"""Iterative methods for solving linear systems"""
from __future__ import division, print_function, absolute_import
__all__ = ['bicg','bicgstab','cg','cgs','gmres','qmr']
import warnings
import numpy as np
from . import _iterative
from scipy.sparse.linalg.interface import LinearOperator
from .utils import make_system
from scipy._lib._util import _aligned_zeros
from scipy._lib._threadsafety import non_reentrant
_type_conv = {'f':'s', 'd':'d', 'F':'c', 'D':'z'}
# Part of the docstring common to all iterative solvers
common_doc1 = \
"""
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}"""
common_doc2 = \
"""b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).
Returns
-------
x : {array, matrix}
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : illegal input or breakdown
Other Parameters
----------------
x0 : {array, matrix}
Starting guess for the solution.
tol, atol : float, optional
Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
The default for ``atol`` is ``'legacy'``, which emulates
a different legacy behavior.
.. warning::
The default value for `atol` will be changed in a future release.
For future compatibility, specify `atol` explicitly.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the
inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
"""
def _stoptest(residual, atol):
"""
Successful termination condition for the solvers.
"""
resid = np.linalg.norm(residual)
if resid <= atol:
return resid, 1
else:
return resid, 0
def _get_atol(tol, atol, bnrm2, get_residual, routine_name):
"""
Parse arguments for absolute tolerance in termination condition.
Parameters
----------
tol, atol : object
The arguments passed into the solver routine by user.
bnrm2 : float
2-norm of the rhs vector.
get_residual : callable
Callable ``get_residual()`` that returns the initial value of
the residual.
routine_name : str
Name of the routine.
"""
if atol is None:
warnings.warn("scipy.sparse.linalg.{name} called without specifying `atol`. "
"The default value will be changed in a future release. "
"For compatibility, specify a value for `atol` explicitly, e.g., "
"``{name}(..., atol=0)``, or to retain the old behavior "
"``{name}(..., atol='legacy')``".format(name=routine_name),
category=DeprecationWarning, stacklevel=4)
atol = 'legacy'
tol = float(tol)
if atol == 'legacy':
# emulate old legacy behavior
resid = get_residual()
if resid <= tol:
return 'exit'
if bnrm2 == 0:
return tol
else:
return tol * float(bnrm2)
else:
return max(float(atol), tol * float(bnrm2))
def set_docstring(header, Ainfo, footer='', atol_default='0'):
def combine(fn):
fn.__doc__ = '\n'.join((header, common_doc1,
' ' + Ainfo.replace('\n', '\n '),
common_doc2, footer))
return fn
return combine
@set_docstring('Use BIConjugate Gradient iteration to solve ``Ax = b``.',
'The real or complex N-by-N matrix of the linear system.\n'
'Alternatively, ``A`` can be a linear operator which can\n'
'produce ``Ax`` and ``A^T x`` using, e.g.,\n'
'``scipy.sparse.linalg.LinearOperator``.')
@non_reentrant()
def bicg(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
A,M,x,b,postprocess = make_system(A, M, x0, b)
n = len(b)
if maxiter is None:
maxiter = n*10
matvec, rmatvec = A.matvec, A.rmatvec
psolve, rpsolve = M.matvec, M.rmatvec
ltr = _type_conv[x.dtype.char]
revcom = getattr(_iterative, ltr + 'bicgrevcom')
get_residual = lambda: np.linalg.norm(matvec(x) - b)
atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicg')
if atol == 'exit':
return postprocess(x), 0
resid = atol
ndx1 = 1
ndx2 = -1
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
work = _aligned_zeros(6*n,dtype=x.dtype)
ijob = 1
info = 0
ftflag = True
iter_ = maxiter
while True:
olditer = iter_
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
if callback is not None and iter_ > olditer:
callback(x)
slice1 = slice(ndx1-1, ndx1-1+n)
slice2 = slice(ndx2-1, ndx2-1+n)
if (ijob == -1):
if callback is not None:
callback(x)
break
elif (ijob == 1):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(work[slice1])
elif (ijob == 2):
work[slice2] *= sclr2
work[slice2] += sclr1*rmatvec(work[slice1])
elif (ijob == 3):
work[slice1] = psolve(work[slice2])
elif (ijob == 4):
work[slice1] = rpsolve(work[slice2])
elif (ijob == 5):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(x)
elif (ijob == 6):
if ftflag:
info = -1
ftflag = False
resid, info = _stoptest(work[slice1], atol)
ijob = 2
if info > 0 and iter_ == maxiter and not (resid <= atol):
# info isn't set appropriately otherwise
info = iter_
return postprocess(x), info
@set_docstring('Use BIConjugate Gradient STABilized iteration to solve '
'``Ax = b``.',
'The real or complex N-by-N matrix of the linear system.\n'
'Alternatively, ``A`` can be a linear operator which can\n'
'produce ``Ax`` using, e.g.,\n'
'``scipy.sparse.linalg.LinearOperator``.')
