import collections
import operator
import pytest
from pandas.compat import PY2, PY36
import pandas as pd
from pandas.tests.extension import base
import pandas.util.testing as tm
from .array import JSONArray, JSONDtype, make_data
pytestmark = pytest.mark.skipif(PY2, reason="Py2 doesn't have a UserDict")
@pytest.fixture
def dtype():
return JSONDtype()
@pytest.fixture
def data():
"""Length-100 PeriodArray for semantics test."""
data = make_data()
# Why the while loop? NumPy is unable to construct an ndarray from
# equal-length ndarrays. Many of our operations involve coercing the
# EA to an ndarray of objects. To avoid random test failures, we ensure
# that our data is coercable to an ndarray. Several tests deal with only
# the first two elements, so that's what we'll check.
while len(data[0]) == len(data[1]):
data = make_data()
return JSONArray(data)
@pytest.fixture
def data_missing():
"""Length 2 array with [NA, Valid]"""
return JSONArray([{}, {'a': 10}])
@pytest.fixture
def data_for_sorting():
return JSONArray([{'b': 1}, {'c': 4}, {'a': 2, 'c': 3}])
@pytest.fixture
def data_missing_for_sorting():
return JSONArray([{'b': 1}, {}, {'a': 4}])
@pytest.fixture
def na_value(dtype):
return dtype.na_value
@pytest.fixture
def na_cmp():
return operator.eq
@pytest.fixture
def data_for_grouping():
return JSONArray([
{'b': 1}, {'b': 1},
{}, {},
{'a': 0, 'c': 2}, {'a': 0, 'c': 2},
{'b': 1},
{'c': 2},
])
class BaseJSON(object):
# NumPy doesn't handle an array of equal-length UserDicts.
# The default assert_series_equal eventually does a
# Series.values, which raises. We work around it by
# converting the UserDicts to dicts.
def assert_series_equal(self, left, right, **kwargs):
if left.dtype.name == 'json':
assert left.dtype == right.dtype
left = pd.Series(JSONArray(left.values.astype(object)),
index=left.index, name=left.name)
right = pd.Series(JSONArray(right.values.astype(object)),
index=right.index, name=right.name)
tm.assert_series_equal(left, right, **kwargs)
def assert_frame_equal(self, left, right, *args, **kwargs):
tm.assert_index_equal(
left.columns, right.columns,
exact=kwargs.get('check_column_type', 'equiv'),
check_names=kwargs.get('check_names', True),
check_exact=kwargs.get('check_exact', False),
check_categorical=kwargs.get('check_categorical', True),
obj='{obj}.columns'.format(obj=kwargs.get('obj', 'DataFrame')))
jsons = (left.dtypes == 'json').index
for col in jsons:
self.assert_series_equal(left[col], right[col],
*args, **kwargs)
left = left.drop(columns=jsons)
right = right.drop(columns=jsons)
tm.assert_frame_equal(left, right, *args, **kwargs)
class TestDtype(BaseJSON, base.BaseDtypeTests):
pass
class TestInterface(BaseJSON, base.BaseInterfaceTests):
def test_custom_asserts(self):
# This would always trigger the KeyError from trying to put
# an array of equal-length UserDicts inside an ndarray.
data = JSONArray([collections.UserDict({'a': 1}),
collections.UserDict({'b': 2}),
collections.UserDict({'c': 3})])
a = pd.Series(data)
self.assert_series_equal(a, a)
self.assert_frame_equal(a.to_frame(), a.to_frame())
b = pd.Series(data.take([0, 0, 1]))
with pytest.raises(AssertionError):
self.assert_series_equal(a, b)
with pytest.raises(AssertionError):
self.assert_frame_equal(a.to_frame(), b.to_frame())
class TestConstructors(BaseJSON, base.BaseConstructorsTests):
@pytest.mark.skip(reason="not implemented constructor from dtype")
def test_from_dtype(self, data):
# construct from our dtype & string dtype
pass
class TestReshaping(BaseJSON, base.BaseReshapingTests):
@pytest.mark.skip(reason="Different definitions of NA")
def test_stack(self):
"""
The test does .astype(object).stack(). If we happen to have
any missing values in `data`, then we'll end up with different
rows since we consider `{}` NA, but `.astype(object)` doesn't.
