHHF!HHH7!HHH=!HHHdH!
!,H!	H5n!H=!Hy'Hn!
`!,HQ!Y	HMuHH5!HHHu'H["!
!,H!H5Y!H="!H:y'H!
ӻ!,HĻ!HMuHQH5!HzHHu'H!
!,Hx!nH5!H=!Hy'HT!
F!,H7!?HMuHH5u!HHHu'HA!
!,H!H57!H=!H y'HǺ!
!,H!HMuH7HuH*HHu'Hs!e!,HV!3H!1HH
H=޷!HQHHu'HZ!!!,H!HuHH5[!HHHu'Hֹ!ȹ!,H!H5!H=ֹ!Hy'H!!,Hx!HuHHMuHHHu'HzA!3!,H$!H!1HHH=!HHHu'H(!!,HҸ!HMuH_H5!HHHu'H!!,H!|H5R!H=!Hy'Hb!T!,HE!MHMuHHuHH=&!9
HHu'H/!!,H!H5s!HHHu'Hη!!,H!HuH?H50!H=!Hy)H!r!-1Ha!iHMuHH=O!b	HHu'HX5!'!
-H!H5t!HHHu'H!!-Hڶ!HMuHgH5@!H=!Hy'H!!-H!HuHH"!H=!1HHu'HW!I!-H:!H5N!H=W!Hoy'HO!!-H!HuHH!H=9!1bHHu'Hŵ!{!%-H!H5ܴ!H=ŵ!Hy'H!{v!'-Hg!]HuHH!H=!1HHu'Hl3!%!1-H!H5ҳ!H=3!HKy'H+!!3-Hմ!HuHcHHu'H!!;-H!qH!H5!Hy'Hp!b!=-HS!IH!H5p!Hy'Hh/!!!>-H!HƲ!H5!HGy'H'!!?-Hѳ!H!H5!Hy'H!!@-H!H\!H5M!Hy'Hl!^!A-HO!EH5Ӱ!H=l!Hy'Hd+!!B-H!HXHKHMuHHH=ѯ!Hѯ!UH)HHvHq!Ht	]fD]@f.H=!H5!UH)HHHH?HHtHq!Ht]f]@f.=Y!u'H=q!UHtH="t!H]0!@f.H=n!H?u^fDH1q!HtUH]@@s@RHHcHfHIHH:HDHH3HDHHHDHH'H,HH#H}HHHHHH
HHH HAAx_IcȉH9T|KEtK1~9pA9~'D)HcHL9}AA99O19HLGMt{MI9tCw@DIPH5,NH
IMIHLHHn!H81H@HL$Hw@DH5MIMLDLH
HHЀ	w5HJR0r@	wfDHDBr@	vHHHm!H5NH81H@USHHHH=!xHHtHH[]fDHm!H5[HH81HH[]Ðf.HATUStIH?HH9u9[]A\DHm!H51H8[]A\fuI$HK H5NHP Hl!H81Df.SHHH=!HtH[fH[fAWAVIAUATIUSH8IA1EL
+!M
!DLLL$Ή$9$~rLL$HHIE;yu^IHHX!1LHHIh0HTH+I,$uLH8[]A\A]A^A_@L HIt݅xLIMH!L
!HE11111AQUAVAUPPPPPHIEHPHHIEI.HdH!EH$HD5۫!H<$DDLcE9D;5!A@H<$IcHHH$D5!D5!IcHH~!E9H$IcDHH$HpHxHHpHxA9|ENDyHD
*!HBH=!HT$(Ht$ H|$H5o!H=`!HI_HIthHHIu>HMj!HLHT$H$H$HT$H9tH;Tj!tJHt>HT$(Ht$ H|$5DHHIHi!H9
j!tHT$(Ht$ H|$AAfH+{HH8[]A\A]A^A_HiJH=F
L1NIqfDIm*LIcHH$D;yD;5!%fHi!H5!H=֩!@L@CL0)AHIH)!!@
!DxHHH$ILH9HH/HHh!HMh!Hf.AWAVIAUATIUSHHHHHD$(Lt$0LD$HD$(HD$0HD$HD$8HD$8HD$@HT$Ht$LLHH|$(HtH;:Hu|@H9:tsHHHuHHt}IDtWIIEHtdH8Ht$(H9t=yFHtӸHH[]A\A]A^A_DHT$0H)I?LHL$0H)I}I%H9uJfDHH9t5HEHt$(H8H9yHtHH9uHL$(HT$H5HHf!H81ZHH[]A\A]A^A_He!HT$H5GH81)H|$(HHT$H5KGfSHGHt7HH He!HGH81H؅tH+t-1[L@ Hee!H5H11H81H+uH1fDSHHHGH5e!19x3tHH9u1H[H1e!H5HH8rH[HtbHe!H5GH8DDH;d!t	:t=HuH}d!H5H8mfDHtwHHHtHrd!H9Cu4@HH3HVHHH߉D$D$H@HHfG<4wiH
BHcHfDf.f.f.f.f.HHc!@H5FH811HfWD1AWAVAUATUSHH(HGH(HuH~spGG1NXA~#HFAHL @L8HH9uCGHC0B{@<1H
HcHfDHHCgCDC@1H([]A\A]A^A_f.~XHK0CGHuLFL99LH5E,DA^DT$IGL-L5
HMHD$CF<@D<^B<4uIcLfAf.HQA\L9<C<Ht|$HhL9_HCHMHS HHH9^LMt	Ld$LHC0HK HPHS0H9HMHCH}HH8y\Su)HqH>H}(HHLXL[HpHHHHeHC{@SDH(CFHM<@r@1a@IctLHQAA\L9f:D$<CHIHHCHUHPHpHsHHHPHS0W@MIIDMIImDH)`!H5CHL$E1H8CFHL$<@8{DHL$HHH{ 1HL$HHHt
HH)Hs H{8{DHL$HL$HC8ADADHq_!H5BHL$E1H81CFHL$BD$HD$I
CD$D$UH_!H5:BH81(HC{@SDD$H(ADADADMII DADMIIuDMII]DHHHhHKHHhfDH5BH^!H810lH]!VXH5{AH81	EDf.AWAVAUATIUSH4H(HD$Hl$Ht$H$}HcHDIEHI}(HHHt$D`X6LGHt$E1Atz)tu wLH>HHuHE9~IUIcHHHTHcH9[Ht$,t	),^AuE9\AEGIE(HHt$}H<$OhHIE(Ht$fDE1L>IE(Ht$IE0AEEHAEFFEe@Ht$IE(AEDo@E1A8UDuE;e@uAEEA8EFuHIE(IE(IE0Ht$3A}DtI}fLFI}JHD$H([]A\A]A^A_fDLiIE(IE AEEIE(IE0AEDAEFHD$HpHt$fDHLI]8Ht$HAEDjIM 1HHHUHH)I] FHAEE=Ht$(DHFHD$VJv	dHA@HFMe(IE(Mu8HD$~{LtZHD$MAEDIE0IE8HpHt$E1IM9Ht$LFHHu1H([]A\A]A^A_DHFHD$HAUE;HY!H5>H8:1H([]A\A]A^A_fHFHD$~:tHDHt$HH~:uHpHt$HFHD$NHL1@MHt$Mu8H!Y!H5=H81KHY!H5>H81H|1DIEH5>DHHPXHX!H81HX!H5;ZH811HX!H5b=H81HgX!H5<H81HJX!H5=H81tff.USHHHHHXHEqPM$H#HCH!=!SH5HD$H$H\$HHt$HD$ HKD$E@D$F@HD$(HD$0D$DD$@D$GHD$8u)@H@HHAHHAHx\StHT$Hu(zHtBHUL
!L91H}@tXHX[]ÐHW!H5<H81#H}tH!H9E@H.HX[]fHy!H]@HX[]fDH!HZ!HEHEHU8HU0H]@HX[]HJH
)IL!HHBHHMHIV!HVH5<H81[XZ1HE@ASHH H|$HT$Ht$H|$HtHHt$HtHHT$HtH{H#HT$Ht$HH|$Ht'HH+t	H [H8H [fH=U!dH [@f.AWAVIAUATMUSIԉLH8HL-U!HD$xHD$pHDŽ$HDŽ$HDŽ$HDŽ$HDŽ$	HDŽ$	HDŽ$HDŽ$HDŽ$HDŽ$L9vLt$`H|$xHL$<LRH$LT$HM9HD$vMmLt$`H$<LLT$LH$LT$HMHD$sM9jLt$`H$<LLH$HL9HD$ zHqLt$`H$	<HLkH$
zHMHD$(	M9Lt$`H$=LL#H$(
BL9$pL"QH$pBLt$`H$pH$=LH$HML:CH$	L$L$LD$xL$D$HD$0H$AHD$81ADL9@A<D_L9\$}H;l$C4lA9HL$H9vEHl$HL\$@HA9tL9I9!9iƒH9rHHR!H5i81Lt$`H81H4!!SHޒ!fDHt$XH|$PLH|$xtHW!H9$H|$xH$t"H-!H9$H$H$t"H!H9$bH$H$	t"HӀ!H9$
MH$	XH$t"H!H9$8
8H$+H$t"Hy!H9$X#H$HT$`Ht$XH|$PH=6n1H8[]A\A]A^A_f.H9!H!HDŽ$HDŽ$
H$0
H$(
H$8
DH!H!M9HDŽ$H$HH$H$HD$H!H!MHDŽ$HDŽ$H$HH$H$HD$H_!H8!L9HDŽ$HDŽ$H$HH$H$HD$ H!H~!HDŽ$	HDŽ$	H$
H$
H$
z@D\$M9BCD$9fH!H~!HDŽ$HDŽ$ H$PH$HH$XDH!!H!H{!m!H^!fHK!=!H.!QfHT!
!H!!fHDŽ$HDŽ$
HDŽ$8
HDŽ$XHDŽ$HDŽ$HM!H531Lt$`H81QHu<!.!H!Bf.HD!!H!fHۍ!͍!H!fHL!H521Lt$`H81衿H!~!Ho!f.HL!H521Lt$`H81QHu<!.!&H!Bf.H9L!H5Z21Lt$`H81H%!ތ!9Hό!f.L\$@Hl$HL9\$(H;l$(HD$0B4NHD$09HL$ H9LD$@L\$8ID9ƒL9A9tL9
I9uˋl$I9AD$9뱐H9K!H5Z11Lt$`H81H%!ދ!AHϋ!f.HJ!H5
11Lt$`H81豽H!!H!f.HJ!H501Lt$`H81aHL!>!H/!RHSJ!H5t01Lt$`H81H?!!
H!H
J!H5.01Lt$`H81ռH!!H!LD$@AD;l$MDt'Hy!H9$H|$xD$蟺D$H$t*Hx!H9$H$D$jD$H$t*Hx!H9$|H$D$5D$H$	t*Hx!H9$
XH$	D$D$H$t*HJx!H9$8
4H$D$˹D$H$Hx!H9$XH$D$蒹D$HrH!H5.1Lt$`H81:H^%!!H!+H,H!H5M.1Lt$`H81H߈!ш!Hˆ!HDŽ$XIHDŽ$.HDŽ$OHDŽ$sHDŽ$
HDŽ$8
AWAVMAUATIUSIԉHH;5eG!HD$8HD$0HDŽ$XHDŽ$PHDŽ$xHDŽ$pHDŽ$	HDŽ$	HLt$ H|$8<LmHT$hL;%F!H*MLt$ H$X<LL)H$L;-F!L"MLt$ H$x=LLH$ML*L;=6F!Lt$ H$	=LLH$	ML
L$xL$X1LD$8L$	AD$ADL9A<GI95A4L9A9oH9v=L|$A9tL9I9`90ƒH9rH?E!H5`+1Lt$ H81H+!!HՅ!Ht$H|$L胶H|$8tHTt!H9D$xH|$8ߵH$Xt"H-t!H9$WH$X貵H$xt"Ht!H9$H$x腵H$	t"Hs!H9$	H$	XHT$ Ht$H|$4H=*1Hĸ[]A\A]A^A_@L;%D!H!Hks!HD$@HT$pHT$hHD$xH*L;-C!H\!H5s!HDŽ$XHDŽ$`H$H$H$L"H!Hr!MHDŽ$xHDŽ$H$H$H$L*
