Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / libpython3.8-testsuite   deb

Repository URL to install this package:

Version: 3.8.5-1+stretch1 

/ usr / lib / python3.8 / test / test_complex.py

import unittest
from test import support
from test.test_grammar import (VALID_UNDERSCORE_LITERALS,
                               INVALID_UNDERSCORE_LITERALS)

from random import random
from math import atan2, isnan, copysign
import operator

INF = float("inf")
NAN = float("nan")
# These tests ensure that complex math does the right thing

class ComplexTest(unittest.TestCase):

    def assertAlmostEqual(self, a, b):
        if isinstance(a, complex):
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
                unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a.real, b)
                unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
        else:
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a, b.real)
                unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a, b)

    def assertCloseAbs(self, x, y, eps=1e-9):
        """Return true iff floats x and y "are close"."""
        # put the one with larger magnitude second
        if abs(x) > abs(y):
            x, y = y, x
        if y == 0:
            return abs(x) < eps
        if x == 0:
            return abs(y) < eps
        # check that relative difference < eps
        self.assertTrue(abs((x-y)/y) < eps)

    def assertFloatsAreIdentical(self, x, y):
        """assert that floats x and y are identical, in the sense that:
        (1) both x and y are nans, or
        (2) both x and y are infinities, with the same sign, or
        (3) both x and y are zeros, with the same sign, or
        (4) x and y are both finite and nonzero, and x == y

        """
        msg = 'floats {!r} and {!r} are not identical'

        if isnan(x) or isnan(y):
            if isnan(x) and isnan(y):
                return
        elif x == y:
            if x != 0.0:
                return
            # both zero; check that signs match
            elif copysign(1.0, x) == copysign(1.0, y):
                return
            else:
                msg += ': zeros have different signs'
        self.fail(msg.format(x, y))

    def assertClose(self, x, y, eps=1e-9):
        """Return true iff complexes x and y "are close"."""
        self.assertCloseAbs(x.real, y.real, eps)
        self.assertCloseAbs(x.imag, y.imag, eps)

    def check_div(self, x, y):
        """Compute complex z=x*y, and check that z/x==y and z/y==x."""
        z = x * y
        if x != 0:
            q = z / x
            self.assertClose(q, y)
            q = z.__truediv__(x)
            self.assertClose(q, y)
        if y != 0:
            q = z / y
            self.assertClose(q, x)
            q = z.__truediv__(y)
            self.assertClose(q, x)

    def test_truediv(self):
        simple_real = [float(i) for i in range(-5, 6)]
        simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
        for x in simple_complex:
            for y in simple_complex:
                self.check_div(x, y)

        # A naive complex division algorithm (such as in 2.0) is very prone to
        # nonsense errors for these (overflows and underflows).
        self.check_div(complex(1e200, 1e200), 1+0j)
        self.check_div(complex(1e-200, 1e-200), 1+0j)

        # Just for fun.
        for i in range(100):
            self.check_div(complex(random(), random()),
                           complex(random(), random()))

        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
        self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)

        self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)

        for denom_real, denom_imag in [(0, NAN), (NAN, 0), (NAN, NAN)]:
            z = complex(0, 0) / complex(denom_real, denom_imag)
            self.assertTrue(isnan(z.real))
            self.assertTrue(isnan(z.imag))

    def test_floordiv(self):
        self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 1.5+0j)
        self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 0+0j)

