# TODO: Use the fact that axis can have units to simplify the process
import functools
from matplotlib import pylab
import numpy as np
from pandas._libs.tslibs.frequencies import (
FreqGroup, get_base_alias, get_freq, is_subperiod, is_superperiod)
from pandas._libs.tslibs.period import Period
import pandas.compat as compat
from pandas.core.dtypes.generic import (
ABCDatetimeIndex, ABCPeriodIndex, ABCTimedeltaIndex)
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._converter import (
TimeSeries_DateFormatter, TimeSeries_DateLocator,
TimeSeries_TimedeltaFormatter)
import pandas.tseries.frequencies as frequencies
from pandas.tseries.offsets import DateOffset
# ---------------------------------------------------------------------
# Plotting functions and monkey patches
def tsplot(series, plotf, ax=None, **kwargs):
import warnings
"""
Plots a Series on the given Matplotlib axes or the current axes
Parameters
----------
axes : Axes
series : Series
Notes
_____
Supports same kwargs as Axes.plot
.. deprecated:: 0.23.0
Use Series.plot() instead
"""
warnings.warn("'tsplot' is deprecated and will be removed in a "
"future version. Please use Series.plot() instead.",
FutureWarning, stacklevel=2)
# Used inferred freq is possible, need a test case for inferred
if ax is None:
import matplotlib.pyplot as plt
ax = plt.gca()
freq, series = _maybe_resample(series, ax, kwargs)
# Set ax with freq info
_decorate_axes(ax, freq, kwargs)
ax._plot_data.append((series, plotf, kwargs))
lines = plotf(ax, series.index._mpl_repr(), series.values, **kwargs)
# set date formatter, locators and rescale limits
format_dateaxis(ax, ax.freq, series.index)
return lines
def _maybe_resample(series, ax, kwargs):
# resample against axes freq if necessary
freq, ax_freq = _get_freq(ax, series)
if freq is None: # pragma: no cover
raise ValueError('Cannot use dynamic axis without frequency info')
# Convert DatetimeIndex to PeriodIndex
if isinstance(series.index, ABCDatetimeIndex):
series = series.to_period(freq=freq)
if ax_freq is not None and freq != ax_freq:
if is_superperiod(freq, ax_freq): # upsample input
series = series.copy()
series.index = series.index.asfreq(ax_freq, how='s')
freq = ax_freq
elif _is_sup(freq, ax_freq): # one is weekly
how = kwargs.pop('how', 'last')
series = getattr(series.resample('D'), how)().dropna()
series = getattr(series.resample(ax_freq), how)().dropna()
freq = ax_freq
elif is_subperiod(freq, ax_freq) or _is_sub(freq, ax_freq):
_upsample_others(ax, freq, kwargs)
else: # pragma: no cover
raise ValueError('Incompatible frequency conversion')
return freq, series
def _is_sub(f1, f2):
return ((f1.startswith('W') and is_subperiod('D', f2)) or
(f2.startswith('W') and is_subperiod(f1, 'D')))
def _is_sup(f1, f2):
return ((f1.startswith('W') and is_superperiod('D', f2)) or
(f2.startswith('W') and is_superperiod(f1, 'D')))
def _upsample_others(ax, freq, kwargs):
legend = ax.get_legend()
lines, labels = _replot_ax(ax, freq, kwargs)
_replot_ax(ax, freq, kwargs)
other_ax = None
if hasattr(ax, 'left_ax'):
other_ax = ax.left_ax
if hasattr(ax, 'right_ax'):
other_ax = ax.right_ax
if other_ax is not None:
rlines, rlabels = _replot_ax(other_ax, freq, kwargs)
lines.extend(rlines)
labels.extend(rlabels)
if (legend is not None and kwargs.get('legend', True) and
len(lines) > 0):
title = legend.get_title().get_text()
if title == 'None':
title = None
ax.legend(lines, labels, loc='best', title=title)
def _replot_ax(ax, freq, kwargs):
data = getattr(ax, '_plot_data', None)
# clear current axes and data
ax._plot_data = []
ax.clear()
_decorate_axes(ax, freq, kwargs)
lines = []
labels = []
if data is not None:
for series, plotf, kwds in data:
series = series.copy()
idx = series.index.asfreq(freq, how='S')
series.index = idx
ax._plot_data.append((series, plotf, kwds))
# for tsplot
if isinstance(plotf, compat.string_types):
from pandas.plotting._core import _plot_klass
plotf = _plot_klass[plotf]._plot
lines.append(plotf(ax, series.index._mpl_repr(),
series.values, **kwds)[0])
labels.append(pprint_thing(series.name))
return lines, labels
def _decorate_axes(ax, freq, kwargs):
"""Initialize axes for time-series plotting"""
if not hasattr(ax, '_plot_data'):
ax._plot_data = []
ax.freq = freq
xaxis = ax.get_xaxis()
xaxis.freq = freq
if not hasattr(ax, 'legendlabels'):
ax.legendlabels = [kwargs.get('label', None)]
else:
ax.legendlabels.append(kwargs.get('label', None))
ax.view_interval = None
ax.date_axis_info = None
def _get_ax_freq(ax):
"""
Get the freq attribute of the ax object if set.
