Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / numpy   python

Repository URL to install this package:

Version: 1.16.2 

/ lib / tests / test_function_base.py

from __future__ import division, absolute_import, print_function

import operator
import warnings
import sys
import decimal
import pytest

import numpy as np
from numpy import ma
from numpy.testing import (
    assert_, assert_equal, assert_array_equal, assert_almost_equal,
    assert_array_almost_equal, assert_raises, assert_allclose,
    assert_warns, assert_raises_regex, suppress_warnings, HAS_REFCOUNT,
    )
import numpy.lib.function_base as nfb
from numpy.random import rand
from numpy.lib import (
    add_newdoc_ufunc, angle, average, bartlett, blackman, corrcoef, cov,
    delete, diff, digitize, extract, flipud, gradient, hamming, hanning,
    i0, insert, interp, kaiser, meshgrid, msort, piecewise, place, rot90,
    select, setxor1d, sinc, trapz, trim_zeros, unwrap, unique, vectorize
    )

from numpy.compat import long


def get_mat(n):
    data = np.arange(n)
    data = np.add.outer(data, data)
    return data


class TestRot90(object):
    def test_basic(self):
        assert_raises(ValueError, rot90, np.ones(4))
        assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(0,1,2))
        assert_raises(ValueError, rot90, np.ones((2,2)), axes=(0,2))
        assert_raises(ValueError, rot90, np.ones((2,2)), axes=(1,1))
        assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(-2,1))

        a = [[0, 1, 2],
             [3, 4, 5]]
        b1 = [[2, 5],
              [1, 4],
              [0, 3]]
        b2 = [[5, 4, 3],
              [2, 1, 0]]
        b3 = [[3, 0],
              [4, 1],
              [5, 2]]
        b4 = [[0, 1, 2],
              [3, 4, 5]]

        for k in range(-3, 13, 4):
            assert_equal(rot90(a, k=k), b1)
        for k in range(-2, 13, 4):
            assert_equal(rot90(a, k=k), b2)
        for k in range(-1, 13, 4):
            assert_equal(rot90(a, k=k), b3)
        for k in range(0, 13, 4):
            assert_equal(rot90(a, k=k), b4)

        assert_equal(rot90(rot90(a, axes=(0,1)), axes=(1,0)), a)
        assert_equal(rot90(a, k=1, axes=(1,0)), rot90(a, k=-1, axes=(0,1)))

    def test_axes(self):
        a = np.ones((50, 40, 3))
        assert_equal(rot90(a).shape, (40, 50, 3))
        assert_equal(rot90(a, axes=(0,2)), rot90(a, axes=(0,-1)))
        assert_equal(rot90(a, axes=(1,2)), rot90(a, axes=(-2,-1)))

    def test_rotation_axes(self):
        a = np.arange(8).reshape((2,2,2))

        a_rot90_01 = [[[2, 3],
                       [6, 7]],
                      [[0, 1],
                       [4, 5]]]
        a_rot90_12 = [[[1, 3],
                       [0, 2]],
                      [[5, 7],
                       [4, 6]]]
        a_rot90_20 = [[[4, 0],
                       [6, 2]],
                      [[5, 1],
                       [7, 3]]]
        a_rot90_10 = [[[4, 5],
                       [0, 1]],
                      [[6, 7],
                       [2, 3]]]

        assert_equal(rot90(a, axes=(0, 1)), a_rot90_01)
        assert_equal(rot90(a, axes=(1, 0)), a_rot90_10)
        assert_equal(rot90(a, axes=(1, 2)), a_rot90_12)

        for k in range(1,5):
            assert_equal(rot90(a, k=k, axes=(2, 0)),
                         rot90(a_rot90_20, k=k-1, axes=(2, 0)))


class TestFlip(object):

    def test_axes(self):
        assert_raises(np.AxisError, np.flip, np.ones(4), axis=1)
        assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=2)
        assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=-3)
        assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=(0, 3))

    def test_basic_lr(self):
        a = get_mat(4)
        b = a[:, ::-1]
        assert_equal(np.flip(a, 1), b)
        a = [[0, 1, 2],
             [3, 4, 5]]
        b = [[2, 1, 0],
             [5, 4, 3]]
        assert_equal(np.flip(a, 1), b)

    def test_basic_ud(self):
        a = get_mat(4)
        b = a[::-1, :]
        assert_equal(np.flip(a, 0), b)
        a = [[0, 1, 2],
             [3, 4, 5]]
        b = [[3, 4, 5],
             [0, 1, 2]]
        assert_equal(np.flip(a, 0), b)

    def test_3d_swap_axis0(self):
        a = np.array([[[0, 1],
                       [2, 3]],
                      [[4, 5],
                       [6, 7]]])

        b = np.array([[[4, 5],
                       [6, 7]],
                      [[0, 1],
                       [2, 3]]])

        assert_equal(np.flip(a, 0), b)

    def test_3d_swap_axis1(self):
        a = np.array([[[0, 1],
                       [2, 3]],
                      [[4, 5],
                       [6, 7]]])

        b = np.array([[[2, 3],
                       [0, 1]],
                      [[6, 7],
                       [4, 5]]])

        assert_equal(np.flip(a, 1), b)

    def test_3d_swap_axis2(self):
        a = np.array([[[0, 1],
                       [2, 3]],
                      [[4, 5],
                       [6, 7]]])

        b = np.array([[[1, 0],
                       [3, 2]],
                      [[5, 4],
                       [7, 6]]])

        assert_equal(np.flip(a, 2), b)

    def test_4d(self):
        a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5)
        for i in range(a.ndim):
            assert_equal(np.flip(a, i),
                         np.flipud(a.swapaxes(0, i)).swapaxes(i, 0))

