Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ core / reshape / concat.py

"""
concat routines
"""

import numpy as np

import pandas.core.dtypes.concat as _concat

from pandas import DataFrame, Index, MultiIndex, Series, compat
from pandas.core import common as com
from pandas.core.arrays.categorical import (
    _factorize_from_iterable, _factorize_from_iterables)
from pandas.core.generic import NDFrame
from pandas.core.index import (
    _all_indexes_same, _get_consensus_names, _get_objs_combined_axis,
    ensure_index)
import pandas.core.indexes.base as ibase
from pandas.core.internals import concatenate_block_managers

# ---------------------------------------------------------------------
# Concatenate DataFrame objects


def concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
           keys=None, levels=None, names=None, verify_integrity=False,
           sort=None, copy=True):
    """
    Concatenate pandas objects along a particular axis with optional set logic
    along the other axes.

    Can also add a layer of hierarchical indexing on the concatenation axis,
    which may be useful if the labels are the same (or overlapping) on
    the passed axis number.

    Parameters
    ----------
    objs : a sequence or mapping of Series, DataFrame, or Panel objects
        If a dict is passed, the sorted keys will be used as the `keys`
        argument, unless it is passed, in which case the values will be
        selected (see below). Any None objects will be dropped silently unless
        they are all None in which case a ValueError will be raised
    axis : {0/'index', 1/'columns'}, default 0
        The axis to concatenate along
    join : {'inner', 'outer'}, default 'outer'
        How to handle indexes on other axis(es)
    join_axes : list of Index objects
        Specific indexes to use for the other n - 1 axes instead of performing
        inner/outer set logic
    ignore_index : boolean, default False
        If True, do not use the index values along the concatenation axis. The
        resulting axis will be labeled 0, ..., n - 1. This is useful if you are
        concatenating objects where the concatenation axis does not have
        meaningful indexing information. Note the index values on the other
        axes are still respected in the join.
    keys : sequence, default None
        If multiple levels passed, should contain tuples. Construct
        hierarchical index using the passed keys as the outermost level
    levels : list of sequences, default None
        Specific levels (unique values) to use for constructing a
        MultiIndex. Otherwise they will be inferred from the keys
    names : list, default None
        Names for the levels in the resulting hierarchical index
    verify_integrity : boolean, default False
        Check whether the new concatenated axis contains duplicates. This can
        be very expensive relative to the actual data concatenation
    sort : boolean, default None
        Sort non-concatenation axis if it is not already aligned when `join`
        is 'outer'. The current default of sorting is deprecated and will
        change to not-sorting in a future version of pandas.

        Explicitly pass ``sort=True`` to silence the warning and sort.
        Explicitly pass ``sort=False`` to silence the warning and not sort.

        This has no effect when ``join='inner'``, which already preserves
        the order of the non-concatenation axis.

        .. versionadded:: 0.23.0

    copy : boolean, default True
        If False, do not copy data unnecessarily

    Returns
    -------
    concatenated : object, type of objs
        When concatenating all ``Series`` along the index (axis=0), a
        ``Series`` is returned. When ``objs`` contains at least one
        ``DataFrame``, a ``DataFrame`` is returned. When concatenating along
        the columns (axis=1), a ``DataFrame`` is returned.

    See Also
    --------
    Series.append
    DataFrame.append
    DataFrame.join
    DataFrame.merge

    Notes
    -----
    The keys, levels, and names arguments are all optional.

    A walkthrough of how this method fits in with other tools for combining
    pandas objects can be found `here
    <http://pandas.pydata.org/pandas-docs/stable/merging.html>`__.

    Examples
    --------
    Combine two ``Series``.

    >>> s1 = pd.Series(['a', 'b'])
    >>> s2 = pd.Series(['c', 'd'])
    >>> pd.concat([s1, s2])
    0    a
    1    b
    0    c
    1    d
    dtype: object

    Clear the existing index and reset it in the result
    by setting the ``ignore_index`` option to ``True``.

    >>> pd.concat([s1, s2], ignore_index=True)
    0    a
    1    b
    2    c
    3    d
    dtype: object

    Add a hierarchical index at the outermost level of
    the data with the ``keys`` option.

    >>> pd.concat([s1, s2], keys=['s1', 's2',])
    s1  0    a
        1    b
    s2  0    c
        1    d
    dtype: object

    Label the index keys you create with the ``names`` option.

    >>> pd.concat([s1, s2], keys=['s1', 's2'],
    ...           names=['Series name', 'Row ID'])
    Series name  Row ID
    s1           0         a
                 1         b
    s2           0         c
                 1         d
    dtype: object

    Combine two ``DataFrame`` objects with identical columns.

    >>> df1 = pd.DataFrame([['a', 1], ['b', 2]],
    ...                    columns=['letter', 'number'])
    >>> df1
      letter  number
    0      a       1
    1      b       2
    >>> df2 = pd.DataFrame([['c', 3], ['d', 4]],
    ...                    columns=['letter', 'number'])
    >>> df2
      letter  number
    0      c       3
    1      d       4
    >>> pd.concat([df1, df2])
      letter  number
    0      a       1
    1      b       2
    0      c       3
    1      d       4

    Combine ``DataFrame`` objects with overlapping columns
    and return everything. Columns outside the intersection will
    be filled with ``NaN`` values.

