"""
Sparse matrix functions
"""
#
# Authors: Travis Oliphant, March 2002
# Anthony Scopatz, August 2012 (Sparse Updates)
# Jake Vanderplas, August 2012 (Sparse Updates)
#
from __future__ import division, print_function, absolute_import
__all__ = ['expm', 'inv']
import math
import numpy as np
import scipy.special
from scipy.linalg.basic import solve, solve_triangular
from scipy.sparse.base import isspmatrix
from scipy.sparse.construct import eye as speye
from scipy.sparse.linalg import spsolve
import scipy.sparse
import scipy.sparse.linalg
from scipy.sparse.linalg.interface import LinearOperator
UPPER_TRIANGULAR = 'upper_triangular'
def inv(A):
"""
Compute the inverse of a sparse matrix
Parameters
----------
A : (M,M) ndarray or sparse matrix
square matrix to be inverted
Returns
-------
Ainv : (M,M) ndarray or sparse matrix
inverse of `A`
Notes
-----
This computes the sparse inverse of `A`. If the inverse of `A` is expected
to be non-sparse, it will likely be faster to convert `A` to dense and use
scipy.linalg.inv.
Examples
--------
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import inv
>>> A = csc_matrix([[1., 0.], [1., 2.]])
>>> Ainv = inv(A)
>>> Ainv
<2x2 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv)
<2x2 sparse matrix of type '<class 'numpy.float64'>'
with 2 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv).todense()
matrix([[ 1., 0.],
[ 0., 1.]])
.. versionadded:: 0.12.0
"""
#check input
if not scipy.sparse.isspmatrix(A):
raise TypeError('Input must be a sparse matrix')
I = speye(A.shape[0], A.shape[1], dtype=A.dtype, format=A.format)
Ainv = spsolve(A, I)
return Ainv
def _onenorm_matrix_power_nnm(A, p):
"""
Compute the 1-norm of a non-negative integer power of a non-negative matrix.
Parameters
----------
A : a square ndarray or matrix or sparse matrix
Input matrix with non-negative entries.
p : non-negative integer
The power to which the matrix is to be raised.
Returns
-------
out : float
The 1-norm of the matrix power p of A.
"""
# check input
if int(p) != p or p < 0:
raise ValueError('expected non-negative integer p')
p = int(p)
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be like a square matrix')
# Explicitly make a column vector so that this works when A is a
# numpy matrix (in addition to ndarray and sparse matrix).
v = np.ones((A.shape[0], 1), dtype=float)
M = A.T
for i in range(p):
v = M.dot(v)
return np.max(v)
def _onenorm(A):
# A compatibility function which should eventually disappear.
# This is copypasted from expm_action.
if scipy.sparse.isspmatrix(A):
return max(abs(A).sum(axis=0).flat)
else:
return np.linalg.norm(A, 1)
def _ident_like(A):
# A compatibility function which should eventually disappear.
# This is copypasted from expm_action.
if scipy.sparse.isspmatrix(A):
return scipy.sparse.construct.eye(A.shape[0], A.shape[1],
dtype=A.dtype, format=A.format)
else:
return np.eye(A.shape[0], A.shape[1], dtype=A.dtype)
def _is_upper_triangular(A):
# This function could possibly be of wider interest.
if isspmatrix(A):
lower_part = scipy.sparse.tril(A, -1)
# Check structural upper triangularity,
# then coincidental upper triangularity if needed.
return lower_part.nnz == 0 or lower_part.count_nonzero() == 0
else:
return not np.tril(A, -1).any()
def _smart_matrix_product(A, B, alpha=None, structure=None):
"""
A matrix product that knows about sparse and structured matrices.
Parameters
----------
A : 2d ndarray
First matrix.
B : 2d ndarray
Second matrix.
alpha : float
The matrix product will be scaled by this constant.
structure : str, optional
A string describing the structure of both matrices `A` and `B`.
Only `upper_triangular` is currently supported.
Returns
-------
M : 2d ndarray
Matrix product of A and B.