    def test_default_axis(self):
        a = np.array([[1, 2, 3],
                      [4, 5, 6]])
        b = np.array([[6, 5, 4],
                      [3, 2, 1]])
        assert_equal(np.flip(a), b)

    def test_multiple_axes(self):
        a = np.array([[[0, 1],
                       [2, 3]],
                      [[4, 5],
                       [6, 7]]])

        assert_equal(np.flip(a, axis=()), a)

        b = np.array([[[5, 4],
                       [7, 6]],
                      [[1, 0],
                       [3, 2]]])

        assert_equal(np.flip(a, axis=(0, 2)), b)

        c = np.array([[[3, 2],
                       [1, 0]],
                      [[7, 6],
                       [5, 4]]])

        assert_equal(np.flip(a, axis=(1, 2)), c)


class TestAny(object):

    def test_basic(self):
        y1 = [0, 0, 1, 0]
        y2 = [0, 0, 0, 0]
        y3 = [1, 0, 1, 0]
        assert_(np.any(y1))
        assert_(np.any(y3))
        assert_(not np.any(y2))

    def test_nd(self):
        y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]]
        assert_(np.any(y1))
        assert_array_equal(np.sometrue(y1, axis=0), [1, 1, 0])
        assert_array_equal(np.sometrue(y1, axis=1), [0, 1, 1])


class TestAll(object):

    def test_basic(self):
        y1 = [0, 1, 1, 0]
        y2 = [0, 0, 0, 0]
        y3 = [1, 1, 1, 1]
        assert_(not np.all(y1))
        assert_(np.all(y3))
        assert_(not np.all(y2))
        assert_(np.all(~np.array(y2)))

    def test_nd(self):
        y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
        assert_(not np.all(y1))
        assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1])
        assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1])


class TestCopy(object):

    def test_basic(self):
        a = np.array([[1, 2], [3, 4]])
        a_copy = np.copy(a)
        assert_array_equal(a, a_copy)
        a_copy[0, 0] = 10
        assert_equal(a[0, 0], 1)
        assert_equal(a_copy[0, 0], 10)

    def test_order(self):
        # It turns out that people rely on np.copy() preserving order by
        # default; changing this broke scikit-learn:
        # github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783  # noqa
        a = np.array([[1, 2], [3, 4]])
        assert_(a.flags.c_contiguous)
        assert_(not a.flags.f_contiguous)
        a_fort = np.array([[1, 2], [3, 4]], order="F")
        assert_(not a_fort.flags.c_contiguous)
        assert_(a_fort.flags.f_contiguous)
        a_copy = np.copy(a)
        assert_(a_copy.flags.c_contiguous)
        assert_(not a_copy.flags.f_contiguous)
        a_fort_copy = np.copy(a_fort)
        assert_(not a_fort_copy.flags.c_contiguous)
        assert_(a_fort_copy.flags.f_contiguous)


class TestAverage(object):

    def test_basic(self):
        y1 = np.array([1, 2, 3])
        assert_(average(y1, axis=0) == 2.)
        y2 = np.array([1., 2., 3.])
        assert_(average(y2, axis=0) == 2.)
        y3 = [0., 0., 0.]
        assert_(average(y3, axis=0) == 0.)

        y4 = np.ones((4, 4))
        y4[0, 1] = 0
        y4[1, 0] = 2
        assert_almost_equal(y4.mean(0), average(y4, 0))
        assert_almost_equal(y4.mean(1), average(y4, 1))

        y5 = rand(5, 5)
        assert_almost_equal(y5.mean(0), average(y5, 0))
        assert_almost_equal(y5.mean(1), average(y5, 1))

    def test_weights(self):
        y = np.arange(10)
        w = np.arange(10)
        actual = average(y, weights=w)
        desired = (np.arange(10) ** 2).sum() * 1. / np.arange(10).sum()
        assert_almost_equal(actual, desired)

        y1 = np.array([[1, 2, 3], [4, 5, 6]])
        w0 = [1, 2]
        actual = average(y1, weights=w0, axis=0)
        desired = np.array([3., 4., 5.])
        assert_almost_equal(actual, desired)

        w1 = [0, 0, 1]
        actual = average(y1, weights=w1, axis=1)
        desired = np.array([3., 6.])
        assert_almost_equal(actual, desired)

        # This should raise an error. Can we test for that ?
        # assert_equal(average(y1, weights=w1), 9./2.)

        # 2D Case
        w2 = [[0, 0, 1], [0, 0, 2]]
        desired = np.array([3., 6.])
        assert_array_equal(average(y1, weights=w2, axis=1), desired)
        assert_equal(average(y1, weights=w2), 5.)

        y3 = rand(5).astype(np.float32)
        w3 = rand(5).astype(np.float64)

        assert_(np.average(y3, weights=w3).dtype == np.result_type(y3, w3))

    def test_returned(self):
        y = np.array([[1, 2, 3], [4, 5, 6]])

        # No weights
        avg, scl = average(y, returned=True)
        assert_equal(scl, 6.)

        avg, scl = average(y, 0, returned=True)
        assert_array_equal(scl, np.array([2., 2., 2.]))

        avg, scl = average(y, 1, returned=True)
        assert_array_equal(scl, np.array([3., 3.]))

        # With weights
        w0 = [1, 2]
        avg, scl = average(y, weights=w0, axis=0, returned=True)
        assert_array_equal(scl, np.array([3., 3., 3.]))

        w1 = [1, 2, 3]
        avg, scl = average(y, weights=w1, axis=1, returned=True)
        assert_array_equal(scl, np.array([6., 6.]))

        w2 = [[0, 0, 1], [1, 2, 3]]
        avg, scl = average(y, weights=w2, axis=1, returned=True)
        assert_array_equal(scl, np.array([1., 6.]))
Loading ...