from pandas._libs import lib, tslibs
from pandas.core.dtypes.common import (
is_datetime64_ns_dtype, is_extension_array_dtype, is_timedelta64_ns_dtype)
from pandas.core.dtypes.dtypes import registry
from pandas import compat
def array(data, # type: Sequence[object]
dtype=None, # type: Optional[Union[str, np.dtype, ExtensionDtype]]
copy=True, # type: bool
):
# type: (...) -> ExtensionArray
"""
Create an array.
.. versionadded:: 0.24.0
Parameters
----------
data : Sequence of objects
The scalars inside `data` should be instances of the
scalar type for `dtype`. It's expected that `data`
represents a 1-dimensional array of data.
When `data` is an Index or Series, the underlying array
will be extracted from `data`.
dtype : str, np.dtype, or ExtensionDtype, optional
The dtype to use for the array. This may be a NumPy
dtype or an extension type registered with pandas using
:meth:`pandas.api.extensions.register_extension_dtype`.
If not specified, there are two possibilities:
1. When `data` is a :class:`Series`, :class:`Index`, or
:class:`ExtensionArray`, the `dtype` will be taken
from the data.
2. Otherwise, pandas will attempt to infer the `dtype`
from the data.
Note that when `data` is a NumPy array, ``data.dtype`` is
*not* used for inferring the array type. This is because
NumPy cannot represent all the types of data that can be
held in extension arrays.
Currently, pandas will infer an extension dtype for sequences of
============================== =====================================
Scalar Type Array Type
============================== =====================================
:class:`pandas.Interval` :class:`pandas.arrays.IntervalArray`
:class:`pandas.Period` :class:`pandas.arrays.PeriodArray`
:class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray`
:class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray`
============================== =====================================
For all other cases, NumPy's usual inference rules will be used.
copy : bool, default True
Whether to copy the data, even if not necessary. Depending
on the type of `data`, creating the new array may require
copying data, even if ``copy=False``.
Returns
-------
ExtensionArray
The newly created array.
Raises
------
ValueError
When `data` is not 1-dimensional.
See Also
--------
numpy.array : Construct a NumPy array.
Series : Construct a pandas Series.
Index : Construct a pandas Index.
arrays.PandasArray : ExtensionArray wrapping a NumPy array.
Series.array : Extract the array stored within a Series.
Notes
-----
Omitting the `dtype` argument means pandas will attempt to infer the
best array type from the values in the data. As new array types are
added by pandas and 3rd party libraries, the "best" array type may
change. We recommend specifying `dtype` to ensure that
1. the correct array type for the data is returned
2. the returned array type doesn't change as new extension types
are added by pandas and third-party libraries
Additionally, if the underlying memory representation of the returned
array matters, we recommend specifying the `dtype` as a concrete object
rather than a string alias or allowing it to be inferred. For example,
a future version of pandas or a 3rd-party library may include a
dedicated ExtensionArray for string data. In this event, the following
would no longer return a :class:`arrays.PandasArray` backed by a NumPy
array.
>>> pd.array(['a', 'b'], dtype=str)
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
This would instead return the new ExtensionArray dedicated for string
data. If you really need the new array to be backed by a NumPy array,
specify that in the dtype.
>>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
Or use the dedicated constructor for the array you're expecting, and
wrap that in a PandasArray
>>> pd.array(np.array(['a', 'b'], dtype='<U1'))
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
Finally, Pandas has arrays that mostly overlap with NumPy
* :class:`arrays.DatetimeArray`
* :class:`arrays.TimedeltaArray`
When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
rather than a ``PandasArray``. This is for symmetry with the case of
timezone-aware data, which NumPy does not natively support.
>>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
<DatetimeArray>
['2015-01-01 00:00:00', '2016-01-01 00:00:00']
Length: 2, dtype: datetime64[ns]
>>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
<TimedeltaArray>
['01:00:00', '02:00:00']
Length: 2, dtype: timedelta64[ns]
Examples
--------
If a dtype is not specified, `data` is passed through to
:meth:`numpy.array`, and a :class:`arrays.PandasArray` is returned.
>>> pd.array([1, 2])
<PandasArray>
[1, 2]
Length: 2, dtype: int64
Or the NumPy dtype can be specified
>>> pd.array([1, 2], dtype=np.dtype("int32"))
<PandasArray>
[1, 2]
Length: 2, dtype: int32
You can use the string alias for `dtype`
>>> pd.array(['a', 'b', 'a'], dtype='category')
[a, b, a]
Categories (2, object): [a, b]
Or specify the actual dtype
>>> pd.array(['a', 'b', 'a'],
... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
[a, b, a]
Categories (3, object): [a < b < c]
Because omitting the `dtype` passes the data through to NumPy,
a mixture of valid integers and NA will return a floating-point
NumPy array.
>>> pd.array([1, 2, np.nan])
<PandasArray>
[1.0, 2.0, nan]
Length: 3, dtype: float64
To use pandas' nullable :class:`pandas.arrays.IntegerArray`, specify
the dtype:
>>> pd.array([1, 2, np.nan], dtype='Int64')
<IntegerArray>
[1, 2, NaN]
Length: 3, dtype: Int64
Pandas will infer an ExtensionArray for some types of data:
>>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
<PeriodArray>
['2000-01-01', '2000-01-01']
Length: 2, dtype: period[D]
`data` must be 1-dimensional. A ValueError is raised when the input
has the wrong dimensionality.
>>> pd.array(1)
Traceback (most recent call last):
...
ValueError: Cannot pass scalar '1' to 'pandas.array'.
"""
from pandas.core.arrays import (
period_array, ExtensionArray, IntervalArray, PandasArray,
DatetimeArray,
TimedeltaArray,
)
from pandas.core.internals.arrays import extract_array
if lib.is_scalar(data):
msg = (
"Cannot pass scalar '{}' to 'pandas.array'."
)
raise ValueError(msg.format(data))
data = extract_array(data, extract_numpy=True)
if dtype is None and isinstance(data, ExtensionArray):
dtype = data.dtype
# this returns None for not-found dtypes.
if isinstance(dtype, compat.string_types):
dtype = registry.find(dtype) or dtype
if is_extension_array_dtype(dtype):
cls = dtype.construct_array_type()
return cls._from_sequence(data, dtype=dtype, copy=copy)
if dtype is None:
inferred_dtype = lib.infer_dtype(data, skipna=False)
if inferred_dtype == 'period':
try:
return period_array(data, copy=copy)
except tslibs.IncompatibleFrequency:
# We may have a mixture of frequencies.
# We choose to return an ndarray, rather than raising.
pass
elif inferred_dtype == 'interval':
try:
return IntervalArray(data, copy=copy)
except ValueError:
# We may have a mixture of `closed` here.
# We choose to return an ndarray, rather than raising.
pass
elif inferred_dtype.startswith('datetime'):
# datetime, datetime64
try:
return DatetimeArray._from_sequence(data, copy=copy)
except ValueError:
# Mixture of timezones, fall back to PandasArray
pass
elif inferred_dtype.startswith('timedelta'):
# timedelta, timedelta64
return TimedeltaArray._from_sequence(data, copy=copy)
# TODO(BooleanArray): handle this type
# Pandas overrides NumPy for
# 1. datetime64[ns]
# 2. timedelta64[ns]
# so that a DatetimeArray is returned.
if is_datetime64_ns_dtype(dtype):
return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
elif is_timedelta64_ns_dtype(dtype):
return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)
result = PandasArray._from_sequence(data, dtype=dtype, copy=copy)
return result