"""Sparse DIAgonal format"""
from __future__ import division, print_function, absolute_import
__docformat__ = "restructuredtext en"
__all__ = ['dia_matrix', 'isspmatrix_dia']
import numpy as np
from .base import isspmatrix, _formats, spmatrix
from .data import _data_matrix
from .sputils import (isshape, upcast_char, getdtype, get_index_dtype,
get_sum_dtype, validateaxis, check_shape, matrix)
from ._sparsetools import dia_matvec
class dia_matrix(_data_matrix):
"""Sparse matrix with DIAgonal storage
This can be instantiated in several ways:
dia_matrix(D)
with a dense matrix
dia_matrix(S)
with another sparse matrix S (equivalent to S.todia())
dia_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N),
dtype is optional, defaulting to dtype='d'.
dia_matrix((data, offsets), shape=(M, N))
where the ``data[k,:]`` stores the diagonal entries for
diagonal ``offsets[k]`` (See example below)
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of nonzero elements
data
DIA format data array of the matrix
offsets
DIA format offset array of the matrix
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import dia_matrix
>>> dia_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],
[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])
"""
format = 'dia'
def __init__(self, arg1, shape=None, dtype=None, copy=False):
_data_matrix.__init__(self)
if isspmatrix_dia(arg1):
if copy:
arg1 = arg1.copy()
self.data = arg1.data
self.offsets = arg1.offsets
self._shape = check_shape(arg1.shape)
elif isspmatrix(arg1):
if isspmatrix_dia(arg1) and copy:
A = arg1.copy()
else:
A = arg1.todia()
self.data = A.data
self.offsets = A.offsets
self._shape = check_shape(A.shape)
elif isinstance(arg1, tuple):
if isshape(arg1):
# It's a tuple of matrix dimensions (M, N)
# create empty matrix
self._shape = check_shape(arg1)
self.data = np.zeros((0,0), getdtype(dtype, default=float))
idx_dtype = get_index_dtype(maxval=max(self.shape))
self.offsets = np.zeros((0), dtype=idx_dtype)
else:
try:
# Try interpreting it as (data, offsets)
data, offsets = arg1
except Exception:
raise ValueError('unrecognized form for dia_matrix constructor')
else:
if shape is None:
raise ValueError('expected a shape argument')
self.data = np.atleast_2d(np.array(arg1[0], dtype=dtype, copy=copy))
self.offsets = np.atleast_1d(np.array(arg1[1],
dtype=get_index_dtype(maxval=max(shape)),
copy=copy))
self._shape = check_shape(shape)
else:
#must be dense, convert to COO first, then to DIA
try:
arg1 = np.asarray(arg1)
except Exception:
raise ValueError("unrecognized form for"
" %s_matrix constructor" % self.format)
from .coo import coo_matrix
A = coo_matrix(arg1, dtype=dtype, shape=shape).todia()
self.data = A.data
self.offsets = A.offsets
self._shape = check_shape(A.shape)
if dtype is not None:
self.data = self.data.astype(dtype)
#check format
if self.offsets.ndim != 1:
raise ValueError('offsets array must have rank 1')
if self.data.ndim != 2:
raise ValueError('data array must have rank 2')
if self.data.shape[0] != len(self.offsets):
raise ValueError('number of diagonals (%d) '
'does not match the number of offsets (%d)'
% (self.data.shape[0], len(self.offsets)))
if len(np.unique(self.offsets)) != len(self.offsets):
raise ValueError('offset array contains duplicate values')
def __repr__(self):
format = _formats[self.getformat()][1]
return "<%dx%d sparse matrix of type '%s'\n" \
"\twith %d stored elements (%d diagonals) in %s format>" % \
(self.shape + (self.dtype.type, self.nnz, self.data.shape[0],
format))
def _data_mask(self):
"""Returns a mask of the same shape as self.data, where
mask[i,j] is True when data[i,j] corresponds to a stored element."""
