Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ io / sql.py

# -*- coding: utf-8 -*-
"""
Collection of query wrappers / abstractions to both facilitate data
retrieval and to reduce dependency on DB-specific API.
"""

from __future__ import division, print_function

from contextlib import contextmanager
from datetime import date, datetime, time
from functools import partial
import re
import warnings

import numpy as np

import pandas._libs.lib as lib
from pandas.compat import (
    map, raise_with_traceback, string_types, text_type, zip)

from pandas.core.dtypes.common import (
    is_datetime64tz_dtype, is_dict_like, is_list_like)
from pandas.core.dtypes.dtypes import DatetimeTZDtype
from pandas.core.dtypes.missing import isna

from pandas.core.api import DataFrame, Series
from pandas.core.base import PandasObject
from pandas.core.tools.datetimes import to_datetime


class SQLAlchemyRequired(ImportError):
    pass


class DatabaseError(IOError):
    pass


# -----------------------------------------------------------------------------
# -- Helper functions

_SQLALCHEMY_INSTALLED = None


def _is_sqlalchemy_connectable(con):
    global _SQLALCHEMY_INSTALLED
    if _SQLALCHEMY_INSTALLED is None:
        try:
            import sqlalchemy
            _SQLALCHEMY_INSTALLED = True

            from distutils.version import LooseVersion
            ver = sqlalchemy.__version__
            # For sqlalchemy versions < 0.8.2, the BIGINT type is recognized
            # for a sqlite engine, which results in a warning when trying to
            # read/write a DataFrame with int64 values. (GH7433)
            if LooseVersion(ver) < LooseVersion('0.8.2'):
                from sqlalchemy import BigInteger
                from sqlalchemy.ext.compiler import compiles

                @compiles(BigInteger, 'sqlite')
                def compile_big_int_sqlite(type_, compiler, **kw):
                    return 'INTEGER'
        except ImportError:
            _SQLALCHEMY_INSTALLED = False

    if _SQLALCHEMY_INSTALLED:
        import sqlalchemy
        return isinstance(con, sqlalchemy.engine.Connectable)
    else:
        return False


def _convert_params(sql, params):
    """Convert SQL and params args to DBAPI2.0 compliant format."""
    args = [sql]
    if params is not None:
        if hasattr(params, 'keys'):  # test if params is a mapping
            args += [params]
        else:
            args += [list(params)]
    return args


def _process_parse_dates_argument(parse_dates):
    """Process parse_dates argument for read_sql functions"""
    # handle non-list entries for parse_dates gracefully
    if parse_dates is True or parse_dates is None or parse_dates is False:
        parse_dates = []

    elif not hasattr(parse_dates, '__iter__'):
        parse_dates = [parse_dates]
    return parse_dates


def _handle_date_column(col, utc=None, format=None):
    if isinstance(format, dict):
        return to_datetime(col, errors='ignore', **format)
    else:
        # Allow passing of formatting string for integers
        # GH17855
        if format is None and (issubclass(col.dtype.type, np.floating) or
                               issubclass(col.dtype.type, np.integer)):
            format = 's'
        if format in ['D', 'd', 'h', 'm', 's', 'ms', 'us', 'ns']:
            return to_datetime(col, errors='coerce', unit=format, utc=utc)
        elif is_datetime64tz_dtype(col):
            # coerce to UTC timezone
            # GH11216
            return to_datetime(col, utc=True)
        else:
            return to_datetime(col, errors='coerce', format=format, utc=utc)


def _parse_date_columns(data_frame, parse_dates):
    """
    Force non-datetime columns to be read as such.
    Supports both string formatted and integer timestamp columns.
    """
    parse_dates = _process_parse_dates_argument(parse_dates)

