"""Rudimentary Apache Arrow-backed ExtensionArray.
At the moment, just a boolean array / type is implemented.
Eventually, we'll want to parametrize the type and support
multiple dtypes. Not all methods are implemented yet, and the
current implementation is not efficient.
"""
import copy
import itertools
import numpy as np
import pyarrow as pa
import pandas as pd
from pandas.api.extensions import (
ExtensionArray, ExtensionDtype, register_extension_dtype, take)
@register_extension_dtype
class ArrowBoolDtype(ExtensionDtype):
type = np.bool_
kind = 'b'
name = 'arrow_bool'
na_value = pa.NULL
@classmethod
def construct_from_string(cls, string):
if string == cls.name:
return cls()
else:
raise TypeError("Cannot construct a '{}' from "
"'{}'".format(cls, string))
@classmethod
def construct_array_type(cls):
return ArrowBoolArray
def _is_boolean(self):
return True
class ArrowBoolArray(ExtensionArray):
def __init__(self, values):
if not isinstance(values, pa.ChunkedArray):
raise ValueError
assert values.type == pa.bool_()
self._data = values
self._dtype = ArrowBoolDtype()
def __repr__(self):
return "ArrowBoolArray({})".format(repr(self._data))
@classmethod
def from_scalars(cls, values):
arr = pa.chunked_array([pa.array(np.asarray(values))])
return cls(arr)
@classmethod
def from_array(cls, arr):
assert isinstance(arr, pa.Array)
return cls(pa.chunked_array([arr]))
@classmethod
def _from_sequence(cls, scalars, dtype=None, copy=False):
return cls.from_scalars(scalars)
def __getitem__(self, item):
if pd.api.types.is_scalar(item):
return self._data.to_pandas()[item]
else:
vals = self._data.to_pandas()[item]
return type(self).from_scalars(vals)
def __len__(self):
return len(self._data)
def astype(self, dtype, copy=True):
# needed to fix this astype for the Series constructor.
if isinstance(dtype, type(self.dtype)) and dtype == self.dtype:
if copy:
return self.copy()
return self
return super(ArrowBoolArray, self).astype(dtype, copy)
@property
def dtype(self):
return self._dtype
@property
def nbytes(self):
return sum(x.size for chunk in self._data.chunks
for x in chunk.buffers()
if x is not None)
def isna(self):
nas = pd.isna(self._data.to_pandas())
return type(self).from_scalars(nas)
def take(self, indices, allow_fill=False, fill_value=None):
data = self._data.to_pandas()
if allow_fill and fill_value is None:
fill_value = self.dtype.na_value
result = take(data, indices, fill_value=fill_value,
allow_fill=allow_fill)
return self._from_sequence(result, dtype=self.dtype)
def copy(self, deep=False):
if deep:
return type(self)(copy.deepcopy(self._data))
else:
return type(self)(copy.copy(self._data))
def _concat_same_type(cls, to_concat):
chunks = list(itertools.chain.from_iterable(x._data.chunks
for x in to_concat))
arr = pa.chunked_array(chunks)
return cls(arr)
def __invert__(self):
return type(self).from_scalars(
~self._data.to_pandas()
)
def _reduce(self, method, skipna=True, **kwargs):
if skipna:
arr = self[~self.isna()]
else:
arr = self
try:
op = getattr(arr, method)
except AttributeError:
raise TypeError
return op(**kwargs)
def any(self, axis=0, out=None):
return self._data.to_pandas().any()
def all(self, axis=0, out=None):
return self._data.to_pandas().all()