Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / extension / base / getitem.py

import numpy as np
import pytest

import pandas as pd

from .base import BaseExtensionTests


class BaseGetitemTests(BaseExtensionTests):
    """Tests for ExtensionArray.__getitem__."""

    def test_iloc_series(self, data):
        ser = pd.Series(data)
        result = ser.iloc[:4]
        expected = pd.Series(data[:4])
        self.assert_series_equal(result, expected)

        result = ser.iloc[[0, 1, 2, 3]]
        self.assert_series_equal(result, expected)

    def test_iloc_frame(self, data):
        df = pd.DataFrame({"A": data, 'B':
                           np.arange(len(data), dtype='int64')})
        expected = pd.DataFrame({"A": data[:4]})

        # slice -> frame
        result = df.iloc[:4, [0]]
        self.assert_frame_equal(result, expected)

        # sequence -> frame
        result = df.iloc[[0, 1, 2, 3], [0]]
        self.assert_frame_equal(result, expected)

        expected = pd.Series(data[:4], name='A')

        # slice -> series
        result = df.iloc[:4, 0]
        self.assert_series_equal(result, expected)

        # sequence -> series
        result = df.iloc[:4, 0]
        self.assert_series_equal(result, expected)

    def test_loc_series(self, data):
        ser = pd.Series(data)
        result = ser.loc[:3]
        expected = pd.Series(data[:4])
        self.assert_series_equal(result, expected)

        result = ser.loc[[0, 1, 2, 3]]
        self.assert_series_equal(result, expected)

    def test_loc_frame(self, data):
        df = pd.DataFrame({"A": data,
                           'B': np.arange(len(data), dtype='int64')})
        expected = pd.DataFrame({"A": data[:4]})

        # slice -> frame
        result = df.loc[:3, ['A']]
        self.assert_frame_equal(result, expected)

        # sequence -> frame
        result = df.loc[[0, 1, 2, 3], ['A']]
        self.assert_frame_equal(result, expected)

        expected = pd.Series(data[:4], name='A')

        # slice -> series
        result = df.loc[:3, 'A']
        self.assert_series_equal(result, expected)

        # sequence -> series
        result = df.loc[:3, 'A']
        self.assert_series_equal(result, expected)

    def test_getitem_scalar(self, data):
        result = data[0]
        assert isinstance(result, data.dtype.type)

        result = pd.Series(data)[0]
        assert isinstance(result, data.dtype.type)

    def test_getitem_scalar_na(self, data_missing, na_cmp, na_value):
        result = data_missing[0]
        assert na_cmp(result, na_value)

    def test_getitem_mask(self, data):
        # Empty mask, raw array
        mask = np.zeros(len(data), dtype=bool)
        result = data[mask]
        assert len(result) == 0
        assert isinstance(result, type(data))

        # Empty mask, in series
        mask = np.zeros(len(data), dtype=bool)
        result = pd.Series(data)[mask]
        assert len(result) == 0
        assert result.dtype == data.dtype

        # non-empty mask, raw array
        mask[0] = True
        result = data[mask]
        assert len(result) == 1
        assert isinstance(result, type(data))

        # non-empty mask, in series
        result = pd.Series(data)[mask]
        assert len(result) == 1
        assert result.dtype == data.dtype

    def test_getitem_slice(self, data):
        # getitem[slice] should return an array
        result = data[slice(0)]  # empty
        assert isinstance(result, type(data))

        result = data[slice(1)]  # scalar
        assert isinstance(result, type(data))

    def test_get(self, data):
        # GH 20882
        s = pd.Series(data, index=[2 * i for i in range(len(data))])
        assert s.get(4) == s.iloc[2]

        result = s.get([4, 6])
        expected = s.iloc[[2, 3]]
        self.assert_series_equal(result, expected)

        result = s.get(slice(2))
        expected = s.iloc[[0, 1]]
        self.assert_series_equal(result, expected)

        assert s.get(-1) is None
        assert s.get(s.index.max() + 1) is None

        s = pd.Series(data[:6], index=list('abcdef'))
        assert s.get('c') == s.iloc[2]

        result = s.get(slice('b', 'd'))
        expected = s.iloc[[1, 2, 3]]
        self.assert_series_equal(result, expected)

        result = s.get('Z')
        assert result is None

        assert s.get(4) == s.iloc[4]
        assert s.get(-1) == s.iloc[-1]
        assert s.get(len(s)) is None