H˃!Hr!HDŽ$	HDŽ$	H$	H$	H$	D|$M9CD$9f.H!d![H~!fHk!d]!`HN!tfHt;!d-!eH!DfHD!d!jH!fH	B!H5*(1Lt$ H81ѴH!~!H!f.HA!H5'1Lt$ H81聴Hl!^!HO!uf.HDŽ$HDŽ$HDŽ$	HD$xAf.H	A!H5*'1Lt$ H81ѳH!w!H!f.H@!H5&1Lt$ H81聳Hl!|^!HO!uf.Hi@!H5&1Lt$ H811HU!~!H!%f.L|$AD;\$KMDt,Hmo!H9T$x'H|$8D$L$XD$Mt*H<o!H9$H$XD$轰D$H$xt*Ho!H9$H$xD$舰D$H$	?Hn!H9$	tjH$	D$SD$f.H)?!H5J%1Lt$ H81H!!H!HDŽ$	HDŽ$BHD$xHDŽ$ff.AWAVIAUATIUSMMHH>!HDŽ$HDŽ$HDŽ$	HDŽ$	H9HDŽ$HDŽ$HDŽ$
HDŽ$
HDŽ$8HDŽ$0HDŽ$XHDŽ$PHDŽ$xHDŽ$pHDŽ$HDŽ$HL$H$HT$<LH$LT$0HMHD$I9L$H$	<LLH$(
HMHD$I9L$H$<LL{H$HMHD$(I9L$H$
<LL0H$H
HMHD$0>I95L$H$8=LLH$h	H9$HHD$^H$OL$H$H$X=LH$H9$HHD$8KH$<L$H$H$x=L/H$H9$HHD$ H$L$H$H$=LH$H|$ID$(H:HH|$ H$8H\$@+L$xH9A.	D$\H$
1L$L$	H$D$XHD$HH$AHD$PH$XHD$`E$Al$H9l$EL;l$E=	CD9	H9L$H9HtLO
A8tBHl$hHl$D9<	H9H9H2LO
A8uȃD$XHcT$XH9T$ AL;\$A4H9L$8Hl$@Btm
9D$\HL$`F$	A	H9T$ H9!H51L$H81JHn5z!a'z!)Hz!+Hy!Hh!HDŽ$8HDŽ$@H$pH$hH$xDHy!HZh!MHDŽ$H$HH$H$HD$VH>y!Hh!MHDŽ$	HDŽ$
H$8
HH$0
H$(
HD$RHx!Hg!MHDŽ$HDŽ$H$HH$H$HD$(NHx!Hyg!HDŽ$
HDŽ$ 
H$P
H$H
H$X
E@HYx!H2g!HDŽ$XHDŽ$`H$H$H$DHx!Hf!HDŽ$xHDŽ$H$H$H$DHDx!Lw!Hw!fDHt$xH|$pL薨H$t"Hdf!H9$H$H$t"H7f!H9$H$輧H$t"H
f!H9$H$菧H$	t"He!H9$8
oH$	bH$
t"He!H9$X
ZH$
5H$8t"He!H9$xEH$8H$Xt"HVe!H9$0H$XۦH$xt"H)e!H9$H$x讦H$Ht$xH|$p臦H=1HĘ[]A\A]A^A_Hd+v!Lv!Hv!!fH4u!Lu!Hu!fHu!Lu!Hu!fH4!H51L$H81莧Hyu!fku!oH\u!oH	u!Hc!HDŽ$HDŽ$H$H$H$
DHDŽ$AHDŽ$VHDŽ$kHDŽ$8
HDŽ$X
HDŽ$xHDŽ$HDŽ$Hq3!H51L$H816HZ!t!et!_Ht!H,s!Ls!Hs!Hs!Ls!Hs!fHs!Ls!H~s!fHks!L]s!HNs!afHi2!H51L$H81.HRs!Zs!Hr!H2!H5:1L$H81ޤHr![r!Hr!H1!H51L$H81莤Hyr!^kr!H\r!oHy1!H51L$H81>Hb)r!dr!EHr!H)1!H5J1L$H81Hq!dq!MHq!Hl$hH9l$0eL;l$0HL$H-HL$HFD9DH9L$(Ht$PH9HLO
A(tFLl$PHl$(AD9aDH9VALH9HLO
A8uăD$XHcT$XH9T$ AL;\$A4H9L$8Hl$@Bt@H/!H51L$H81貢Hp!{p!Hp!Mt*H_!H9$H$D$荠D$H$t*H^!H9$H$D$XD$H$t*H^!H9$H$D$#D$H$	t*Hm^!H9$8
jH$	D$D$H$
t*H8^!H9$X
FH$
D$蹟D$H$8t*H^!H9$x"H$8D$脟D$H$Xt*H]!H9$H$XD$OD$H$xH]!H9$=H$xD$D$H-!H51L$H81軠Hn!tn!%Hn!H-!H51L$H81rH]n!uOn!5H@n!SHd-!H51L$H81)HMn!sn!Hm!
H-!H5<1L$H81Hm!jm!Hm!H,!H51L$H81藟Hm!ktm!Hem!xH,!H51L$H81NHr9m!s+m!Hm!/H@,!H5a1L$H81H)l!ll!Hl!9D$\Ll$XL$X:HcCHDŽ$HDŽ$hHDŽ$HDŽ$=HDŽ$aHDŽ$8
HDŽ$X
HDŽ$xHK+!H5l1L$H81H4k!zk!uHk!H+!H5#1L$H81ǝHk!yk!eHk!AWAVIAUATMUSIMH(H*!HDŽ$HDŽ$HDŽ$HDŽ$H9HDŽ$	HDŽ$	HDŽ$HDŽ$HDŽ$HDŽ$HD$hHD$`HvLt$PH$HT$<LoH$LT$HMHD$sI9jLt$PH$<LL"H$HMHD$zI9qLt$PH$	=LLH$	yHMHD$I9xLt$PH$=LLH$
aHI9HD$ MLt$PH$=LLJH$8)H9$`L*8H$`)Lt$PH$`H|$h=LH$	H|$ID$(L
H"H$	MH\$(+ZL$L9A,$LT$hH$1L$H$D$0D$4AHl$HL$8E<HL$AWH9EDH9AA9H9v7I9HLK<?VA9H9rH\'!H5}
1Lt$PH81$HHh!6h!>Hg!fHt$HH|$@L螘H|$htHoV!H9$H|$hH$t"HEV!H9$H$ʗH$t"HV!H9$:H$蝗H$	t"HU!H9$
%H$	pH$t"HU!H9$(
H$CH$t"HU!H9$HH$HT$PHt$HH|$@H=1H([]A\A]A^A_fHYf!H2U!HDŽ$HDŽ$H$@H$8H$HDHf!HT!MHDŽ$H$HH$H$HD$He!HT!MHDŽ$HDŽ$H$HH$H$HD$He!HXT!MHDŽ$	HDŽ$	H$
HH$
H$	HD$H0e!H	T!HDŽ$HDŽ$H$ 
H$
H$(
s@Hd!HS!HD$hHD$pH$H$H$H$d! d!Hd!fHd! d!Hd!fHd! }d!Hnd!yfH[d! Md!H>d!IfHDŽ$HDŽ$
HDŽ$(
HDŽ$HHDŽ$HDŽ$H"!H51Lt$PH81葕H|c!7nc!NH_c!jf.HKc! =c!H.c!9fHTc! 
c!Hb!	fH"!H5:1Lt$PH81Hb!,b!Hb!f.H!!H51Lt$PH81葔H|b!-nb!H_b!jf.Hy!!H51Lt$PH81AHe,b!0b!Hb!f.H)!!H5J1Lt$PH81Ha!5a!$Ha!f.H !H51Lt$PH81術Ha!5~a!,Hoa!zf.;D$4l$0t$0HcT$0I9H_ !H51Lt$PH81'HKa!3a!H`!D$0HcT$0I9HT$D\$4HT$L;\$A4H9L$ HT$(B4D$4HL$8t$4F<9tHT$D$4Mt'HO!H9$H|$hD$虐D$H$t*HN!H9$H$D$dD$H$t*HN!H9$H$D$/D$H$	t*HyN!H9$
H$	D$D$H$t*HDN!H9$(
6H$D$ŏD$H$HN!H9$HH$D$茏D$Hl!H51Lt$PH814HX_!;_!~H_!
H&!H5G1Lt$PH81H^!<^!H^!HDŽ$HIH!H51Lt$PH81藐H^!=t^!He^!pHDŽ$(
HDŽ$HDŽ$HDŽ$HDŽ$
@f.HHu21HuCH@H/uuH!H5H81ȏH@H!H8yt[1SHHHGtCHcH9uH[HtZHS!H5H8蔍DH;!t	芎t2QHuH!H5H8V듐+HtHHHtH!H9Cu7H8H3HVHHGH߉D$9D$2H蘵HHuGf.AWAVIAUATIUSILHHL5!HDŽ$HDŽ$HDŽ$HDŽ$L9HDŽ$	HDŽ$	HDŽ$HDŽ$HDŽ$
HDŽ$
HDŽ$(HDŽ$ HH$L|$pHt$<HLHEH$LL$MH*M9L|$pH$	<LLH$
|HM9HD$ML|$pH$<LLH$dHMHD$M9L|$pH$
<LLmH$8
LHL9HD$(HL|$pH$(=HL%H$X
HC(H5X!HL"HHD$HI
H5{W!1NjHI1HLIHQHIuLHD$ 肈HD$ HdIMHQHIU	HHQHHL9CL|$pH$=HLFH$
HD$L:HD$hH$	E11L$L$(L$HD$ H$
HD$8H$HD$@HEHD$0HD$HHD$HDMAI9ԉA<CH9T$EH$t"HdG!H9$H$H$t"H7G!H9$vH$輈H$t"H
G!H9$ZH$菈H$	t"HF!H9$(
>H$	bH$
t"HF!H9$H
H$
5H$(HF!H9$hH$(HqW!HJF!HDŽ$(HDŽ$0H$`H$XH$h!DH1iW![W!0L|$pHGW!IEHHIEBHt$hH|$`LH$t"HE!H9$H$3H$t"HE!H9$H$H$t"HTE!H9$H$نH$	t"H'E!H9$(
)H$	謆H$
t"HD!H9$H
H$
H$(t"HD!H9$hH$(RHT$pHt$hE1H|$`+H=|迾HtH+uH|HHD[]A\A]A^A_HyU!HRD!MHDŽ$H$H$H$H*H;U!HD!M9HDŽ$	HDŽ$	H$(
HH$ 
H$
HD$HT!HC!MHDŽ$HDŽ$H$HH$H$HD$HT!HvC!HDŽ$
HDŽ$
H$@
H$8
H$H
I9OAHT$XHcH^I9uI9EdHȃE4HcHD$PHcH9D$Ht$ HɋOH9L$RHHt$ 49~]Lc)Ht$0JDLHHH)9H9<IcTHII9I:HH9uHt$PH9t$(HD$8Ht$PHɋH9L$(HD$8<9~gLD$HcJ)LHHt$HHLLD$@HH)H9IcHHI9I:HH9uA"HT$XA@L舁HR!R!1HR!HR!R!1HR!UH{R!mR!1H\R!%HKR!=R!	1H,R!LHELHH-!H5N1L|$pH81HQ!!Q!HQ!fDHHH!H51L|$pH81蝃HQ!&zQ!HkQ!4fDHQ!H?!HDŽ$HDŽ$H$H$H$DLAH8!H5Y1L|$pH81H$P!'P! HP!fDEDHHLHD$ 3HD$ fHDŽ$hPHDŽ$H
HDŽ$(
HDŽ$'HDŽ$iHDŽ$$H!H5:1L|$pH81HO!O!tHO!xf.HԲO!O!1H|O!EHkO!]O!"1L|$pHGO!fHD$HD$PHY!H5z1L|$pH81!HEO!%N!HN!f.HD$HH
!H51L|$pH81ÀHN!%N!HN!Z@HIHDŽ$sN!eN!ILHSN!fDHq
!H51L|$pH819H]$N!N!HN!fH)