"""
@pytest.mark.xfail(reason="dict for NA")
def test_unstack(self, data, index):
# The base test has NaN for the expected NA value.
# this matches otherwise
return super().test_unstack(data, index)
class TestGetitem(BaseJSON, base.BaseGetitemTests):
pass
class TestMissing(BaseJSON, base.BaseMissingTests):
@pytest.mark.skip(reason="Setting a dict as a scalar")
def test_fillna_series(self):
"""We treat dictionaries as a mapping in fillna, not a scalar."""
@pytest.mark.skip(reason="Setting a dict as a scalar")
def test_fillna_frame(self):
"""We treat dictionaries as a mapping in fillna, not a scalar."""
unhashable = pytest.mark.skip(reason="Unhashable")
unstable = pytest.mark.skipif(not PY36, # 3.6 or higher
reason="Dictionary order unstable")
class TestReduce(base.BaseNoReduceTests):
pass
class TestMethods(BaseJSON, base.BaseMethodsTests):
@unhashable
def test_value_counts(self, all_data, dropna):
pass
@unhashable
def test_sort_values_frame(self):
# TODO (EA.factorize): see if _values_for_factorize allows this.
pass
@unstable
def test_argsort(self, data_for_sorting):
super(TestMethods, self).test_argsort(data_for_sorting)
@unstable
def test_argsort_missing(self, data_missing_for_sorting):
super(TestMethods, self).test_argsort_missing(
data_missing_for_sorting)
@unstable
@pytest.mark.parametrize('ascending', [True, False])
def test_sort_values(self, data_for_sorting, ascending):
super(TestMethods, self).test_sort_values(
data_for_sorting, ascending)
@unstable
@pytest.mark.parametrize('ascending', [True, False])
def test_sort_values_missing(self, data_missing_for_sorting, ascending):
super(TestMethods, self).test_sort_values_missing(
data_missing_for_sorting, ascending)
@pytest.mark.skip(reason="combine for JSONArray not supported")
def test_combine_le(self, data_repeated):
pass
@pytest.mark.skip(reason="combine for JSONArray not supported")
def test_combine_add(self, data_repeated):
pass
@pytest.mark.skip(reason="combine for JSONArray not supported")
def test_combine_first(self, data):
pass
@unhashable
def test_hash_pandas_object_works(self, data, kind):
super().test_hash_pandas_object_works(data, kind)
@pytest.mark.skip(reason="broadcasting error")
def test_where_series(self, data, na_value):
# Fails with
# *** ValueError: operands could not be broadcast together
# with shapes (4,) (4,) (0,)
super().test_where_series(data, na_value)
@pytest.mark.skip(reason="Can't compare dicts.")
def test_searchsorted(self, data_for_sorting):
super(TestMethods, self).test_searchsorted(data_for_sorting)
class TestCasting(BaseJSON, base.BaseCastingTests):
@pytest.mark.skip(reason="failing on np.array(self, dtype=str)")
def test_astype_str(self):
"""This currently fails in NumPy on np.array(self, dtype=str) with
*** ValueError: setting an array element with a sequence
"""
# We intentionally don't run base.BaseSetitemTests because pandas'
# internals has trouble setting sequences of values into scalar positions.
class TestGroupby(BaseJSON, base.BaseGroupbyTests):
@unhashable
def test_groupby_extension_transform(self):
"""
This currently fails in Series.name.setter, since the
name must be hashable, but the value is a dictionary.
I think this is what we want, i.e. `.name` should be the original
values, and not the values for factorization.
"""
@unhashable
def test_groupby_extension_apply(self):
"""
This fails in Index._do_unique_check with
> hash(val)
E TypeError: unhashable type: 'UserDict' with
I suspect that once we support Index[ExtensionArray],
we'll be able to dispatch unique.
"""
@unstable
@pytest.mark.parametrize('as_index', [True, False])
def test_groupby_extension_agg(self, as_index, data_for_grouping):
super(TestGroupby, self).test_groupby_extension_agg(
as_index, data_for_grouping
)
class TestArithmeticOps(BaseJSON, base.BaseArithmeticOpsTests):
def test_error(self, data, all_arithmetic_operators):
pass
def test_add_series_with_extension_array(self, data):
ser = pd.Series(data)
with pytest.raises(TypeError, match="unsupported"):
ser + data
def _check_divmod_op(self, s, op, other, exc=NotImplementedError):
return super(TestArithmeticOps, self)._check_divmod_op(
s, op, other, exc=TypeError
)
class TestComparisonOps(BaseJSON, base.BaseComparisonOpsTests):
pass
class TestPrinting(BaseJSON, base.BasePrintingTests):
pass