Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / frame / test_arithmetic.py

# -*- coding: utf-8 -*-
from collections import deque
from datetime import datetime
import operator

import numpy as np
import pytest

from pandas.compat import range

import pandas as pd
from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int
import pandas.util.testing as tm

# -------------------------------------------------------------------
# Comparisons


class TestFrameComparisons(object):
    # Specifically _not_ flex-comparisons

    def test_comparison_invalid(self):

        def check(df, df2):

            for (x, y) in [(df, df2), (df2, df)]:
                # we expect the result to match Series comparisons for
                # == and !=, inequalities should raise
                result = x == y
                expected = pd.DataFrame({col: x[col] == y[col]
                                         for col in x.columns},
                                        index=x.index, columns=x.columns)
                tm.assert_frame_equal(result, expected)

                result = x != y
                expected = pd.DataFrame({col: x[col] != y[col]
                                         for col in x.columns},
                                        index=x.index, columns=x.columns)
                tm.assert_frame_equal(result, expected)

                with pytest.raises(TypeError):
                    x >= y
                with pytest.raises(TypeError):
                    x > y
                with pytest.raises(TypeError):
                    x < y
                with pytest.raises(TypeError):
                    x <= y

        # GH4968
        # invalid date/int comparisons
        df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=['a'])
        df['dates'] = pd.date_range('20010101', periods=len(df))

        df2 = df.copy()
        df2['dates'] = df['a']
        check(df, df2)

        df = pd.DataFrame(np.random.randint(10, size=(10, 2)),
                          columns=['a', 'b'])
        df2 = pd.DataFrame({'a': pd.date_range('20010101', periods=len(df)),
                            'b': pd.date_range('20100101', periods=len(df))})
        check(df, df2)

    def test_timestamp_compare(self):
        # make sure we can compare Timestamps on the right AND left hand side
        # GH#4982
        df = pd. DataFrame({'dates1': pd.date_range('20010101', periods=10),
                            'dates2': pd.date_range('20010102', periods=10),
                            'intcol': np.random.randint(1000000000, size=10),
                            'floatcol': np.random.randn(10),
                            'stringcol': list(tm.rands(10))})
        df.loc[np.random.rand(len(df)) > 0.5, 'dates2'] = pd.NaT
        ops = {'gt': 'lt', 'lt': 'gt', 'ge': 'le', 'le': 'ge', 'eq': 'eq',
               'ne': 'ne'}

        for left, right in ops.items():
            left_f = getattr(operator, left)
            right_f = getattr(operator, right)

            # no nats
            if left in ['eq', 'ne']:
                expected = left_f(df, pd.Timestamp('20010109'))
                result = right_f(pd.Timestamp('20010109'), df)
                tm.assert_frame_equal(result, expected)
            else:
                with pytest.raises(TypeError):
                    left_f(df, pd.Timestamp('20010109'))
                with pytest.raises(TypeError):
                    right_f(pd.Timestamp('20010109'), df)
            # nats
            expected = left_f(df, pd.Timestamp('nat'))
            result = right_f(pd.Timestamp('nat'), df)
            tm.assert_frame_equal(result, expected)

    def test_mixed_comparison(self):
        # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False,
        # not raise TypeError
        # (this appears to be fixed before GH#22163, not sure when)
        df = pd.DataFrame([['1989-08-01', 1], ['1989-08-01', 2]])
        other = pd.DataFrame([['a', 'b'], ['c', 'd']])

        result = df == other
        assert not result.any().any()

        result = df != other
        assert result.all().all()

    def test_df_boolean_comparison_error(self):
        # GH#4576, GH#22880
        # comparing DataFrame against list/tuple with len(obj) matching
        #  len(df.columns) is supported as of GH#22800
        df = pd.DataFrame(np.arange(6).reshape((3, 2)))

        expected = pd.DataFrame([[False, False],
                                 [True, False],
                                 [False, False]])

        result = df == (2, 2)
        tm.assert_frame_equal(result, expected)

        result = df == [2, 2]
        tm.assert_frame_equal(result, expected)

    def test_df_float_none_comparison(self):
        df = pd.DataFrame(np.random.randn(8, 3), index=range(8),
                          columns=['A', 'B', 'C'])

        result = df.__eq__(None)
        assert not result.any().any()

    def test_df_string_comparison(self):
        df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}])
        mask_a = df.a > 1
        tm.assert_frame_equal(df[mask_a], df.loc[1:1, :])
        tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :])

        mask_b = df.b == "foo"
        tm.assert_frame_equal(df[mask_b], df.loc[0:0, :])
        tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :])


class TestFrameFlexComparisons(object):
    # TODO: test_bool_flex_frame needs a better name
    def test_bool_flex_frame(self):
        data = np.random.randn(5, 3)
        other_data = np.random.randn(5, 3)
        df = pd.DataFrame(data)
        other = pd.DataFrame(other_data)
        ndim_5 = np.ones(df.shape + (1, 3))

        # Unaligned
        def _check_unaligned_frame(meth, op, df, other):
            part_o = other.loc[3:, 1:].copy()
            rs = meth(part_o)
            xp = op(df, part_o.reindex(index=df.index, columns=df.columns))
            tm.assert_frame_equal(rs, xp)

        # DataFrame
        assert df.eq(df).values.all()
        assert not df.ne(df).values.any()
        for op in ['eq', 'ne', 'gt', 'lt', 'ge', 'le']:
            f = getattr(df, op)
            o = getattr(operator, op)
            # No NAs
            tm.assert_frame_equal(f(other), o(df, other))
            _check_unaligned_frame(f, o, df, other)
            # ndarray
            tm.assert_frame_equal(f(other.values), o(df, other.values))
            # scalar
            tm.assert_frame_equal(f(0), o(df, 0))
            # NAs
            msg = "Unable to coerce to Series/DataFrame"
            tm.assert_frame_equal(f(np.nan), o(df, np.nan))
            with pytest.raises(ValueError, match=msg):
                f(ndim_5)