!H5J1L|$pH81HM!M!HM!f.HHiH!H51L|$pH81HM!+rM!k HcM!,fDL-Hx!H51L|$pH81@Hd+M!,M!~ HM!fDAE1Ht$(Ht$P=H!H5'1L|$pH81~HL!*L!K HL!eHL$(
H!H51L|$pH81}~HhL!*ZL!V HKL!HDŽ$H
3HDŽ$hSHDŽ$]HDŽ$yHDŽ$HDŽ$(
DNAWAVAUATIUSHHHHHDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$h
HDŽ$`
HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$(HDŽ$ HDŽ$H
HDŽ$@
H-
!I
H9@
H$H$<HHpH$8_HMHD$A
I98
H$H$(<L(H$X_
HH9HD$ H
H$H$H
=HP
H$x
H$h
L$`
HHD$(HC(D$t'L=8!L9$
fL$`
I|$zH$I|$=HrH$
rLcd$HHHD$0LxHIzHI?Lh zHI%Lp 4yHIHH!H=ZI!HHD$MxHIHH5G!LLKw[
I/H=H!LLyHHD$Im.I.H$t"L=B7!L9$(H$xH9l$
Ht$H$H$=H$}HLHD$8=wHIQWyHIKLx =yHIQLp wHI|L%eG!H=H!LwHIHH5gF!LLvImaH=BG!LLxHI$I/I.oH$t"L=5!L9$H$wI9iH$H$=LܭH$H$HHD$@t"L=5!L9$tH$wH9l$DHt$H$H$=mH$HD$L:H5&E!HHByHIH5C!1xHID1HL:wI4$HVHI$EHI6HVHIH0HVHHfH5D!HxHI[H5<C!1wHI1HLvI4$HVHI$uLHD$HAtHD$HHI6HVHIH0HVHHH5C!H|$xHIH5B!1vHI1HLvI4$HVHI$uLHD$HsHD$HHI6HVHI]H0HVHH:H5cC!LwHIH5B!1TvHI1HL{uI4$HVHI$uLHD$H
sHD$HHSI6HVHI7H0HVHHD$p$PH$(L$E1L$Hl$xL$h
L$HD$HH$LLT$0t$\D$XD$THD$`H$H
HD$pHD$HHD$hLMIM9IcC<ID9t$Hl$xH5@!HuHHD$ H9l$H$H
L=1!L9$
kL$@
HDŽ$
I|$PsH9l$OL$Ht$I=LL褩H+nHc$qHI<!H|$HtHIt"I,$I9
"H$H
L=1!,L9$
L$@
HDŽ$
I|$rI9L$I=LLL@"HL$HHD$HHHD$D+|$\H$t"H~0!H9$( H$rH$t"HQ0!H9$H!H$qH$(t"H$0!H9$hH H$(qH$H
t"H/!H9$
, H$H
|qH$h
t"H/!H9$
 H$h
OqH$t"H/!H9$H$"qH$Hl/!H9$H$pLd$Ll$Lt$Lf.HI@!H"/!MHDŽ$H$HHH$@H$8HD$H@!H.!H9HDŽ$(HDŽ$0H$hHH$`H$XHD$ L%?!L=.!H?!HDŽ$H
H$h
L$
L$x
L$
HS(HD$(HDŽ$P
D$tL9$
H$h
oHDŽ$h
HDŽ$p
H%?!L$
L$
L$
Ht;?!-?!H?!H\$HD$E111H$H$H$oH$t"Hz-!H9$(H$nH$t"HM-!H9$HH$nH$(t"H -!H9$hH$(nH$H
t"H,!H9$
H$H
xnH$h
t"H,!H9$
H$h
KnH$t"H,!H9$H$nH$t"Hl,!H9$~H$mH$H$E1H$mH=UHtHm%Ht
H+MtI,$H|$tH\$HHD$HHHHL$HHD$HHHuHkHD[]A\A]A^A_H,<!<!H<!H<!<!H<!fL8kL(kHkBHkLjHjHDŽ$qHDŽ$
HDŽ$HDŽ$(HDŽ$H0HDŽ$hEHDŽ$
ZH̞;!;!1Ht;!IEE1H\$HD$HHIEtpI.t}M:I/0Li#@H\#;!;!H\$HD$E1H:!1ImE1E1LziMtI.uLgivfHy:!HR)!HDŽ$HDŽ$H$ H$H$(0DL$`
HDŽ$
I|$jH9L%
:!DLhJH$H$H$jH9!H$H$H$HDŽ$h
H$
H$
Hq(!HDŽ$p
H$
iHHDŽ$HDŽ$HDŽ$9!H|9!z9!ODHc9!U9!H\$HD$E1H59!1%fDH\#9!9!E1H\$HD$H8!E11HDŽ$(CH$H$H$1qiHj8!H$H$H$HDŽ$H$ H$H'!HDŽ$H$(hHL|$HDŽ$HDŽ$HDŽ$H8!!8!8!H\$E1HD$DLHD$HfHD$HfH7!7!Hl$H7!H8fLHD$H#fHD$H`H$H$H$E1hH7!H$H$H$HDŽ$H$H$H%!HDŽ$H$.gH2Hl$HDŽ$HDŽ$HDŽ$H6!6!6!8H\$HD$H$H$H$E1@gH96!H$H$H$HDŽ$H$H$H$!HDŽ$H$UfHYHl$HDŽ$HDŽ$HDŽ$H5!5!5!SLl$H\$H5!5!H5!Ld$Ll$E1H\$L=H5!u5!H\$HD$E1HU5!1[fDeH|$iHI Ha(5!5!1H	5!@H44!4!#Hl$H4!`@H4!Hb#!HDŽ$HDŽ$H$H$H$DHA4!H#!HDŽ$HDŽ$H$H$H$DLbHd+4!4!E11H	4!@LbLbjHHl$3!3!H\$E1H3!HD$M9L;t$@C	CL$LLt$MHcIHH$L9	H4I49L9A41$x-Hc$H;L$@HA7	L9:	H;D$@AL9AHrEHcH9L$ Ht$HH4t$0	H9D$ Ht$H<9|$0HcDŽ$LHL)I9HctHYL9YA4D9}ADŽ$H9|$0HL96$E	H;D$8t$XHD$`H$T$XHc$4FHcUHHl$1!1!H\$E1H1!HD$!Hk1!]1!Hl$HI1!9@aLcHIaH[Hl$1!1!!H\$E1H0!HD$f.Hx_fLHD$Hc_HD$H9fHDŽ$PH0_LHD$H_HD$HHDŽ${HHl$U0!G0!%H\$E1H00!HD$H^LHD$H^HD$HH' H5H1H81aLd$H/!/!Ll$H/!H\$LLd$Hڒ/!/!_Ll$H/!H\$LiHHH H51H81\aLd$H{B/!4/!Ll$H /!H\$L
HG/!/!mH.!CLH H5-1H81`Ld$H.!.!Ll$H.!H\$LLd$H.!x.!Ll$Hd.!H\$LNHLI9HLA4$AHL$@H=AHL-H H5?1H81_Ld$H
-!-!Ll$H-!H\$LLd$Hѐ-!-!Ll$Hv-!H\$L`Hd-!V-!HG-!t$T1t$TrHc4H9L$ 4Ht$HHH9D$ Ht$HH$49HcL$J7H|$h)L$HHL$0HL)xRI9~UHcLHHL9RA<H<HH9D$0uL$L$HHyH H51H81S^Ld$Hr9,!+,!Ll$H,!H\$LLd$H9,!+!Ll$H+!H\$LHLA<5H$L$HMEAH|$@HIc<$tL$IHIHL$EAtLL$@IcHNIHD$EHAYAHL$@HHHHA4HcH@+!*!H*!<L$IHEA<AH H51H81\Ld$Hڍ*!*!Ll$H*!H\$LiH H51H81h\Ld$HN*!@*!/Ll$H,*!H\$LHL$ iH= H5^1H81
\Ld$H))!)!Ll$H)!H\$LHLH H51H81[Ld$Hʌ)!)!Ll$Ho)!H\$LYH H51H81X[Ld$Hw>)!0)!VLl$H)!H\$LHL$ HHt$H<9|$0vHLEJ<l$THL$XHH|$0HII4HL9HcHEL9	>A9<H;T$8f	HL$`H;T$(LAAKLD$p|$\l$TA<Ho H51H81<ZLd$H["(!(!Ll$H(!H\$LHL$ H H521H81YLd$H'!'!Ll$H'!H\$LH H51H81YLd$Hq'!c'!sLl$HO'!H\$L9Ht$ HH$,HU H5v1H81"YLd$HA'!&!Ll$H&!H\$LAHL$@H H51H81XLd$H&!&!Ll$H&!H\$LpH H51H81oXLd$HU&!G&!Ll$H3&!H\$LHO H5p1H81XLd$H;&!%!Ll$H%!H\$L$D$\IH$H
UHo%!HDŽ$H
HDŽ$P
L$
H$
H$x
LL$MIHSH$H
UH%!HDŽ$H
HDŽ$P
L$
H$
H$x
LSlH|$SHL$XH;D$(D$\HL$pH$Hc$D$\H|$0H H51H81VLd$H$!t$!~Ll$H`$!H\$LJIM>C9<IHL$8HH|$`HT$(LAAH8 H5Y1H81VLd$H$#!#!Ll$H#!H\$LHD$H5X#!Hx7uH$H
L$@
L=!!L9$
EL$@
I|$SWH$H$H$SH9tL=HLH$H$H$-SH1HDŽ$HDŽ$HDŽ$"!H"!"!GLd$Ll$H\$Ll$LLd$Hʅ"!"!4Ll$Ho"!H\$LYL9EqHLxx$EWHD$8H$:HL H5m1H81TLd$H8!!!!Ll$H!!H\$LH H51H81SLd$H!!!!QLl$H!!H\$LtHLd$s!!e!!TLl$HQ!!HD$LHD$6HDŽ$(^HDŽ$hHDŽ$
HDŽ$
HDŽ$HDŽ$Ld$Ll$Lt$LBH{ !HDŽ$H
HDŽ$P
H$
H$x
H,!H$
eH5  !I~qH$H
L$@
L=!L9$
I|$qPH`Ll$MLd$ !H !HD$ !VLHD$HDŽ$H7H$H$H$}PH9l$Ht$L=L]OH$H$H$OHHDŽ$HDŽ$HDŽ$N!H;!9!jLd$HD$E1Ll$LHD$H; H5\1H81QLd$H'!!Ll$H!H\$LH!!YH!gH H51H81PLd$Ht!f!Ll$HR!H\$L<H$HtH/uLH$HtH/uLH$HtH/uLH H5H8GNkH!HDŽ$H
HDŽ$P
H$
H$x
HL!H$
HӀ!!6H}!H$HtH/uLH$HtH/uKH$HtH/uKH H5H8zMHD$(H$(H+ H5L1H81NLd$H!!Ll$H!H\$LDf.AWAVAUATUSHHXH L=!HHD$0HD$8L|$@HD$H HFHr\HzHaHF8HD$L}0Le(Lm IEH5W!LI$NHHH5!1HLHHY	H+H58!HM	HMHQHHU H5!LQNHH
H5!1HdLHIH+H5!L:MIHQHIH!H=I!HAJHHH'LHI3IELh I$L`(JHIHH5i!LyMHHH5N!HLH}H+H H5[!LH;LLHMKHHD$O
HmI.I/ImH-&!H=G!H?IHHHH5!HLHIH+z
H5s!H|$LHHH5Ku1HSHIMGH+
JHHWLp ^IHIL-!H=!L|HHHHH5!HLzGHmLHLIHHD$I/H+I.H5n!H|$KHH^H5	!1]JHHn1HHIIHEHPHHUM@HHPHHIEHPHIUL;% L;%z u
L;%d 	H5!H|$JHHL-/ L9H5W!H|$JHIUL9L9l$HT$LHH+D$ IE1HHIHL$H;
