"""
Array methods which are called by both the C-code for the method
and the Python code for the NumPy-namespace function
"""
from __future__ import division, absolute_import, print_function
import warnings
from numpy.core import multiarray as mu
from numpy.core import umath as um
from numpy.core.numeric import asanyarray
from numpy.core import numerictypes as nt
from numpy._globals import _NoValue
# save those O(100) nanoseconds!
umr_maximum = um.maximum.reduce
umr_minimum = um.minimum.reduce
umr_sum = um.add.reduce
umr_prod = um.multiply.reduce
umr_any = um.logical_or.reduce
umr_all = um.logical_and.reduce
# avoid keyword arguments to speed up parsing, saves about 15%-20% for very
# small reductions
def _amax(a, axis=None, out=None, keepdims=False,
initial=_NoValue):
return umr_maximum(a, axis, None, out, keepdims, initial)
def _amin(a, axis=None, out=None, keepdims=False,
initial=_NoValue):
return umr_minimum(a, axis, None, out, keepdims, initial)
def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
initial=_NoValue):
return umr_sum(a, axis, dtype, out, keepdims, initial)
def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
initial=_NoValue):
return umr_prod(a, axis, dtype, out, keepdims, initial)
def _any(a, axis=None, dtype=None, out=None, keepdims=False):
return umr_any(a, axis, dtype, out, keepdims)
def _all(a, axis=None, dtype=None, out=None, keepdims=False):
return umr_all(a, axis, dtype, out, keepdims)
def _count_reduce_items(arr, axis):
if axis is None:
axis = tuple(range(arr.ndim))
if not isinstance(axis, tuple):
axis = (axis,)
items = 1
for ax in axis:
items *= arr.shape[ax]
return items
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
arr = asanyarray(a)
is_float16_result = False
rcount = _count_reduce_items(arr, axis)
# Make this warning show up first
if rcount == 0:
warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None:
if issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
dtype = mu.dtype('f8')
elif issubclass(arr.dtype.type, nt.float16):
dtype = mu.dtype('f4')
is_float16_result = True
ret = umr_sum(arr, axis, dtype, out, keepdims)
if isinstance(ret, mu.ndarray):
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
if is_float16_result and out is None:
ret = arr.dtype.type(ret)
elif hasattr(ret, 'dtype'):
if is_float16_result:
ret = arr.dtype.type(ret / rcount)
else:
ret = ret.dtype.type(ret / rcount)
else:
ret = ret / rcount
return ret
def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
arr = asanyarray(a)
rcount = _count_reduce_items(arr, axis)
# Make this warning show up on top.
if ddof >= rcount:
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
stacklevel=2)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
dtype = mu.dtype('f8')
# Compute the mean.
# Note that if dtype is not of inexact type then arraymean will
# not be either.
arrmean = umr_sum(arr, axis, dtype, keepdims=True)
if isinstance(arrmean, mu.ndarray):
arrmean = um.true_divide(
arrmean, rcount, out=arrmean, casting='unsafe', subok=False)
else:
arrmean = arrmean.dtype.type(arrmean / rcount)
# Compute sum of squared deviations from mean
# Note that x may not be inexact and that we need it to be an array,
# not a scalar.
x = asanyarray(arr - arrmean)
if issubclass(arr.dtype.type, nt.complexfloating):
x = um.multiply(x, um.conjugate(x), out=x).real
else:
x = um.multiply(x, x, out=x)
ret = umr_sum(x, axis, dtype, out, keepdims)
# Compute degrees of freedom and make sure it is not negative.
rcount = max([rcount - ddof, 0])
# divide by degrees of freedom
if isinstance(ret, mu.ndarray):
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
elif hasattr(ret, 'dtype'):
ret = ret.dtype.type(ret / rcount)
else:
ret = ret / rcount
return ret
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
keepdims=keepdims)
if isinstance(ret, mu.ndarray):
ret = um.sqrt(ret, out=ret)
elif hasattr(ret, 'dtype'):
ret = ret.dtype.type(um.sqrt(ret))
else:
ret = um.sqrt(ret)
return ret
def _ptp(a, axis=None, out=None, keepdims=False):
return um.subtract(
umr_maximum(a, axis, None, out, keepdims),
umr_minimum(a, axis, None, None, keepdims),
out
)