    def test_richcompare(self):
        self.assertIs(complex.__eq__(1+1j, 1<<10000), False)
        self.assertIs(complex.__lt__(1+1j, None), NotImplemented)
        self.assertIs(complex.__eq__(1+1j, 1+1j), True)
        self.assertIs(complex.__eq__(1+1j, 2+2j), False)
        self.assertIs(complex.__ne__(1+1j, 1+1j), False)
        self.assertIs(complex.__ne__(1+1j, 2+2j), True)
        for i in range(1, 100):
            f = i / 100.0
            self.assertIs(complex.__eq__(f+0j, f), True)
            self.assertIs(complex.__ne__(f+0j, f), False)
            self.assertIs(complex.__eq__(complex(f, f), f), False)
            self.assertIs(complex.__ne__(complex(f, f), f), True)
        self.assertIs(complex.__lt__(1+1j, 2+2j), NotImplemented)
        self.assertIs(complex.__le__(1+1j, 2+2j), NotImplemented)
        self.assertIs(complex.__gt__(1+1j, 2+2j), NotImplemented)
        self.assertIs(complex.__ge__(1+1j, 2+2j), NotImplemented)
        self.assertRaises(TypeError, operator.lt, 1+1j, 2+2j)
        self.assertRaises(TypeError, operator.le, 1+1j, 2+2j)
        self.assertRaises(TypeError, operator.gt, 1+1j, 2+2j)
        self.assertRaises(TypeError, operator.ge, 1+1j, 2+2j)
        self.assertIs(operator.eq(1+1j, 1+1j), True)
        self.assertIs(operator.eq(1+1j, 2+2j), False)
        self.assertIs(operator.ne(1+1j, 1+1j), False)
        self.assertIs(operator.ne(1+1j, 2+2j), True)

    def test_richcompare_boundaries(self):
        def check(n, deltas, is_equal, imag = 0.0):
            for delta in deltas:
                i = n + delta
                z = complex(i, imag)
                self.assertIs(complex.__eq__(z, i), is_equal(delta))
                self.assertIs(complex.__ne__(z, i), not is_equal(delta))
        # For IEEE-754 doubles the following should hold:
        #    x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0
        # where the interval is representable, of course.
        for i in range(1, 10):
            pow = 52 + i
            mult = 2 ** i
            check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)
            check(2 ** pow, range(1, 101), lambda delta: False, float(i))
        check(2 ** 53, range(-100, 0), lambda delta: True)

    def test_mod(self):
        # % is no longer supported on complex numbers
        self.assertRaises(TypeError, (1+1j).__mod__, 0+0j)
        self.assertRaises(TypeError, lambda: (3.33+4.43j) % 0)
        self.assertRaises(TypeError, (1+1j).__mod__, 4.3j)

    def test_divmod(self):
        self.assertRaises(TypeError, divmod, 1+1j, 1+0j)
        self.assertRaises(TypeError, divmod, 1+1j, 0+0j)

    def test_pow(self):
        self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
        self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
        self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
        self.assertAlmostEqual(pow(1j, -1), 1/1j)
        self.assertAlmostEqual(pow(1j, 200), 1)
        self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)

        a = 3.33+4.43j
        self.assertEqual(a ** 0j, 1)
        self.assertEqual(a ** 0.+0.j, 1)

        self.assertEqual(3j ** 0j, 1)
        self.assertEqual(3j ** 0, 1)

        try:
            0j ** a
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        try:
            0j ** (3-2j)
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        # The following is used to exercise certain code paths
        self.assertEqual(a ** 105, a ** 105)
        self.assertEqual(a ** -105, a ** -105)
        self.assertEqual(a ** -30, a ** -30)

        self.assertEqual(0.0j ** 0, 1)

        b = 5.1+2.3j
        self.assertRaises(ValueError, pow, a, b, 0)

    def test_boolcontext(self):
        for i in range(100):
            self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
        self.assertTrue(not complex(0.0, 0.0))

    def test_conjugate(self):
        self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)

    def test_constructor(self):
        class OS:
            def __init__(self, value): self.value = value
            def __complex__(self): return self.value
        class NS(object):
            def __init__(self, value): self.value = value
            def __complex__(self): return self.value
        self.assertEqual(complex(OS(1+10j)), 1+10j)
        self.assertEqual(complex(NS(1+10j)), 1+10j)
        self.assertRaises(TypeError, complex, OS(None))
        self.assertRaises(TypeError, complex, NS(None))
        self.assertRaises(TypeError, complex, {})
        self.assertRaises(TypeError, complex, NS(1.5))
        self.assertRaises(TypeError, complex, NS(1))