 H;
 u	L9
LL$Hc|$ ~IFHILL$LL$YHHHLL$HL$Lx Ll$HHD$HHHK(fH
Y HHL$IH#zH5zH
zL
byHHOLOHPHf LDRH5¾HyH81HHy|!n!HZ!XZH
yH=B1hHXH[]A\A]A^A_@Ha HI,$If.HDjHDHI HD$H1 HD$H5A!HGt
HMHQHHUH5!H=	!1RFHH
L5 HxI6cCHC:
@-
1FFHItQ1HHEI/HuLCHt.H}I6BHH,CHmuH]CH+S
Hw!\!ZE1HD$H!@HD$CD$HCLD$BD$H^HIHHcHHF8HD$HHE0HD$@HE(HD$8HE HD$0LCHIYHHu&M~*H5!L%BH
HD$HIM
HD$HLl$0Ld$8L|$@HD$Y@Hvs![e!1E1HD$HJ!f.H
9!?!H=$5.!LL$leHD$LL$Ht}H1HL$HHHt/MtI)t<ImtDI,$LrADHLL$[ALL$@LHAImuL9A1@HuI![r!?E1HD$HW!E11fI.t:MtI/tGHH+HLL$@LL$DLLL$@LL$@LLL$@LL$@Hu![!BHD$H!HmQ1E1E1E1HLL$2@MLL$45L@FL@+L?H?1CHHHHJ@HmIlH?_LI?Ht!_!lE1HD$H!mDH{H>H(?HH5h!LI>HHD$0MH5!L>HtHD$8IMH5(!L>HKHD$@I8H4s!b!1E1HD$H!Hmu!LX>hHH>CHrI!_!zE1HD$Ho!1H=yHrK!_=!}LHD$H"!hD>H;`HH6r!b!E1HD$H!H`=.Hq!b!HD$H!Hq{!cm!1E1HD$HP!{H5
!H|$@HHQH5!H@HHeH+
H5!1H>HIHmH5O!H|$LL$ @HILL$ '	L- L9r	H5!H|$LL$ Q@HHLL$ 	L9
H5!LLL$ #@HHLL$ 	L9!H5!LLL$ ?HILL$ 
L9L9l$9LD$LHHLLL$(腰I.D$ LL$(xH+WHmuI/:LLL$(V;LL$(#@Ho!c!E1HD$Hz!DH;LL:bL:fH:LHdo+!c!1E1HD$H!+;H]HHHo!f!E1HD$Ll$H!gLX;mHn!i}!	Ll$E1Hf!!Hn[!fM!E1HD$Ll$H-!HTn![
!HHD$H
!;H H5H8:;D9HHLL$HD$Ll$HHm
!f
!E1HD$Hr
!Ll$#H8HmK
!f=
!E1HD$H"
!HTm
!f
!E1HD$Ll$H	!Hm	!f	!E1HD$H	!;DHLL$[9LL$.Hl	!u{	!	Ll$Hg	!"f+9LZHHD$Hyl@	!f2	!E1Ll$H	!HJl	!c	!E1HD$H!Hl!f!E1Ll$H!dHT$0LlH5 HL_Hk!{!Hg!
Hk]!gO!E1Ll$H8!HgkI+!g!	Ll$E1H!1E1H6LLL$(6LL$(OHp6,HHD$ ^6LL$ Hj!\!VE1HD$H!AHLL$(6LL$(L6LL$(vHLL$(5LL$(tHuj<!f.!Ll$E1HD$H!9H=j!j!	E1Ll$H!Hj!n!P	E1Ll$H!kHi!n!R	HLl$H!Hiw!ki!&	HLl$HR!H-!HHxH9BH82HCHM H5HP H H818H0i!j!	HLl$H!Hi!n!a	Ll$HH!_H-?!HHD$HxH9H7HD$HM H5dH@HP H H81S7Hwh>!l0!1	H!!HLl$1E1E1<H-!H.HxH9'Hg7IFHM H5ؤHP H H816Hg!k!(	H!s@Hg!o}!n	Ll$Hi!$Hg_!pQ!y	Ll$E1H:!H!HHxH9qHLL$ 6LL$ WIFHK H5LL$HP H H815LL$Hg!o!p	Ll$1E1H!OHEHf!q!	Ll$E1Hl!H-!HHxH9HLL$ 5LL$ HCHM H5)LL$HP H H815LL$H6f!p!{	Ll$E1H!Hf!x!	Ll$H!gHe!v!	Ll$H!;Hev!vh!	HY!HeO!rA!	Ll$H-!XH5!HxLL$ SLL$ H:e!q!	Ll$E1H!HD$H5s!LL$ HxMSLL$ Hd!s!	Ll$H!@H5!!HxLL$ RLL$ CHdY!rK!	Ll$H7!bH H5dH8|1Hh H5cLL$H8\1LL$"H HMH5PHH812H H5cH81H H5cH80UH H5lcLL$H80LL$qHl$-H`HE1AWAVAUATIUSH8HHt$A	HBLrHD$ IEH H=A!H9/HHU	H1HI	IELh ILp(/HH	
H H5 H-3
HLH0HHD$O
HmI/H+ImH5 H|$2HI0
H0@1L-HHI,$7HC^Hv-HcLcH9'A}H+H- H= H-HHHH5F H^1HIH+L-HIHD$/HILT$$LP ;.HHWH H=a HHD$T-HHHH5 HHR,HmHLL.HHD$I,$I/H+lHD$H; 	H H= H,HHx	HH5 H-0HHHmvLN,HIh.HIL` -HHL- H=9 L1,HI
HH5 LH/+yI,$
HLH-HIH+(
I/
Hm#
L;%Ļ H5 H|$5/HIH5 HD$(1.HHLT$(
1LHLT$(-HHLT$(HPHHCHIHPHI'
HEHPHHU
H5s L.HIH5 HD$(1_-HHLT$(1LHLT$(|,HHLT$(HPHHHIHPHIHEHPHHUL;5 L;5o u
L;5Y `	H\$HCH53 1H,cH`*‰H9H5+ H|$i-HIFH;ι H5 H|$LT$:-HHLT$H; HL$LMHLT$qLT$AI*HEE1HHHEHL$ H;
| H;
B u
H;
, 
LT$D6,HHLT$H HLT$H~+H+HLT$HH|$HLT$(HmHLT$u
H
(LT$HLT$}*HHLT$|HX I$L`(HL$MHIHD$HHH@LLT$'LT$`1I+HHHL(HmHH\'LH'H+6H6'Im.!fH'I/@L'H&\H&L&mL&SHL[ L BE1E1E1H DMtI,$H
  H=45 LT$JMLT$I1HHIMtImtUMtI*t:HD$HHQHL$HHuH%H8H[]A\A]A^A_L%fDLLT$%LT$@LLT$%LT$)1hfHY HD$ I@Lp%H`%HP%#s&HGHHYLl$ Kz $E1E1He E1DHYLl$N K@ &E11H, E1E1E1Hmu E1HLT$$MLT$tI/t,HH+HLT$|$LT$fLLT$c$LT$@HX K .H Ll$E1E1E1E1Hmx\DHXLl$f KX 0E1E1HC E1E1HlX3 K% 1H {HDX L @E1E1E1H Hx#}Hh#LT$(fDHP#LT$(5fDHA H
HD$HxH9H&HD$HK H5fH@HP H H81U&HyW@ N2 gHl$E11H E1E1E1#H+EHH&W O rE1Lt$E1H HX"sLH"NL% L9tH$h%HuH; H5VH8#@%HInHVF L8 EE1E1E1H  E1%"H3DHH.V N PE1E1E1H f.HH H5H8#;HU N RE1E1E1Hm uHU[ NM UE1E1H8 KHdUL( N WE1E1H E1
DL HU N \E1E1H E1H5	 H|$_$HI
H5 HHD$(?$HILT$(	I*H5u 1LC"HI	I/H\$HC
H5` 1HLT$#LT$H ALT$H9gA
H5G H|$LT$#HHLT$/
H; &H5 H|$LT$L#HILT$
H; H5 LLT$#HHLT$HH;z &H5 LLT$"HILT$H;H |LT$HHATLL$(LDMHvYAHEHHEHZYLT$I/H+I.LLT$<LT$zfL(HH+H|$@HH1HyR@ N2 ^E1E1H XHDR N bE1E1H #HxLhHQ O tE1E1Lt$H E1hL@`HQs Se MLt$E1HK nfDHtQ; O- wE1Lt$E1H fDc HHLT$teH' HLT$HH+ILT$Mt7H|$LLT$ImHLT$u
L?LT$HbHP a~ |
MLt$Hg fHPLX OJ yE1E1H5 Lt$E1HTP O
 ~Lt$E1E1H .fDL>HIHP O MLt$E1H DHO O E1Lt$E1Hk fDHLT$LT$[HzOA ^3 Q
MLt$H ?HKO N `E1E1E1H bH HI|$H9CHA3ID$HK H5HP Hf H81HN O Lt$E1E1Hg zHN] PO MLt$H8 [HgN. P  H LMLt$E11E1H-N Q MLt$H HM Q H L>5HLT$,LT$jLELHD$(LT$(!HMY OK Lt$E1E1H1 gHhHLT$LT$OLLT$LT$.HLT$HqLT$H_LT$HL _ \
MLt$H HL Xs MLt$H\ HLR UD MLt$H- PH; tH|$HHuHħ H5LH8M(H HL T MLt$E1H HKM UM Lt$H{ E1H- H2HxH9HHD$LT$IBHM H55HP H H81(LT$HGKM UM Lt$H E1HKM XM 
Lt$H E1HJM X 
Lt$E1H| 1H~ H5OH8mL- MnHxI9LLT$LT$HEIM H5HP Hѥ H81LT$H.JM UM Lt$H 1E1H H5IH8
`HH H5EH8HI{ Zm &
MLt$HV yH;: tH|$LT$(LT$(iLT$bHLT$uH٤ H5!IH8bLT$LT$A-HLT$	HI Y 
MLt$H HHM Z )
1E1H Lt$YH5 HxLT$6LT$HHMR ZD (
Lt$E1H- 1H/ H5LT$H8kLT$H5HM [ 4
E1Lt$H JH5p HxLT$J6LT$?HGM Z +
Lt$E1H 1HvHx H5LT$H8LT$MH~GMB [I1 7
1H  Lt$H5 HxLT$5LT$H(GM [I 6
Lt$H 1;HFM _ ^
Lt$E1H H5/ HxLT$	5LT$bHFMd [IS 9
LHA Lt$H H5FH8H4HIL- M9oLu;tsL_HcLcH9u1I/LbL;HIIH@Ht`H H5H8I/IL9tLHuH H5^EH8xHtHD$H} H5EH8vLT$GHcLT$/HLT$rH- H5DLT$H8!LT$LHHDL9hu<HEJHHcLcH9u-HmHHi:HHuHNHK H5H8II-H|$4HHH H9Eu"H:Hm#H~H9HHH|$HHLT$(|H H9Cu1HLT$:H+ALT$HLT$HLT$m9HHLT$OHL9tHtPlHH H5,CIH8iHH/HHHItL9hu#LCI,$Lc<LM/H8HIugAUATUSHH8H HHD$HD$HD$ HD$(GHVHHHHxBH
zBHH5LL
BHNHRHoBLDH H81HB  