Also checks shared axes (eg when using secondary yaxis, sharex=True
or twinx)
"""
ax_freq = getattr(ax, 'freq', None)
if ax_freq is None:
# check for left/right ax in case of secondary yaxis
if hasattr(ax, 'left_ax'):
ax_freq = getattr(ax.left_ax, 'freq', None)
elif hasattr(ax, 'right_ax'):
ax_freq = getattr(ax.right_ax, 'freq', None)
if ax_freq is None:
# check if a shared ax (sharex/twinx) has already freq set
shared_axes = ax.get_shared_x_axes().get_siblings(ax)
if len(shared_axes) > 1:
for shared_ax in shared_axes:
ax_freq = getattr(shared_ax, 'freq', None)
if ax_freq is not None:
break
return ax_freq
def _get_freq(ax, series):
# get frequency from data
freq = getattr(series.index, 'freq', None)
if freq is None:
freq = getattr(series.index, 'inferred_freq', None)
ax_freq = _get_ax_freq(ax)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
return freq, ax_freq
def _use_dynamic_x(ax, data):
freq = _get_index_freq(data)
ax_freq = _get_ax_freq(ax)
if freq is None: # convert irregular if axes has freq info
freq = ax_freq
else: # do not use tsplot if irregular was plotted first
if (ax_freq is None) and (len(ax.get_lines()) > 0):
return False
if freq is None:
return False
if isinstance(freq, DateOffset):
freq = freq.rule_code
else:
freq = get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
if freq is None:
return False
# hack this for 0.10.1, creating more technical debt...sigh
if isinstance(data.index, ABCDatetimeIndex):
base = get_freq(freq)
x = data.index
if (base <= FreqGroup.FR_DAY):
return x[:1].is_normalized
return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0]
return True
def _get_index_freq(data):
freq = getattr(data.index, 'freq', None)
if freq is None:
freq = getattr(data.index, 'inferred_freq', None)
if freq == 'B':
weekdays = np.unique(data.index.dayofweek)
if (5 in weekdays) or (6 in weekdays):
freq = None
return freq
def _maybe_convert_index(ax, data):
# tsplot converts automatically, but don't want to convert index
# over and over for DataFrames
if isinstance(data.index, ABCDatetimeIndex):
freq = getattr(data.index, 'freq', None)
if freq is None:
freq = getattr(data.index, 'inferred_freq', None)
if isinstance(freq, DateOffset):
freq = freq.rule_code
if freq is None:
freq = _get_ax_freq(ax)
if freq is None:
raise ValueError('Could not get frequency alias for plotting')
freq = get_base_alias(freq)
freq = frequencies.get_period_alias(freq)
data = data.to_period(freq=freq)
return data
# Patch methods for subplot. Only format_dateaxis is currently used.
# Do we need the rest for convenience?
def format_timedelta_ticks(x, pos, n_decimals):
"""
Convert seconds to 'D days HH:MM:SS.F'
"""
s, ns = divmod(x, 1e9)
m, s = divmod(s, 60)
h, m = divmod(m, 60)
d, h = divmod(h, 24)
decimals = int(ns * 10**(n_decimals - 9))
s = r'{:02d}:{:02d}:{:02d}'.format(int(h), int(m), int(s))
if n_decimals > 0:
s += '.{{:0{:0d}d}}'.format(n_decimals).format(decimals)
if d != 0:
s = '{:d} days '.format(int(d)) + s
return s
def _format_coord(freq, t, y):
return "t = {0} y = {1:8f}".format(Period(ordinal=int(t), freq=freq), y)
def format_dateaxis(subplot, freq, index):
"""
Pretty-formats the date axis (x-axis).
Major and minor ticks are automatically set for the frequency of the
current underlying series. As the dynamic mode is activated by
default, changing the limits of the x axis will intelligently change
the positions of the ticks.
"""
# handle index specific formatting
# Note: DatetimeIndex does not use this
# interface. DatetimeIndex uses matplotlib.date directly
if isinstance(index, ABCPeriodIndex):
majlocator = TimeSeries_DateLocator(freq, dynamic_mode=True,
minor_locator=False,
plot_obj=subplot)
minlocator = TimeSeries_DateLocator(freq, dynamic_mode=True,
minor_locator=True,
plot_obj=subplot)
subplot.xaxis.set_major_locator(majlocator)
subplot.xaxis.set_minor_locator(minlocator)
majformatter = TimeSeries_DateFormatter(freq, dynamic_mode=True,
minor_locator=False,
plot_obj=subplot)
minformatter = TimeSeries_DateFormatter(freq, dynamic_mode=True,
minor_locator=True,
plot_obj=subplot)
subplot.xaxis.set_major_formatter(majformatter)
subplot.xaxis.set_minor_formatter(minformatter)
# x and y coord info
subplot.format_coord = functools.partial(_format_coord, freq)
Loading ...