        self.assertAlmostEqual(complex("1+10j"), 1+10j)
        self.assertAlmostEqual(complex(10), 10+0j)
        self.assertAlmostEqual(complex(10.0), 10+0j)
        self.assertAlmostEqual(complex(10), 10+0j)
        self.assertAlmostEqual(complex(10+0j), 10+0j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10.0), 1+10j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10.0), 1+10j)
        self.assertAlmostEqual(complex(1.0,10), 1+10j)
        self.assertAlmostEqual(complex(1.0,10), 1+10j)
        self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
        self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
        self.assertAlmostEqual(complex(3.14), 3.14+0j)
        self.assertAlmostEqual(complex(314), 314.0+0j)
        self.assertAlmostEqual(complex(314), 314.0+0j)
        self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
        self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
        self.assertAlmostEqual(complex(314, 0), 314.0+0j)
        self.assertAlmostEqual(complex(314, 0), 314.0+0j)
        self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
        self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
        self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
        self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
        self.assertAlmostEqual(complex("1"), 1+0j)
        self.assertAlmostEqual(complex("1j"), 1j)
        self.assertAlmostEqual(complex(),  0)
        self.assertAlmostEqual(complex("-1"), -1)
        self.assertAlmostEqual(complex("+1"), +1)
        self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
        self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
        self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
        self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
        self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
        self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
        self.assertAlmostEqual(complex("J"), 1j)
        self.assertAlmostEqual(complex("( j )"), 1j)
        self.assertAlmostEqual(complex("+J"), 1j)
        self.assertAlmostEqual(complex("( -j)"), -1j)
        self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
        self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
        self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)

        class complex2(complex): pass
        self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
        self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
        self.assertAlmostEqual(complex(real=17+23j), 17+23j)
        self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
        self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)

        # check that the sign of a zero in the real or imaginary part
        # is preserved when constructing from two floats.  (These checks
        # are harmless on systems without support for signed zeros.)
        def split_zeros(x):
            """Function that produces different results for 0. and -0."""
            return atan2(x, -1.)

        self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
        self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
        self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
        self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))

        c = 3.14 + 1j
        self.assertTrue(complex(c) is c)
        del c

        self.assertRaises(TypeError, complex, "1", "1")
        self.assertRaises(TypeError, complex, 1, "1")

        # SF bug 543840:  complex(string) accepts strings with \0
        # Fixed in 2.3.
        self.assertRaises(ValueError, complex, '1+1j\0j')

        self.assertRaises(TypeError, int, 5+3j)
        self.assertRaises(TypeError, int, 5+3j)
        self.assertRaises(TypeError, float, 5+3j)
        self.assertRaises(ValueError, complex, "")
        self.assertRaises(TypeError, complex, None)
        self.assertRaisesRegex(TypeError, "not 'NoneType'", complex, None)
        self.assertRaises(ValueError, complex, "\0")
        self.assertRaises(ValueError, complex, "3\09")
        self.assertRaises(TypeError, complex, "1", "2")
        self.assertRaises(TypeError, complex, "1", 42)
        self.assertRaises(TypeError, complex, 1, "2")
        self.assertRaises(ValueError, complex, "1+")
        self.assertRaises(ValueError, complex, "1+1j+1j")
        self.assertRaises(ValueError, complex, "--")
        self.assertRaises(ValueError, complex, "(1+2j")
        self.assertRaises(ValueError, complex, "1+2j)")
        self.assertRaises(ValueError, complex, "1+(2j)")
        self.assertRaises(ValueError, complex, "(1+2j)123")
        self.assertRaises(ValueError, complex, "x")
        self.assertRaises(ValueError, complex, "1j+2")
        self.assertRaises(ValueError, complex, "1e1ej")
        self.assertRaises(ValueError, complex, "1e++1ej")
        self.assertRaises(ValueError, complex, ")1+2j(")
        self.assertRaisesRegex(
            TypeError,
            "first argument must be a string or a number, not 'dict'",
            complex, {1:2}, 1)
        self.assertRaisesRegex(
            TypeError,
            "second argument must be a number, not 'dict'",
            complex, 1, {1:2})
        # the following three are accepted by Python 2.6
        self.assertRaises(ValueError, complex, "1..1j")
        self.assertRaises(ValueError, complex, "1.11.1j")
        self.assertRaises(ValueError, complex, "1e1.1j")

        # check that complex accepts long unicode strings
        self.assertEqual(type(complex("1"*500)), complex)
        # check whitespace processing
Loading ...