H XZH
AH="01H8[]A\A]HF8HS0Hs(H{ H\$HT$HD$HD$ HuH
AH=ƆHD$I H
6 4 w0HD$wDHHnHIHlIHcHHF8HD$(HC0HD$ HC(HD$HC HD$Ll
HI~]HHu&M~*H5Y LHHD$(IMH|$Ht$H\$HT$ HD$(HuH5< LIHHD$H5 LHHD$tqIM~H5 LiHXHD$ IEH\$LF@H5 HLH3H|$Ht$HT$ HD$(Ha HH
?jH5L
?@H?AH81wH?b T 
YHD ^
yHSHd?+  

H	 DHff.AWAVAUATUSHH8L%H HHD$HD$Ld$ HFHHLv0Hu(L} Hl$HLD$Lt$Ld$ "HHfH@H;c H2H;+ %HHVH+HEHHHIsHHI<HH|>HmHu	H%H@H>H
>HH5ׂL
a>HNHPHU LBH>H81H=p {b G
G
HN XZH
=H={1,H8H[]A\A]A^A_+H1HHI;HHI2H+H H= HHH>HHL$
HHHL$bILx 1I$L`(HIHLp0HL$W
HHHL$VHm+H)Imt/I,$LfM|I1LMufHH^IHt(HtHHF0HD$ HE(HD$HE HD$LJHIHHM)Hl$L;H5 HLH`/L|$Ht$Lt$ @HHHL$HL$fH4;  l
E1H H
  H=5 	*HH+1H5 LHHD$SIM~*H5 LHHD$ I@L|$Ht$Hl$Lt$ "Hx1H9H
:HH5HDHHޕ H81H :  t
H *H9  
H H+E1H)MrImui11LHL$HL$HB1E1H)t/HnHmcHVL1E1fDHfDE11.fDH H5"|H81H9  
H H+H8  
H CH&HHH8Z L 
LH: ]DHd8+  
H LfDH48  
H @H5 LI5HHD$HEfDH@q1HmHH:8H
7HH5}HHEHA H81_H7J < 
H- H HH
`7jH5=|L
7H7AH81H#7 { +
YH ^+
uHOImH6  
LH I,$A1E1H H86Hx6? {1 5
5
H E11H
 
