# pylint: disable=E1103
import numpy as np
from pandas.compat import lrange, range, zip
from pandas.util._decorators import Appender, Substitution
from pandas.core.dtypes.cast import maybe_downcast_to_dtype
from pandas.core.dtypes.common import is_integer_dtype, is_list_like, is_scalar
from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries
from pandas import compat
import pandas.core.common as com
from pandas.core.frame import _shared_docs
from pandas.core.groupby import Grouper
from pandas.core.index import Index, MultiIndex, _get_objs_combined_axis
from pandas.core.reshape.concat import concat
from pandas.core.reshape.util import cartesian_product
from pandas.core.series import Series
# Note: We need to make sure `frame` is imported before `pivot`, otherwise
# _shared_docs['pivot_table'] will not yet exist. TODO: Fix this dependency
@Substitution('\ndata : DataFrame')
@Appender(_shared_docs['pivot_table'], indents=1)
def pivot_table(data, values=None, index=None, columns=None, aggfunc='mean',
fill_value=None, margins=False, dropna=True,
margins_name='All'):
index = _convert_by(index)
columns = _convert_by(columns)
if isinstance(aggfunc, list):
pieces = []
keys = []
for func in aggfunc:
table = pivot_table(data, values=values, index=index,
columns=columns,
fill_value=fill_value, aggfunc=func,
margins=margins, margins_name=margins_name)
pieces.append(table)
keys.append(getattr(func, '__name__', func))
return concat(pieces, keys=keys, axis=1)
keys = index + columns
values_passed = values is not None
if values_passed:
if is_list_like(values):
values_multi = True
values = list(values)
else:
values_multi = False
values = [values]
# GH14938 Make sure value labels are in data
for i in values:
if i not in data:
raise KeyError(i)
to_filter = []
for x in keys + values:
if isinstance(x, Grouper):
x = x.key
try:
if x in data:
to_filter.append(x)
except TypeError:
pass
if len(to_filter) < len(data.columns):
data = data[to_filter]
else:
values = data.columns
for key in keys:
try:
values = values.drop(key)
except (TypeError, ValueError, KeyError):
pass
values = list(values)
grouped = data.groupby(keys, observed=False)
agged = grouped.agg(aggfunc)
if dropna and isinstance(agged, ABCDataFrame) and len(agged.columns):
agged = agged.dropna(how='all')
# gh-21133
# we want to down cast if
# the original values are ints
# as we grouped with a NaN value
# and then dropped, coercing to floats
for v in [v for v in values if v in data and v in agged]:
if (is_integer_dtype(data[v]) and
not is_integer_dtype(agged[v])):
agged[v] = maybe_downcast_to_dtype(agged[v], data[v].dtype)
table = agged
if table.index.nlevels > 1:
# Related GH #17123
# If index_names are integers, determine whether the integers refer
# to the level position or name.
index_names = agged.index.names[:len(index)]
to_unstack = []
for i in range(len(index), len(keys)):
name = agged.index.names[i]
if name is None or name in index_names:
to_unstack.append(i)
else:
to_unstack.append(name)
table = agged.unstack(to_unstack)
if not dropna:
from pandas import MultiIndex
if table.index.nlevels > 1:
m = MultiIndex.from_arrays(cartesian_product(table.index.levels),
names=table.index.names)
table = table.reindex(m, axis=0)
if table.columns.nlevels > 1:
m = MultiIndex.from_arrays(cartesian_product(table.columns.levels),
names=table.columns.names)
table = table.reindex(m, axis=1)
if isinstance(table, ABCDataFrame):
table = table.sort_index(axis=1)
if fill_value is not None:
table = table.fillna(value=fill_value, downcast='infer')
if margins:
if dropna:
data = data[data.notna().all(axis=1)]
table = _add_margins(table, data, values, rows=index,
cols=columns, aggfunc=aggfunc,
observed=dropna,
margins_name=margins_name, fill_value=fill_value)
# discard the top level
if (values_passed and not values_multi and not table.empty and
(table.columns.nlevels > 1)):
table = table[values[0]]
if len(index) == 0 and len(columns) > 0:
table = table.T
# GH 15193 Make sure empty columns are removed if dropna=True
if isinstance(table, ABCDataFrame) and dropna:
table = table.dropna(how='all', axis=1)
return table
def _add_margins(table, data, values, rows, cols, aggfunc,
observed=None, margins_name='All', fill_value=None):
if not isinstance(margins_name, compat.string_types):
raise ValueError('margins_name argument must be a string')
msg = u'Conflicting name "{name}" in margins'.format(name=margins_name)
for level in table.index.names:
if margins_name in table.index.get_level_values(level):
raise ValueError(msg)
grand_margin = _compute_grand_margin(data, values, aggfunc, margins_name)
# could be passed a Series object with no 'columns'
if hasattr(table, 'columns'):
for level in table.columns.names[1:]:
if margins_name in table.columns.get_level_values(level):
raise ValueError(msg)
if len(rows) > 1:
key = (margins_name,) + ('',) * (len(rows) - 1)
else:
key = margins_name
if not values and isinstance(table, ABCSeries):
