Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / arrays / test_numpy.py

"""
Additional tests for PandasArray that aren't covered by
the interface tests.
"""
import numpy as np
import pytest

import pandas.util._test_decorators as td

import pandas as pd
from pandas import compat
from pandas.arrays import PandasArray
from pandas.core.arrays.numpy_ import PandasDtype
import pandas.util.testing as tm


@pytest.fixture(params=[
    np.array(['a', 'b'], dtype=object),
    np.array([0, 1], dtype=float),
    np.array([0, 1], dtype=int),
    np.array([0, 1 + 2j], dtype=complex),
    np.array([True, False], dtype=bool),
    np.array([0, 1], dtype='datetime64[ns]'),
    np.array([0, 1], dtype='timedelta64[ns]'),
])
def any_numpy_array(request):
    """
    Parametrized fixture for NumPy arrays with different dtypes.

    This excludes string and bytes.
    """
    return request.param


# ----------------------------------------------------------------------------
# PandasDtype

@pytest.mark.parametrize('dtype, expected', [
    ('bool', True),
    ('int', True),
    ('uint', True),
    ('float', True),
    ('complex', True),
    ('str', False),
    pytest.param('bytes', False,
                 marks=pytest.mark.skipif(compat.PY2, reason="PY2")),
    ('datetime64[ns]', False),
    ('object', False),
    ('void', False),
])
def test_is_numeric(dtype, expected):
    dtype = PandasDtype(dtype)
    assert dtype._is_numeric is expected


@pytest.mark.parametrize('dtype, expected', [
    ('bool', True),
    ('int', False),
    ('uint', False),
    ('float', False),
    ('complex', False),
    ('str', False),
    pytest.param('bytes', False,
                 marks=pytest.mark.skipif(compat.PY2, reason="PY2")),
    ('datetime64[ns]', False),
    ('object', False),
    ('void', False)
])
def test_is_boolean(dtype, expected):
    dtype = PandasDtype(dtype)
    assert dtype._is_boolean is expected


def test_repr():
    dtype = PandasDtype(np.dtype("int64"))
    assert repr(dtype) == "PandasDtype('int64')"


def test_constructor_from_string():
    result = PandasDtype.construct_from_string("int64")
    expected = PandasDtype(np.dtype("int64"))
    assert result == expected


# ----------------------------------------------------------------------------
# Construction

def test_constructor_no_coercion():
    with pytest.raises(ValueError, match='NumPy array'):
        PandasArray([1, 2, 3])


def test_series_constructor_with_copy():
    ndarray = np.array([1, 2, 3])
    ser = pd.Series(PandasArray(ndarray), copy=True)

    assert ser.values is not ndarray


def test_series_constructor_with_astype():
    ndarray = np.array([1, 2, 3])
    result = pd.Series(PandasArray(ndarray), dtype="float64")
    expected = pd.Series([1.0, 2.0, 3.0], dtype="float64")
    tm.assert_series_equal(result, expected)


def test_from_sequence_dtype():
    arr = np.array([1, 2, 3], dtype='int64')
    result = PandasArray._from_sequence(arr, dtype='uint64')
    expected = PandasArray(np.array([1, 2, 3], dtype='uint64'))
    tm.assert_extension_array_equal(result, expected)


def test_constructor_copy():
    arr = np.array([0, 1])
    result = PandasArray(arr, copy=True)

    assert np.shares_memory(result._ndarray, arr) is False


def test_constructor_with_data(any_numpy_array):
    nparr = any_numpy_array
    arr = PandasArray(nparr)
    assert arr.dtype.numpy_dtype == nparr.dtype


# ----------------------------------------------------------------------------
# Conversion

def test_to_numpy():
    arr = PandasArray(np.array([1, 2, 3]))
    result = arr.to_numpy()
    assert result is arr._ndarray

    result = arr.to_numpy(copy=True)
    assert result is not arr._ndarray

    result = arr.to_numpy(dtype='f8')
    expected = np.array([1, 2, 3], dtype='f8')
    tm.assert_numpy_array_equal(result, expected)


# ----------------------------------------------------------------------------
# Setitem

def test_setitem_series():
    ser = pd.Series([1, 2, 3])
    ser.array[0] = 10
    expected = pd.Series([10, 2, 3])
    tm.assert_series_equal(ser, expected)


def test_setitem(any_numpy_array):
    nparr = any_numpy_array
    arr = PandasArray(nparr, copy=True)

    arr[0] = arr[1]
    nparr[0] = nparr[1]

    tm.assert_numpy_array_equal(arr.to_numpy(), nparr)


# ----------------------------------------------------------------------------
# Reductions

def test_bad_reduce_raises():
    arr = np.array([1, 2, 3], dtype='int64')
    arr = PandasArray(arr)
    msg = "cannot perform not_a_method with type int"
    with pytest.raises(TypeError, match=msg):
        arr._reduce(msg)


def test_validate_reduction_keyword_args():
    arr = PandasArray(np.array([1, 2, 3]))
    msg = "the 'keepdims' parameter is not supported .*all"
    with pytest.raises(ValueError, match=msg):
        arr.all(keepdims=True)


# ----------------------------------------------------------------------------
# Ops

@td.skip_if_no("numpy", min_version="1.13.0")
def test_ufunc():
    arr = PandasArray(np.array([-1.0, 0.0, 1.0]))
    result = np.abs(arr)
    expected = PandasArray(np.abs(arr._ndarray))
    tm.assert_extension_array_equal(result, expected)

    r1, r2 = np.divmod(arr, np.add(arr, 2))
    e1, e2 = np.divmod(arr._ndarray, np.add(arr._ndarray, 2))
    e1 = PandasArray(e1)
    e2 = PandasArray(e2)
    tm.assert_extension_array_equal(r1, e1)
    tm.assert_extension_array_equal(r2, e2)


@td.skip_if_no("numpy", min_version="1.13.0")
def test_basic_binop():
    # Just a basic smoke test. The EA interface tests exercise this
    # more thoroughly.
    x = PandasArray(np.array([1, 2, 3]))
    result = x + x
    expected = PandasArray(np.array([2, 4, 6]))
    tm.assert_extension_array_equal(result, expected)