num_rows, num_cols = self.shape
offset_inds = np.arange(self.data.shape[1])
row = offset_inds - self.offsets[:,None]
mask = (row >= 0)
mask &= (row < num_rows)
mask &= (offset_inds < num_cols)
return mask
def count_nonzero(self):
mask = self._data_mask()
return np.count_nonzero(self.data[mask])
def getnnz(self, axis=None):
if axis is not None:
raise NotImplementedError("getnnz over an axis is not implemented "
"for DIA format")
M,N = self.shape
nnz = 0
for k in self.offsets:
if k > 0:
nnz += min(M,N-k)
else:
nnz += min(M+k,N)
return int(nnz)
getnnz.__doc__ = spmatrix.getnnz.__doc__
count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__
def sum(self, axis=None, dtype=None, out=None):
validateaxis(axis)
if axis is not None and axis < 0:
axis += 2
res_dtype = get_sum_dtype(self.dtype)
num_rows, num_cols = self.shape
ret = None
if axis == 0:
mask = self._data_mask()
x = (self.data * mask).sum(axis=0)
if x.shape[0] == num_cols:
res = x
else:
res = np.zeros(num_cols, dtype=x.dtype)
res[:x.shape[0]] = x
ret = matrix(res, dtype=res_dtype)
else:
row_sums = np.zeros(num_rows, dtype=res_dtype)
one = np.ones(num_cols, dtype=res_dtype)
dia_matvec(num_rows, num_cols, len(self.offsets),
self.data.shape[1], self.offsets, self.data, one, row_sums)
row_sums = matrix(row_sums)
if axis is None:
return row_sums.sum(dtype=dtype, out=out)
if axis is not None:
row_sums = row_sums.T
ret = matrix(row_sums.sum(axis=axis))
if out is not None and out.shape != ret.shape:
raise ValueError("dimensions do not match")
return ret.sum(axis=(), dtype=dtype, out=out)
sum.__doc__ = spmatrix.sum.__doc__
def _mul_vector(self, other):
x = other
y = np.zeros(self.shape[0], dtype=upcast_char(self.dtype.char,
x.dtype.char))
L = self.data.shape[1]
M,N = self.shape
dia_matvec(M,N, len(self.offsets), L, self.offsets, self.data, x.ravel(), y.ravel())
return y
def _mul_multimatrix(self, other):
return np.hstack([self._mul_vector(col).reshape(-1,1) for col in other.T])
def _setdiag(self, values, k=0):
M, N = self.shape
if values.ndim == 0:
# broadcast
values_n = np.inf
else:
values_n = len(values)
if k < 0:
n = min(M + k, N, values_n)
min_index = 0
max_index = n
else:
n = min(M, N - k, values_n)
min_index = k
max_index = k + n
if values.ndim != 0:
# allow also longer sequences
values = values[:n]
if k in self.offsets:
self.data[self.offsets == k, min_index:max_index] = values
else:
self.offsets = np.append(self.offsets, self.offsets.dtype.type(k))
m = max(max_index, self.data.shape[1])
data = np.zeros((self.data.shape[0]+1, m), dtype=self.data.dtype)
data[:-1,:self.data.shape[1]] = self.data
data[-1, min_index:max_index] = values
self.data = data
def todia(self, copy=False):
if copy:
return self.copy()
else:
return self
todia.__doc__ = spmatrix.todia.__doc__
def transpose(self, axes=None, copy=False):
if axes is not None:
raise ValueError(("Sparse matrices do not support "
"an 'axes' parameter because swapping "
"dimensions is the only logical permutation."))
num_rows, num_cols = self.shape
max_dim = max(self.shape)
# flip diagonal offsets
offsets = -self.offsets
# re-align the data matrix
r = np.arange(len(offsets), dtype=np.intc)[:, None]
c = np.arange(num_rows, dtype=np.intc) - (offsets % max_dim)[:, None]
pad_amount = max(0, max_dim-self.data.shape[1])
data = np.hstack((self.data, np.zeros((self.data.shape[0], pad_amount),
dtype=self.data.dtype)))
data = data[r, c]
return dia_matrix((data, offsets), shape=(
num_cols, num_rows), copy=copy)
transpose.__doc__ = spmatrix.transpose.__doc__
def diagonal(self, k=0):
rows, cols = self.shape
if k <= -rows or k >= cols:
raise ValueError("k exceeds matrix dimensions")
idx, = np.nonzero(self.offsets == k)
first_col, last_col = max(0, k), min(rows + k, cols)
if idx.size == 0:
return np.zeros(last_col - first_col, dtype=self.data.dtype)
return self.data[idx[0], first_col:last_col]
diagonal.__doc__ = spmatrix.diagonal.__doc__
def tocsc(self, copy=False):
from .csc import csc_matrix
if self.nnz == 0:
return csc_matrix(self.shape, dtype=self.dtype)
num_rows, num_cols = self.shape
num_offsets, offset_len = self.data.shape
offset_inds = np.arange(offset_len)
row = offset_inds - self.offsets[:,None]
mask = (row >= 0)
mask &= (row < num_rows)
mask &= (offset_inds < num_cols)
mask &= (self.data != 0)
idx_dtype = get_index_dtype(maxval=max(self.shape))
indptr = np.zeros(num_cols + 1, dtype=idx_dtype)
indptr[1:offset_len+1] = np.cumsum(mask.sum(axis=0))
indptr[offset_len+1:] = indptr[offset_len]
indices = row.T[mask.T].astype(idx_dtype, copy=False)
data = self.data.T[mask.T]
return csc_matrix((data, indices, indptr), shape=self.shape,
dtype=self.dtype)
Loading ...