    >>> df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']],
    ...                    columns=['letter', 'number', 'animal'])
    >>> df3
      letter  number animal
    0      c       3    cat
    1      d       4    dog
    >>> pd.concat([df1, df3], sort=False)
      letter  number animal
    0      a       1    NaN
    1      b       2    NaN
    0      c       3    cat
    1      d       4    dog

    Combine ``DataFrame`` objects with overlapping columns
    and return only those that are shared by passing ``inner`` to
    the ``join`` keyword argument.

    >>> pd.concat([df1, df3], join="inner")
      letter  number
    0      a       1
    1      b       2
    0      c       3
    1      d       4

    Combine ``DataFrame`` objects horizontally along the x axis by
    passing in ``axis=1``.

    >>> df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george']],
    ...                    columns=['animal', 'name'])
    >>> pd.concat([df1, df4], axis=1)
      letter  number  animal    name
    0      a       1    bird   polly
    1      b       2  monkey  george

    Prevent the result from including duplicate index values with the
    ``verify_integrity`` option.

    >>> df5 = pd.DataFrame([1], index=['a'])
    >>> df5
       0
    a  1
    >>> df6 = pd.DataFrame([2], index=['a'])
    >>> df6
       0
    a  2
    >>> pd.concat([df5, df6], verify_integrity=True)
    Traceback (most recent call last):
        ...
    ValueError: Indexes have overlapping values: ['a']
    """
    op = _Concatenator(objs, axis=axis, join_axes=join_axes,
                       ignore_index=ignore_index, join=join,
                       keys=keys, levels=levels, names=names,
                       verify_integrity=verify_integrity,
                       copy=copy, sort=sort)
    return op.get_result()


class _Concatenator(object):
    """
    Orchestrates a concatenation operation for BlockManagers
    """

    def __init__(self, objs, axis=0, join='outer', join_axes=None,
                 keys=None, levels=None, names=None,
                 ignore_index=False, verify_integrity=False, copy=True,
                 sort=False):
        if isinstance(objs, (NDFrame, compat.string_types)):
            raise TypeError('first argument must be an iterable of pandas '
                            'objects, you passed an object of type '
                            '"{name}"'.format(name=type(objs).__name__))

        if join == 'outer':
            self.intersect = False
        elif join == 'inner':
            self.intersect = True
        else:  # pragma: no cover
            raise ValueError('Only can inner (intersect) or outer (union) '
                             'join the other axis')

        if isinstance(objs, dict):
            if keys is None:
                keys = sorted(objs)
            objs = [objs[k] for k in keys]
        else:
            objs = list(objs)

        if len(objs) == 0:
            raise ValueError('No objects to concatenate')

        if keys is None:
            objs = list(com._not_none(*objs))
        else:
            # #1649
            clean_keys = []
            clean_objs = []
            for k, v in zip(keys, objs):
                if v is None:
                    continue
                clean_keys.append(k)
                clean_objs.append(v)
            objs = clean_objs
            name = getattr(keys, 'name', None)
            keys = Index(clean_keys, name=name)

        if len(objs) == 0:
            raise ValueError('All objects passed were None')

        # consolidate data & figure out what our result ndim is going to be
        ndims = set()
        for obj in objs:
            if not isinstance(obj, NDFrame):
                msg = ('cannot concatenate object of type "{0}";'
                       ' only pd.Series, pd.DataFrame, and pd.Panel'
                       ' (deprecated) objs are valid'.format(type(obj)))
                raise TypeError(msg)

            # consolidate
            obj._consolidate(inplace=True)
            ndims.add(obj.ndim)

        # get the sample
        # want the highest ndim that we have, and must be non-empty
        # unless all objs are empty
        sample = None
        if len(ndims) > 1:
            max_ndim = max(ndims)
            for obj in objs:
                if obj.ndim == max_ndim and np.sum(obj.shape):
                    sample = obj
                    break

        else:
            # filter out the empties if we have not multi-index possibilities
            # note to keep empty Series as it affect to result columns / name
            non_empties = [obj for obj in objs
                           if sum(obj.shape) > 0 or isinstance(obj, Series)]

            if (len(non_empties) and (keys is None and names is None and
                                      levels is None and
                                      join_axes is None and
                                      not self.intersect)):
                objs = non_empties
                sample = objs[0]

        if sample is None:
            sample = objs[0]
        self.objs = objs

        # Standardize axis parameter to int
        if isinstance(sample, Series):
            axis = DataFrame._get_axis_number(axis)
        else:
            axis = sample._get_axis_number(axis)

        # Need to flip BlockManager axis in the DataFrame special case
        self._is_frame = isinstance(sample, DataFrame)
        if self._is_frame:
            axis = 1 if axis == 0 else 0

        self._is_series = isinstance(sample, Series)
        if not 0 <= axis <= sample.ndim:
            raise AssertionError("axis must be between 0 and {ndim}, input was"
                                 " {axis}".format(ndim=sample.ndim, axis=axis))

        # if we have mixed ndims, then convert to highest ndim
        # creating column numbers as needed
        if len(ndims) > 1:
            current_column = 0
            max_ndim = sample.ndim
            self.objs, objs = [], self.objs
            for obj in objs:
Loading ...