 H={5 1=%AWAVAUATIUSHHHHt$0HBLbHD$8IEH H= HHIHHIkIELh I$L`(LHHH H5" H2
HLLHHD$n
I.<	I/
	H+	Im5	H5 H|$HHP
HH1HfHHB	Hm
HCHHcLcH9A5H+
H-d H= H}HHqHH5 HHHH+
LHH*HIHX HH9HR H= HHD$HIHH5O LHI.HLHlHHD$HmI/H+HP H=q HiHI
HH5 LHHI.LHHHI
Hh HIEH> H= HHD$HHHH5; HL9Hm
LLHWHHD$H+I/I.
H< H=] HUHHHH5 HHI&HmLHHCHIhHh HHH) H= HHD$ HHHH5& HHH+
HLLCHHD$ 
I.I/HmH-' H=H H@HHHH5Y HHHEH+{LHHtHIHX HHL- H= LHIHH5 LHI.0HLH4HHD$(HmTI/dH+MH5 H|$HHH5C 1HH1HHIHEHPHHUuHRMHHPHHBIEHPHIU H5 H|$0HHH5 1HH1HH(IHEHPHHUuHMHHPHHIEHPHIU~H5| H|$ HHrH5 1kHH}1HHIHEHPHHUuH&MKHHPHH}IEHPHIUL;% L;% u
L;%n PH\$0HCH5H 1HHu‰H9H5@ H|$~HIL- L9H5 H|$QHHL9L9l$sL9l$"L9l$ L9l$(HHLt$0LL$0LD$(HL$^D$@IHHIZY'HE1HHHHt$8H;5a H;5' u	L9|$0#HHLHLyHmHHH|$HH+HuHHHHHh HD$HHC(`1HIHHJImHYLLLH+H~ImLhI/@LPL@H0(H ,LH+c U HF E1HD$(HD$ HD$HD$HtHm8H
  H=p5 17H|$tHL$HHD$0HHHHL$HtHHD$HHHHL$ HtHHD$HHHtrHt$(HtHHD$HHHtdMtI,$thHT$HHD$HHHuHHHH[]A\A]A^A_DHsHfDHfDLfDHxHhH) HD$8I@H@H0(H cCHHH)] O E1HD$(HD$ H+ HD$HD$Ll$H<)  11HD$(H HD$ HD$HD$Ll$IE1HHIuE1L<MtI/t!HpH+fHYLfDH([ M H> 1E1HD$(HD$ HD$HD$Ll$I.o]H4(  Ll$1H E1HD$(HD$ HD$HD$fDH'  H CH'{ m H^ E1HD$(HD$ HD$HD$*fLHCHJH>'  E1HD$(HD$ H HD$DHXRH&  41E1HD$(H nfDL-a L9tH
HuH H5[&H8@sHIHW&  E1HD$(HD$ H HD$1HD$BHHH%  H 5HH H5hH83H%c U HF E1HD$(HD$ HD$HD$f.HD%  H fH%  H sfHH.H$  E1HD$(HD$ Hi HD$HD$fLLHH|$AHHD$ cH7$  E1HD$(HD$H HD$'fDH#  E1HD$(HD$ H HD$HtH#[ M 1HD$(HD$ H* HD$c@HL#  E1HD$(HD$ H HD$BH#Iȿ  1HD$(H HD$ HD$fH"{ m 
E1HD$(HD$ HI HD$1fLLHH|$!HHD$H5"޾ о HE1HD$(H5 HD$ @H!  1E1HD$(Hp HD$ RfHxHsHH"Hk!2 $ "E1HD$(HD$ H H/!  Hٽ H!Ͻ  $E1HD$(HD$ H H   '1HD$(HD$ Hb H X J )1HD$(HD$ H' iLHI   .1E1HD$(H HD$ HoHbLU{H|$ 
HHD$ H5  0HE1HD$(H5b MH5 H|$HH H5 HHIHmH5+ 1LHIw	I/H\$0HC	H5{ 1H	DHC‰D$0H9|$0y	H5
 H|$HHHL-z L9H5չ H|$HIL9{H5 LHI7L9
H5 LHH
L9L9l$L9l$
L9l$ L9l$(BHILt$0t$0Lt$0LL$(Hދ|$P8;D$PHH HHHI/I.HmqHdLHH{B 4 E1HD$(HD$ H HD$H%H<H  ٹ CE1HD$(H H%nfDH  EE1HD$(Hr LuHSHN @ HE1HD$(H% HT 
 JE1HD$(H \HvLH˸ 
 E1H L>DH  OE1HD$(Hk 1L	HHD$(HF 8 QE1H& |HHtHLHLH+HHt(H|$HHmHuHuHHǷ  H H  UE1H Hv h 2E1HD$(HD$ HD /Hs: 	, dE1H 
HI 	 rE11H XHH
Զ ƶ cH H 
 ~E1H H 
u E11Ha HW I E1H7 *Hf-  E11H uHLLHwH͵  SE1HD$(H HHI/H-t I9oHu:LHcLcH9u1I/LLIHIH@H:H&t H5o[H8gI/IHH?Hմ Ǵ nH LK-L>H1L9tLKHbH*s H5rH8GHIF 8 11H% gHT 
 E1H H5 Hxv<Hٳ ˳ 11H H  E1H H;rr tH|$0HuH%r H5mH8HnHq8 * E1H Hr H5TH8]H/  1Hײ H Hq H5rTH8_H  $H ~H s 11H` H;Dq tH|$0{HuHp H5?H8[HD$0qH>  H HHD$(H5l HxKcH  1H HD$ H5& HxHh Z 1HI HD$H5 HxH["  1H EHD$H5 HxypHܰ ΰ 1H H5Y Hx8$H  1H| Ho H5QRH8<HW I 5H: %H5֯ HxHQ 
 41H H(  21HЯ 4H5l HxKmH  )1H H w '1Hf H5 HxH}D 6 &1H% H/Hn H5PH8`HD$ H5 HxvHٮ ˮ JH H  pH xHD$(H5, HxHn ` KHQ <HD$H5 Hx<Hc*  @H
 H5 HxH$ ݭ 7Hέ HD$H5e HxDH  AH uH|$0HHHhl H9Cu!HH+vHiHIHHuLDHIH9hu;IFLyHcLcH9u,I.L|HHIuHt0Hk H5SH8ILt$ Lt$(HtIL9tLt)HuHk H5fIH8PLVHHtH9hu,HHL$NHL$LcH)HHHHuA"HH\$ EHl$&IHsHHGH|$0HH?Hxj H9Cu#HH+D$0HHWHHuf.AUATUSHH8Hj HHD$HD$HD$ HD$(GHVHHHHH
HH5RL
vHNHRH6LDH[i H81H
 v Hb XZH

