# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# Jake Vanderplas <vanderplas@astro.washington.edu>
# License: BSD
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import assert_allclose, assert_array_almost_equal
from pytest import raises as assert_raises
from scipy import sparse
from scipy.sparse import csgraph
def _explicit_laplacian(x, normed=False):
if sparse.issparse(x):
x = x.todense()
x = np.asarray(x)
y = -1.0 * x
for j in range(y.shape[0]):
y[j,j] = x[j,j+1:].sum() + x[j,:j].sum()
if normed:
d = np.diag(y).copy()
d[d == 0] = 1.0
y /= d[:,None]**.5
y /= d[None,:]**.5
return y
def _check_symmetric_graph_laplacian(mat, normed):
if not hasattr(mat, 'shape'):
mat = eval(mat, dict(np=np, sparse=sparse))
if sparse.issparse(mat):
sp_mat = mat
mat = sp_mat.todense()
else:
sp_mat = sparse.csr_matrix(mat)
laplacian = csgraph.laplacian(mat, normed=normed)
n_nodes = mat.shape[0]
if not normed:
assert_array_almost_equal(laplacian.sum(axis=0), np.zeros(n_nodes))
assert_array_almost_equal(laplacian.T, laplacian)
assert_array_almost_equal(laplacian,
csgraph.laplacian(sp_mat, normed=normed).todense())
assert_array_almost_equal(laplacian,
_explicit_laplacian(mat, normed=normed))
def test_laplacian_value_error():
for t in int, float, complex:
for m in ([1, 1],
[[[1]]],
[[1, 2, 3], [4, 5, 6]],
[[1, 2], [3, 4], [5, 5]]):
A = np.array(m, dtype=t)
assert_raises(ValueError, csgraph.laplacian, A)
def test_symmetric_graph_laplacian():
symmetric_mats = ('np.arange(10) * np.arange(10)[:, np.newaxis]',
'np.ones((7, 7))',
'np.eye(19)',
'sparse.diags([1, 1], [-1, 1], shape=(4,4))',
'sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense()',
'np.asarray(sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense())',
'np.vander(np.arange(4)) + np.vander(np.arange(4)).T')
for mat_str in symmetric_mats:
for normed in True, False:
_check_symmetric_graph_laplacian(mat_str, normed)
def _assert_allclose_sparse(a, b, **kwargs):
# helper function that can deal with sparse matrices
if sparse.issparse(a):
a = a.toarray()
if sparse.issparse(b):
b = a.toarray()
assert_allclose(a, b, **kwargs)
def _check_laplacian(A, desired_L, desired_d, normed, use_out_degree):
for arr_type in np.array, sparse.csr_matrix, sparse.coo_matrix:
for t in int, float, complex:
adj = arr_type(A, dtype=t)
L = csgraph.laplacian(adj, normed=normed, return_diag=False,
use_out_degree=use_out_degree)
_assert_allclose_sparse(L, desired_L, atol=1e-12)
L, d = csgraph.laplacian(adj, normed=normed, return_diag=True,
use_out_degree=use_out_degree)
_assert_allclose_sparse(L, desired_L, atol=1e-12)
_assert_allclose_sparse(d, desired_d, atol=1e-12)
def test_asymmetric_laplacian():
# adjacency matrix
A = [[0, 1, 0],
[4, 2, 0],
[0, 0, 0]]
# Laplacian matrix using out-degree
L = [[1, -1, 0],
[-4, 4, 0],
[0, 0, 0]]
d = [1, 4, 0]
_check_laplacian(A, L, d, normed=False, use_out_degree=True)
# normalized Laplacian matrix using out-degree
L = [[1, -0.5, 0],
[-2, 1, 0],
[0, 0, 0]]
d = [1, 2, 1]
_check_laplacian(A, L, d, normed=True, use_out_degree=True)
# Laplacian matrix using in-degree
L = [[4, -1, 0],
[-4, 1, 0],
[0, 0, 0]]
d = [4, 1, 0]
_check_laplacian(A, L, d, normed=False, use_out_degree=False)
# normalized Laplacian matrix using in-degree
L = [[1, -0.5, 0],
[-2, 1, 0],
[0, 0, 0]]
d = [2, 1, 1]
_check_laplacian(A, L, d, normed=True, use_out_degree=False)
def test_sparse_formats():
for fmt in ('csr', 'csc', 'coo', 'lil', 'dok', 'dia', 'bsr'):
mat = sparse.diags([1, 1], [-1, 1], shape=(4,4), format=fmt)
for normed in True, False:
_check_symmetric_graph_laplacian(mat, normed)