        # GH 21257
        s = pd.Series(data)
        s2 = s[::2]
        assert s2.get(1) is None

    def test_take_sequence(self, data):
        result = pd.Series(data)[[0, 1, 3]]
        assert result.iloc[0] == data[0]
        assert result.iloc[1] == data[1]
        assert result.iloc[2] == data[3]

    def test_take(self, data, na_value, na_cmp):
        result = data.take([0, -1])
        assert result.dtype == data.dtype
        assert result[0] == data[0]
        assert result[1] == data[-1]

        result = data.take([0, -1], allow_fill=True, fill_value=na_value)
        assert result[0] == data[0]
        assert na_cmp(result[1], na_value)

        with pytest.raises(IndexError, match="out of bounds"):
            data.take([len(data) + 1])

    def test_take_empty(self, data, na_value, na_cmp):
        empty = data[:0]

        result = empty.take([-1], allow_fill=True)
        assert na_cmp(result[0], na_value)

        with pytest.raises(IndexError):
            empty.take([-1])

        with pytest.raises(IndexError, match="cannot do a non-empty take"):
            empty.take([0, 1])

    def test_take_negative(self, data):
        # https://github.com/pandas-dev/pandas/issues/20640
        n = len(data)
        result = data.take([0, -n, n - 1, -1])
        expected = data.take([0, 0, n - 1, n - 1])
        self.assert_extension_array_equal(result, expected)

    def test_take_non_na_fill_value(self, data_missing):
        fill_value = data_missing[1]  # valid
        na = data_missing[0]

        array = data_missing._from_sequence([na, fill_value, na])
        result = array.take([-1, 1], fill_value=fill_value, allow_fill=True)
        expected = array.take([1, 1])
        self.assert_extension_array_equal(result, expected)

    def test_take_pandas_style_negative_raises(self, data, na_value):
        with pytest.raises(ValueError):
            data.take([0, -2], fill_value=na_value, allow_fill=True)

    @pytest.mark.parametrize('allow_fill', [True, False])
    def test_take_out_of_bounds_raises(self, data, allow_fill):
        arr = data[:3]
        with pytest.raises(IndexError):
            arr.take(np.asarray([0, 3]), allow_fill=allow_fill)

    def test_take_series(self, data):
        s = pd.Series(data)
        result = s.take([0, -1])
        expected = pd.Series(
            data._from_sequence([data[0], data[len(data) - 1]], dtype=s.dtype),
            index=[0, len(data) - 1])
        self.assert_series_equal(result, expected)

    def test_reindex(self, data, na_value):
        s = pd.Series(data)
        result = s.reindex([0, 1, 3])
        expected = pd.Series(data.take([0, 1, 3]), index=[0, 1, 3])
        self.assert_series_equal(result, expected)

        n = len(data)
        result = s.reindex([-1, 0, n])
        expected = pd.Series(
            data._from_sequence([na_value, data[0], na_value],
                                dtype=s.dtype),
            index=[-1, 0, n])
        self.assert_series_equal(result, expected)

        result = s.reindex([n, n + 1])
        expected = pd.Series(data._from_sequence([na_value, na_value],
                                                 dtype=s.dtype),
                             index=[n, n + 1])
        self.assert_series_equal(result, expected)

    def test_reindex_non_na_fill_value(self, data_missing):
        valid = data_missing[1]
        na = data_missing[0]

        array = data_missing._from_sequence([na, valid])
        ser = pd.Series(array)
        result = ser.reindex([0, 1, 2], fill_value=valid)
        expected = pd.Series(data_missing._from_sequence([na, valid, valid]))

        self.assert_series_equal(result, expected)