H=ZS1H8[]A\A]HF8HS0Hs(H{ H\$HT$HD$HD$ )HuH
8
H=R%HD$ H
֩ ԩ %HD$wDHHnHIH HcHHF8HD$(HC0HD$ HC(HD$HC HD$LHI~]HHu&M~*H5 LHHD$(IMH|$Ht$H\$HT$ HD$(HuH5ܧ LIHHHD$H5K L+HHD$tqIM~H5Q L	HXHD$ IEH\$L
H5 HLHqH|$Ht$HT$ HD$(Hg HH
xjH5UPL
HAH81H;  YH ^yHSH˧  H DHff.AWAVAUATUSHH8L%f HHD$HD$Ld$ HFHHLv0Hu(L} Hl$HLD$Lt$Ld$ 2HHfH@H;f H2H;e %@HHVH+HEHHHIsHHI<HHH>HmHH%H@H	H
	HH5wNL

HNHPHd LBH	H81%HI	  @@H XZH
 	H=O1"H8H[]A\A]A^A_H1HgHI;HNHI2H+HI H= HHH>HHL$sHHHL$bILx 1I$L`(HIHLp0HL$HHHL$VHm+H)Imt/I,$LgfM|I1LCMufH(H^IHt(HtHHF0HD$ HE(HD$HE HD$LHIHHM)Hl$LH5 HLHL|$Ht$Lt$ @HhHHL$SHL$fH  eE1H{ H
q w H=L5f HH+1H5 LHHD$SIM~*H5 LsHHD$ I@L|$Ht$Hl$Lt$ "Hx1H]H
pHH5LKHDHH~a H81H y mHj *H[ M zH> H+E1HMrImui11LHL$HL$HB1E1H)t/HnHmcHsVL1E1fDHXfDE11.fDH` H5GH81Hy k H\ H+HG 9 |H* H;HHH3  LHڠ ]DHˠ  H LfDH  H~ @H5i LIHHD$HEfDHq1HmiHHH
HH5HHHEH^ H81H# ܟ H͟ H^ HH
jH5GL
gHHAH81H | $YHl ^$uHImHy@ 2 LH  I,$A1E1H&^ H8Hߞ ў ..H E11H
  H=G5 1HH'char''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''float''double''long double'a structPython objecta pointera stringendunparseable format string'complex long double''complex double''complex float'name '%U' is not definedMissing type objectcannot import name %S%s (%s:%d)an integer is requiredbuffer dtype_traversal.pyxat leastat mostconnected_componentsbreadth_first_orderbreadth_first_treedepth_first_orderdepth_first_tree%d.%d%sbuiltinscython_runtime__builtins____init__.pxdtype.pxdnumpyflatiterbroadcastndarrayufuncparameters.pxi_traversalITYPE_t00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00HP00`000p0p                                  TDDDTDp````p``xxxxxxxxxxxxxxxx(PȶFormat string allocated too short.scipy.sparse.csgraph._validationnumpy.core.umath failed to importndarray is not Fortran contiguousconnection must be 'weak' or 'strong'Non-native byte order not supportedFormat string allocated too short, see comment in numpy.pxdunknown dtype code in numpy.pxd (%d)scipy.sparse.csgraph._traversalnumpy.core.multiarray failed to import
    depth_first_tree(csgraph, i_start, directed=True)