    # we want to coerce datetime64_tz dtypes for now to UTC
    # we could in theory do a 'nice' conversion from a FixedOffset tz
    # GH11216
    for col_name, df_col in data_frame.iteritems():
        if is_datetime64tz_dtype(df_col) or col_name in parse_dates:
            try:
                fmt = parse_dates[col_name]
            except TypeError:
                fmt = None
            data_frame[col_name] = _handle_date_column(df_col, format=fmt)

    return data_frame


def _wrap_result(data, columns, index_col=None, coerce_float=True,
                 parse_dates=None):
    """Wrap result set of query in a DataFrame."""

    frame = DataFrame.from_records(data, columns=columns,
                                   coerce_float=coerce_float)

    frame = _parse_date_columns(frame, parse_dates)

    if index_col is not None:
        frame.set_index(index_col, inplace=True)

    return frame


def execute(sql, con, cur=None, params=None):
    """
    Execute the given SQL query using the provided connection object.

    Parameters
    ----------
    sql : string
        SQL query to be executed.
    con : SQLAlchemy connectable(engine/connection) or sqlite3 connection
        Using SQLAlchemy makes it possible to use any DB supported by the
        library.
        If a DBAPI2 object, only sqlite3 is supported.
    cur : deprecated, cursor is obtained from connection, default: None
    params : list or tuple, optional, default: None
        List of parameters to pass to execute method.

    Returns
    -------
    Results Iterable
    """
    if cur is None:
        pandas_sql = pandasSQL_builder(con)
    else:
        pandas_sql = pandasSQL_builder(cur, is_cursor=True)
    args = _convert_params(sql, params)
    return pandas_sql.execute(*args)


# -----------------------------------------------------------------------------
# -- Read and write to DataFrames

def read_sql_table(table_name, con, schema=None, index_col=None,
                   coerce_float=True, parse_dates=None, columns=None,
                   chunksize=None):
    """Read SQL database table into a DataFrame.

    Given a table name and a SQLAlchemy connectable, returns a DataFrame.
    This function does not support DBAPI connections.

    Parameters
    ----------
    table_name : string
        Name of SQL table in database.
    con : SQLAlchemy connectable (or database string URI)
        SQLite DBAPI connection mode not supported.
    schema : string, default None
        Name of SQL schema in database to query (if database flavor
        supports this). Uses default schema if None (default).
    index_col : string or list of strings, optional, default: None
        Column(s) to set as index(MultiIndex).
    coerce_float : boolean, default True
        Attempts to convert values of non-string, non-numeric objects (like
        decimal.Decimal) to floating point. Can result in loss of Precision.
    parse_dates : list or dict, default: None
        - List of column names to parse as dates.
        - Dict of ``{column_name: format string}`` where format string is
          strftime compatible in case of parsing string times or is one of
          (D, s, ns, ms, us) in case of parsing integer timestamps.
        - Dict of ``{column_name: arg dict}``, where the arg dict corresponds
          to the keyword arguments of :func:`pandas.to_datetime`
          Especially useful with databases without native Datetime support,
          such as SQLite.
    columns : list, default: None
        List of column names to select from SQL table
    chunksize : int, default None
        If specified, returns an iterator where `chunksize` is the number of
        rows to include in each chunk.

    Returns
    -------
    DataFrame

    See Also
    --------
    read_sql_query : Read SQL query into a DataFrame.
    read_sql

    Notes
    -----
    Any datetime values with time zone information will be converted to UTC.
    """

    con = _engine_builder(con)
    if not _is_sqlalchemy_connectable(con):
        raise NotImplementedError("read_sql_table only supported for "
                                  "SQLAlchemy connectable.")
    import sqlalchemy
    from sqlalchemy.schema import MetaData
    meta = MetaData(con, schema=schema)
    try:
        meta.reflect(only=[table_name], views=True)
    except sqlalchemy.exc.InvalidRequestError:
        raise ValueError("Table {name} not found".format(name=table_name))

    pandas_sql = SQLDatabase(con, meta=meta)
    table = pandas_sql.read_table(
        table_name, index_col=index_col, coerce_float=coerce_float,
        parse_dates=parse_dates, columns=columns, chunksize=chunksize)

    if table is not None:
        return table
    else:
        raise ValueError("Table {name} not found".format(name=table_name), con)


def read_sql_query(sql, con, index_col=None, coerce_float=True, params=None,
                   parse_dates=None, chunksize=None):
    """Read SQL query into a DataFrame.

