"""
Copyright (C) 2010 David Fong and Michael Saunders
Distributed under the same license as SciPy
Testing Code for LSMR.
03 Jun 2010: First version release with lsmr.py
David Chin-lung Fong clfong@stanford.edu
Institute for Computational and Mathematical Engineering
Stanford University
Michael Saunders saunders@stanford.edu
Systems Optimization Laboratory
Dept of MS&E, Stanford University.
"""
from __future__ import division, print_function, absolute_import
from numpy import array, arange, eye, zeros, ones, sqrt, transpose, hstack
from numpy.linalg import norm
from numpy.testing import (assert_almost_equal,
assert_array_almost_equal)
from scipy.sparse import coo_matrix
from scipy.sparse.linalg.interface import aslinearoperator
from scipy.sparse.linalg import lsmr
from .test_lsqr import G, b
class TestLSMR:
def setup_method(self):
self.n = 10
self.m = 10
def assertCompatibleSystem(self, A, xtrue):
Afun = aslinearoperator(A)
b = Afun.matvec(xtrue)
x = lsmr(A, b)[0]
assert_almost_equal(norm(x - xtrue), 0, decimal=5)
def testIdentityACase1(self):
A = eye(self.n)
xtrue = zeros((self.n, 1))
self.assertCompatibleSystem(A, xtrue)
def testIdentityACase2(self):
A = eye(self.n)
xtrue = ones((self.n,1))
self.assertCompatibleSystem(A, xtrue)
def testIdentityACase3(self):
A = eye(self.n)
xtrue = transpose(arange(self.n,0,-1))
self.assertCompatibleSystem(A, xtrue)
def testBidiagonalA(self):
A = lowerBidiagonalMatrix(20,self.n)
xtrue = transpose(arange(self.n,0,-1))
self.assertCompatibleSystem(A,xtrue)
def testScalarB(self):
A = array([[1.0, 2.0]])
b = 3.0
x = lsmr(A, b)[0]
assert_almost_equal(norm(A.dot(x) - b), 0)
def testColumnB(self):
A = eye(self.n)
b = ones((self.n, 1))
x = lsmr(A, b)[0]
assert_almost_equal(norm(A.dot(x) - b.ravel()), 0)
def testInitialization(self):
# Test that the default setting is not modified
x_ref = lsmr(G, b)[0]
x0 = zeros(b.shape)
x = lsmr(G, b, x0=x0)[0]
assert_array_almost_equal(x_ref, x)
# Test warm-start with single iteration
x0 = lsmr(G, b, maxiter=1)[0]
x = lsmr(G, b, x0=x0)[0]
assert_array_almost_equal(x_ref, x)
class TestLSMRReturns:
def setup_method(self):
self.n = 10
self.A = lowerBidiagonalMatrix(20,self.n)
self.xtrue = transpose(arange(self.n,0,-1))
self.Afun = aslinearoperator(self.A)
self.b = self.Afun.matvec(self.xtrue)
self.returnValues = lsmr(self.A,self.b)
def testNormr(self):
x, istop, itn, normr, normar, normA, condA, normx = self.returnValues
assert_almost_equal(normr, norm(self.b - self.Afun.matvec(x)))
def testNormar(self):
x, istop, itn, normr, normar, normA, condA, normx = self.returnValues
assert_almost_equal(normar,
norm(self.Afun.rmatvec(self.b - self.Afun.matvec(x))))
def testNormx(self):
x, istop, itn, normr, normar, normA, condA, normx = self.returnValues
assert_almost_equal(normx, norm(x))
def lowerBidiagonalMatrix(m, n):
# This is a simple example for testing LSMR.
# It uses the leading m*n submatrix from
# A = [ 1
# 1 2
# 2 3
# 3 4
# ...
# n ]
# suitably padded by zeros.
#
# 04 Jun 2010: First version for distribution with lsmr.py
if m <= n:
row = hstack((arange(m, dtype=int),
arange(1, m, dtype=int)))
col = hstack((arange(m, dtype=int),
arange(m-1, dtype=int)))
data = hstack((arange(1, m+1, dtype=float),
arange(1,m, dtype=float)))
return coo_matrix((data, (row, col)), shape=(m,n))
else:
row = hstack((arange(n, dtype=int),
arange(1, n+1, dtype=int)))
col = hstack((arange(n, dtype=int),
arange(n, dtype=int)))
data = hstack((arange(1, n+1, dtype=float),
arange(1,n+1, dtype=float)))
return coo_matrix((data,(row, col)), shape=(m,n))
def lsmrtest(m, n, damp):
"""Verbose testing of lsmr"""
A = lowerBidiagonalMatrix(m,n)
xtrue = arange(n,0,-1, dtype=float)
Afun = aslinearoperator(A)
b = Afun.matvec(xtrue)
atol = 1.0e-7
btol = 1.0e-7
conlim = 1.0e+10
itnlim = 10*n
show = 1
x, istop, itn, normr, normar, norma, conda, normx \
= lsmr(A, b, damp, atol, btol, conlim, itnlim, show)
j1 = min(n,5)
j2 = max(n-4,1)
print(' ')
print('First elements of x:')
str = ['%10.4f' % (xi) for xi in x[0:j1]]
print(''.join(str))
print(' ')
print('Last elements of x:')
str = ['%10.4f' % (xi) for xi in x[j2-1:]]
print(''.join(str))
r = b - Afun.matvec(x)
r2 = sqrt(norm(r)**2 + (damp*norm(x))**2)
print(' ')
str = 'normr (est.) %17.10e' % (normr)
str2 = 'normr (true) %17.10e' % (r2)
print(str)
print(str2)
print(' ')
if __name__ == "__main__":
lsmrtest(20,10,0)