# If there are no values and the table is a series, then there is only
# one column in the data. Compute grand margin and return it.
return table.append(Series({key: grand_margin[margins_name]}))
if values:
marginal_result_set = _generate_marginal_results(table, data, values,
rows, cols, aggfunc,
observed,
grand_margin,
margins_name)
if not isinstance(marginal_result_set, tuple):
return marginal_result_set
result, margin_keys, row_margin = marginal_result_set
else:
marginal_result_set = _generate_marginal_results_without_values(
table, data, rows, cols, aggfunc, observed, margins_name)
if not isinstance(marginal_result_set, tuple):
return marginal_result_set
result, margin_keys, row_margin = marginal_result_set
row_margin = row_margin.reindex(result.columns, fill_value=fill_value)
# populate grand margin
for k in margin_keys:
if isinstance(k, compat.string_types):
row_margin[k] = grand_margin[k]
else:
row_margin[k] = grand_margin[k[0]]
from pandas import DataFrame
margin_dummy = DataFrame(row_margin, columns=[key]).T
row_names = result.index.names
try:
for dtype in set(result.dtypes):
cols = result.select_dtypes([dtype]).columns
margin_dummy[cols] = margin_dummy[cols].astype(dtype)
result = result.append(margin_dummy)
except TypeError:
# we cannot reshape, so coerce the axis
result.index = result.index._to_safe_for_reshape()
result = result.append(margin_dummy)
result.index.names = row_names
return result
def _compute_grand_margin(data, values, aggfunc,
margins_name='All'):
if values:
grand_margin = {}
for k, v in data[values].iteritems():
try:
if isinstance(aggfunc, compat.string_types):
grand_margin[k] = getattr(v, aggfunc)()
elif isinstance(aggfunc, dict):
if isinstance(aggfunc[k], compat.string_types):
grand_margin[k] = getattr(v, aggfunc[k])()
else:
grand_margin[k] = aggfunc[k](v)
else:
grand_margin[k] = aggfunc(v)
except TypeError:
pass
return grand_margin
else:
return {margins_name: aggfunc(data.index)}
def _generate_marginal_results(table, data, values, rows, cols, aggfunc,
observed,
grand_margin,
margins_name='All'):
if len(cols) > 0:
# need to "interleave" the margins
table_pieces = []
margin_keys = []
def _all_key(key):
return (key, margins_name) + ('',) * (len(cols) - 1)
if len(rows) > 0:
margin = data[rows + values].groupby(
rows, observed=observed).agg(aggfunc)
cat_axis = 1
for key, piece in table.groupby(level=0,
axis=cat_axis,
observed=observed):
all_key = _all_key(key)
# we are going to mutate this, so need to copy!
piece = piece.copy()
try:
piece[all_key] = margin[key]
except TypeError:
# we cannot reshape, so coerce the axis
piece.set_axis(piece._get_axis(
cat_axis)._to_safe_for_reshape(),
axis=cat_axis, inplace=True)
piece[all_key] = margin[key]
table_pieces.append(piece)
margin_keys.append(all_key)
else:
margin = grand_margin
cat_axis = 0
for key, piece in table.groupby(level=0,
axis=cat_axis,
observed=observed):
all_key = _all_key(key)
table_pieces.append(piece)
table_pieces.append(Series(margin[key], index=[all_key]))
margin_keys.append(all_key)
result = concat(table_pieces, axis=cat_axis)
if len(rows) == 0:
return result
else:
result = table
margin_keys = table.columns
if len(cols) > 0:
row_margin = data[cols + values].groupby(
cols, observed=observed).agg(aggfunc)
row_margin = row_margin.stack()
# slight hack
new_order = [len(cols)] + lrange(len(cols))
row_margin.index = row_margin.index.reorder_levels(new_order)
else:
row_margin = Series(np.nan, index=result.columns)
return result, margin_keys, row_margin
def _generate_marginal_results_without_values(
table, data, rows, cols, aggfunc,
observed, margins_name='All'):
if len(cols) > 0:
# need to "interleave" the margins
margin_keys = []
def _all_key():
if len(cols) == 1:
return margins_name
return (margins_name, ) + ('', ) * (len(cols) - 1)
if len(rows) > 0:
margin = data[rows].groupby(rows,
observed=observed).apply(aggfunc)
all_key = _all_key()
table[all_key] = margin
result = table
margin_keys.append(all_key)
else:
margin = data.groupby(level=0,
axis=0,
observed=observed).apply(aggfunc)
all_key = _all_key()
table[all_key] = margin
result = table
margin_keys.append(all_key)
return result
else:
result = table
margin_keys = table.columns
Loading ...