@non_reentrant()
def bicgstab(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
A, M, x, b, postprocess = make_system(A, M, x0, b)
n = len(b)
if maxiter is None:
maxiter = n*10
matvec = A.matvec
psolve = M.matvec
ltr = _type_conv[x.dtype.char]
revcom = getattr(_iterative, ltr + 'bicgstabrevcom')
get_residual = lambda: np.linalg.norm(matvec(x) - b)
atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicgstab')
if atol == 'exit':
return postprocess(x), 0
resid = atol
ndx1 = 1
ndx2 = -1
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
work = _aligned_zeros(7*n,dtype=x.dtype)
ijob = 1
info = 0
ftflag = True
iter_ = maxiter
while True:
olditer = iter_
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
if callback is not None and iter_ > olditer:
callback(x)
slice1 = slice(ndx1-1, ndx1-1+n)
slice2 = slice(ndx2-1, ndx2-1+n)
if (ijob == -1):
if callback is not None:
callback(x)
break
elif (ijob == 1):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(work[slice1])
elif (ijob == 2):
work[slice1] = psolve(work[slice2])
elif (ijob == 3):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(x)
elif (ijob == 4):
if ftflag:
info = -1
ftflag = False
resid, info = _stoptest(work[slice1], atol)
ijob = 2
if info > 0 and iter_ == maxiter and not (resid <= atol):
# info isn't set appropriately otherwise
info = iter_
return postprocess(x), info
@set_docstring('Use Conjugate Gradient iteration to solve ``Ax = b``.',
'The real or complex N-by-N matrix of the linear system.\n'
'``A`` must represent a hermitian, positive definite matrix.\n'
'Alternatively, ``A`` can be a linear operator which can\n'
'produce ``Ax`` using, e.g.,\n'
'``scipy.sparse.linalg.LinearOperator``.')
@non_reentrant()
def cg(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
A, M, x, b, postprocess = make_system(A, M, x0, b)
n = len(b)
if maxiter is None:
maxiter = n*10
matvec = A.matvec
psolve = M.matvec
ltr = _type_conv[x.dtype.char]
revcom = getattr(_iterative, ltr + 'cgrevcom')
get_residual = lambda: np.linalg.norm(matvec(x) - b)
atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'cg')
if atol == 'exit':
return postprocess(x), 0
resid = atol
ndx1 = 1
ndx2 = -1
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
work = _aligned_zeros(4*n,dtype=x.dtype)
ijob = 1
info = 0
ftflag = True
iter_ = maxiter
while True:
olditer = iter_
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
if callback is not None and iter_ > olditer:
callback(x)
slice1 = slice(ndx1-1, ndx1-1+n)
slice2 = slice(ndx2-1, ndx2-1+n)
if (ijob == -1):
if callback is not None:
callback(x)
break
elif (ijob == 1):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(work[slice1])
elif (ijob == 2):
work[slice1] = psolve(work[slice2])
elif (ijob == 3):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(x)
elif (ijob == 4):
if ftflag:
info = -1
ftflag = False
resid, info = _stoptest(work[slice1], atol)
if info == 1 and iter_ > 1:
# recompute residual and recheck, to avoid
# accumulating rounding error
work[slice1] = b - matvec(x)
resid, info = _stoptest(work[slice1], atol)
ijob = 2
if info > 0 and iter_ == maxiter and not (resid <= atol):
# info isn't set appropriately otherwise
info = iter_
return postprocess(x), info
@set_docstring('Use Conjugate Gradient Squared iteration to solve ``Ax = b``.',
'The real-valued N-by-N matrix of the linear system.\n'
'Alternatively, ``A`` can be a linear operator which can\n'
'produce ``Ax`` using, e.g.,\n'
'``scipy.sparse.linalg.LinearOperator``.')
@non_reentrant()
Loading ...