    Return a tree generated by a depth-first search.

    Note that a tree generated by a depth-first search is not unique:
    it depends on the order that the children of each node are searched.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the compressed sparse graph.  The input
        csgraph will be converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].

    Returns
    -------
    cstree : csr matrix
        The N x N directed compressed-sparse representation of the depth-
        first tree drawn from csgraph, starting at the specified node.

    Examples
    --------
    The following example shows the computation of a depth-first tree
    over a simple four-component graph, starting at node 0::

         input graph           depth first tree from (0)

             (0)                         (0)
            /   \                           \
           3     8                           8
          /       \                           \
        (3)---5---(1)               (3)       (1)
          \       /                   \       /
           6     2                     6     2
            \   /                       \   /
             (2)                         (2)

    In compressed sparse representation, the solution looks like this:

    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import depth_first_tree
    >>> X = csr_matrix([[0, 8, 0, 3],
    ...                 [0, 0, 2, 5],
    ...                 [0, 0, 0, 6],
    ...                 [0, 0, 0, 0]])
    >>> Tcsr = depth_first_tree(X, 0, directed=False)
    >>> Tcsr.toarray().astype(int)
    array([[0, 8, 0, 0],
           [0, 0, 2, 0],
           [0, 0, 0, 6],
           [0, 0, 0, 0]])

    Note that the resulting graph is a Directed Acyclic Graph which spans
    the graph.  Unlike a breadth-first tree, a depth-first tree of a given
    graph is not unique if the graph contains cycles.  If the above solution
    had begun with the edge connecting nodes 0 and 3, the result would have
    been different.
    
    depth_first_order(csgraph, i_start, directed=True, return_predecessors=True)

    Return a depth-first ordering starting with specified node.

    Note that a depth-first order is not unique.  Furthermore, for graphs
    with cycles, the tree generated by a depth-first search is not
    unique either.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N compressed sparse graph.  The input csgraph will be
        converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].
    return_predecessors : bool, optional
        If True (default), then return the predecesor array (see below).

    Returns
    -------
    node_array : ndarray, one dimension
        The depth-first list of nodes, starting with specified node.  The
        length of node_array is the number of nodes reachable from the
        specified node.
    predecessors : ndarray, one dimension
        Returned only if return_predecessors is True.
        The length-N list of predecessors of each node in a depth-first
        tree.  If node i is in the tree, then its parent is given by
        predecessors[i]. If node i is not in the tree (and for the parent
        node) then predecessors[i] = -9999.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import depth_first_order

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [2, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)	1
      (0, 2)	2
      (1, 3)	1
      (2, 0)	2
      (2, 3)	3

    >>> depth_first_order(graph,0)
    (array([0, 1, 3, 2], dtype=int32), array([-9999,     0,     0,     1], dtype=int32))

    
    connected_components(csgraph, directed=True, connection='weak',
                         return_labels=True)

    Analyze the connected components of a sparse graph

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the compressed sparse graph.  The input
        csgraph will be converted to csr format for the calculation.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
Loading ...