"""
if len(A.shape) != 2:
raise ValueError('expected A to be a rectangular matrix')
if len(B.shape) != 2:
raise ValueError('expected B to be a rectangular matrix')
f = None
if structure == UPPER_TRIANGULAR:
if not isspmatrix(A) and not isspmatrix(B):
f, = scipy.linalg.get_blas_funcs(('trmm',), (A, B))
if f is not None:
if alpha is None:
alpha = 1.
out = f(alpha, A, B)
else:
if alpha is None:
out = A.dot(B)
else:
out = alpha * A.dot(B)
return out
class MatrixPowerOperator(LinearOperator):
def __init__(self, A, p, structure=None):
if A.ndim != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be like a square matrix')
if p < 0:
raise ValueError('expected p to be a non-negative integer')
self._A = A
self._p = p
self._structure = structure
self.dtype = A.dtype
self.ndim = A.ndim
self.shape = A.shape
def _matvec(self, x):
for i in range(self._p):
x = self._A.dot(x)
return x
def _rmatvec(self, x):
A_T = self._A.T
x = x.ravel()
for i in range(self._p):
x = A_T.dot(x)
return x
def _matmat(self, X):
for i in range(self._p):
X = _smart_matrix_product(self._A, X, structure=self._structure)
return X
@property
def T(self):
return MatrixPowerOperator(self._A.T, self._p)
class ProductOperator(LinearOperator):
"""
For now, this is limited to products of multiple square matrices.
"""
def __init__(self, *args, **kwargs):
self._structure = kwargs.get('structure', None)
for A in args:
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError(
'For now, the ProductOperator implementation is '
'limited to the product of multiple square matrices.')
if args:
n = args[0].shape[0]
for A in args:
for d in A.shape:
if d != n:
raise ValueError(
'The square matrices of the ProductOperator '
'must all have the same shape.')
self.shape = (n, n)
self.ndim = len(self.shape)
self.dtype = np.find_common_type([x.dtype for x in args], [])
self._operator_sequence = args
def _matvec(self, x):
for A in reversed(self._operator_sequence):
x = A.dot(x)
return x
def _rmatvec(self, x):
x = x.ravel()
for A in self._operator_sequence:
x = A.T.dot(x)
return x
def _matmat(self, X):
for A in reversed(self._operator_sequence):
X = _smart_matrix_product(A, X, structure=self._structure)
return X
@property
def T(self):
T_args = [A.T for A in reversed(self._operator_sequence)]
return ProductOperator(*T_args)
def _onenormest_matrix_power(A, p,
t=2, itmax=5, compute_v=False, compute_w=False, structure=None):
"""
Efficiently estimate the 1-norm of A^p.
Parameters
----------
A : ndarray
Matrix whose 1-norm of a power is to be computed.
p : int
Non-negative integer power.
t : int, optional
A positive parameter controlling the tradeoff between
accuracy versus time and memory usage.
Larger values take longer and use more memory
but give more accurate output.
itmax : int, optional
Use at most this many iterations.
compute_v : bool, optional
Request a norm-maximizing linear operator input vector if True.
compute_w : bool, optional
Request a norm-maximizing linear operator output vector if True.
Returns
-------
est : float
An underestimate of the 1-norm of the sparse matrix.
v : ndarray, optional
The vector such that ||Av||_1 == est*||v||_1.
It can be thought of as an input to the linear operator
that gives an output with particularly large norm.
w : ndarray, optional
The vector Av which has relatively large 1-norm.
It can be thought of as an output of the linear operator
that is relatively large in norm compared to the input.
"""
return scipy.sparse.linalg.onenormest(
MatrixPowerOperator(A, p, structure=structure))
def _onenormest_product(operator_seq,
t=2, itmax=5, compute_v=False, compute_w=False, structure=None):
"""
Efficiently estimate the 1-norm of the matrix product of the args.
Parameters
----------
operator_seq : linear operator sequence
Matrices whose 1-norm of product is to be computed.
t : int, optional
A positive parameter controlling the tradeoff between
accuracy versus time and memory usage.
Larger values take longer and use more memory
but give more accurate output.
itmax : int, optional
Use at most this many iterations.
compute_v : bool, optional
Request a norm-maximizing linear operator input vector if True.
compute_w : bool, optional
Request a norm-maximizing linear operator output vector if True.
structure : str, optional
A string describing the structure of all operators.
Only `upper_triangular` is currently supported.
Returns
-------
est : float
An underestimate of the 1-norm of the sparse matrix.
v : ndarray, optional
The vector such that ||Av||_1 == est*||v||_1.
It can be thought of as an input to the linear operator
that gives an output with particularly large norm.
w : ndarray, optional
The vector Av which has relatively large 1-norm.
It can be thought of as an output of the linear operator
Loading ...