    Returns a DataFrame corresponding to the result set of the query
    string. Optionally provide an `index_col` parameter to use one of the
    columns as the index, otherwise default integer index will be used.

    Parameters
    ----------
    sql : string SQL query or SQLAlchemy Selectable (select or text object)
        SQL query to be executed.
    con : SQLAlchemy connectable(engine/connection), database string URI,
        or sqlite3 DBAPI2 connection
        Using SQLAlchemy makes it possible to use any DB supported by that
        library.
        If a DBAPI2 object, only sqlite3 is supported.
    index_col : string or list of strings, optional, default: None
        Column(s) to set as index(MultiIndex).
    coerce_float : boolean, default True
        Attempts to convert values of non-string, non-numeric objects (like
        decimal.Decimal) to floating point. Useful for SQL result sets.
    params : list, tuple or dict, optional, default: None
        List of parameters to pass to execute method.  The syntax used
        to pass parameters is database driver dependent. Check your
        database driver documentation for which of the five syntax styles,
        described in PEP 249's paramstyle, is supported.
        Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}
    parse_dates : list or dict, default: None
        - List of column names to parse as dates.
        - Dict of ``{column_name: format string}`` where format string is
          strftime compatible in case of parsing string times, or is one of
          (D, s, ns, ms, us) in case of parsing integer timestamps.
        - Dict of ``{column_name: arg dict}``, where the arg dict corresponds
          to the keyword arguments of :func:`pandas.to_datetime`
          Especially useful with databases without native Datetime support,
          such as SQLite.
    chunksize : int, default None
        If specified, return an iterator where `chunksize` is the number of
        rows to include in each chunk.

    Returns
    -------
    DataFrame

    See Also
    --------
    read_sql_table : Read SQL database table into a DataFrame.
    read_sql

    Notes
    -----
    Any datetime values with time zone information parsed via the `parse_dates`
    parameter will be converted to UTC.
    """
    pandas_sql = pandasSQL_builder(con)
    return pandas_sql.read_query(
        sql, index_col=index_col, params=params, coerce_float=coerce_float,
        parse_dates=parse_dates, chunksize=chunksize)


def read_sql(sql, con, index_col=None, coerce_float=True, params=None,
             parse_dates=None, columns=None, chunksize=None):
    """
    Read SQL query or database table into a DataFrame.

    This function is a convenience wrapper around ``read_sql_table`` and
    ``read_sql_query`` (for backward compatibility). It will delegate
    to the specific function depending on the provided input. A SQL query
    will be routed to ``read_sql_query``, while a database table name will
    be routed to ``read_sql_table``. Note that the delegated function might
    have more specific notes about their functionality not listed here.

    Parameters
    ----------
    sql : string or SQLAlchemy Selectable (select or text object)
        SQL query to be executed or a table name.
    con : SQLAlchemy connectable (engine/connection) or database string URI
        or DBAPI2 connection (fallback mode)

        Using SQLAlchemy makes it possible to use any DB supported by that
        library. If a DBAPI2 object, only sqlite3 is supported.
    index_col : string or list of strings, optional, default: None
        Column(s) to set as index(MultiIndex).
    coerce_float : boolean, default True
        Attempts to convert values of non-string, non-numeric objects (like
        decimal.Decimal) to floating point, useful for SQL result sets.
    params : list, tuple or dict, optional, default: None
        List of parameters to pass to execute method.  The syntax used
        to pass parameters is database driver dependent. Check your
Loading ...