        # Series
        def _test_seq(df, idx_ser, col_ser):
            idx_eq = df.eq(idx_ser, axis=0)
            col_eq = df.eq(col_ser)
            idx_ne = df.ne(idx_ser, axis=0)
            col_ne = df.ne(col_ser)
            tm.assert_frame_equal(col_eq, df == pd.Series(col_ser))
            tm.assert_frame_equal(col_eq, -col_ne)
            tm.assert_frame_equal(idx_eq, -idx_ne)
            tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T)
            tm.assert_frame_equal(col_eq, df.eq(list(col_ser)))
            tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0))
            tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0))

            idx_gt = df.gt(idx_ser, axis=0)
            col_gt = df.gt(col_ser)
            idx_le = df.le(idx_ser, axis=0)
            col_le = df.le(col_ser)

            tm.assert_frame_equal(col_gt, df > pd.Series(col_ser))
            tm.assert_frame_equal(col_gt, -col_le)
            tm.assert_frame_equal(idx_gt, -idx_le)
            tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T)

            idx_ge = df.ge(idx_ser, axis=0)
            col_ge = df.ge(col_ser)
            idx_lt = df.lt(idx_ser, axis=0)
            col_lt = df.lt(col_ser)
            tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser))
            tm.assert_frame_equal(col_ge, -col_lt)
            tm.assert_frame_equal(idx_ge, -idx_lt)
            tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T)

        idx_ser = pd.Series(np.random.randn(5))
        col_ser = pd.Series(np.random.randn(3))
        _test_seq(df, idx_ser, col_ser)

        # list/tuple
        _test_seq(df, idx_ser.values, col_ser.values)

        # NA
        df.loc[0, 0] = np.nan
        rs = df.eq(df)
        assert not rs.loc[0, 0]
        rs = df.ne(df)
        assert rs.loc[0, 0]
        rs = df.gt(df)
        assert not rs.loc[0, 0]
        rs = df.lt(df)
        assert not rs.loc[0, 0]
        rs = df.ge(df)
        assert not rs.loc[0, 0]
        rs = df.le(df)
        assert not rs.loc[0, 0]

        # complex
        arr = np.array([np.nan, 1, 6, np.nan])
        arr2 = np.array([2j, np.nan, 7, None])
        df = pd.DataFrame({'a': arr})
        df2 = pd.DataFrame({'a': arr2})
        rs = df.gt(df2)
        assert not rs.values.any()
        rs = df.ne(df2)
        assert rs.values.all()

        arr3 = np.array([2j, np.nan, None])
        df3 = pd.DataFrame({'a': arr3})
        rs = df3.gt(2j)
        assert not rs.values.any()

        # corner, dtype=object
        df1 = pd.DataFrame({'col': ['foo', np.nan, 'bar']})
        df2 = pd.DataFrame({'col': ['foo', datetime.now(), 'bar']})
        result = df1.ne(df2)
        exp = pd.DataFrame({'col': [False, True, False]})
        tm.assert_frame_equal(result, exp)

    def test_flex_comparison_nat(self):
        # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT,
        # and _definitely_ not be NaN
        df = pd.DataFrame([pd.NaT])

        result = df == pd.NaT
        # result.iloc[0, 0] is a np.bool_ object
        assert result.iloc[0, 0].item() is False

        result = df.eq(pd.NaT)
        assert result.iloc[0, 0].item() is False

        result = df != pd.NaT
        assert result.iloc[0, 0].item() is True

        result = df.ne(pd.NaT)
        assert result.iloc[0, 0].item() is True

    @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le'])
    def test_df_flex_cmp_constant_return_types(self, opname):
        # GH 15077, non-empty DataFrame
        df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]})
        const = 2

        result = getattr(df, opname)(const).get_dtype_counts()
        tm.assert_series_equal(result, pd.Series([2], ['bool']))

    @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le'])
    def test_df_flex_cmp_constant_return_types_empty(self, opname):
        # GH 15077 empty DataFrame
        df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]})
        const = 2

        empty = df.iloc[:0]
        result = getattr(empty, opname)(const).get_dtype_counts()
        tm.assert_series_equal(result, pd.Series([2], ['bool']))


# -------------------------------------------------------------------
# Arithmetic

class TestFrameFlexArithmetic(object):

    def test_df_add_td64_columnwise(self):
        # GH 22534 Check that column-wise addition broadcasts correctly
        dti = pd.date_range('2016-01-01', periods=10)
        tdi = pd.timedelta_range('1', periods=10)
        tser = pd.Series(tdi)
        df = pd.DataFrame({0: dti, 1: tdi})

        result = df.add(tser, axis=0)
        expected = pd.DataFrame({0: dti + tdi,
                                 1: tdi + tdi})
        tm.assert_frame_equal(result, expected)

    def test_df_add_flex_filled_mixed_dtypes(self):
        # GH 19611
        dti = pd.date_range('2016-01-01', periods=3)
        ser = pd.Series(['1 Day', 'NaT', '2 Days'], dtype='timedelta64[ns]')
        df = pd.DataFrame({'A': dti, 'B': ser})
        other = pd.DataFrame({'A': ser, 'B': ser})
        fill = pd.Timedelta(days=1).to_timedelta64()
        result = df.add(other, fill_value=fill)

        expected = pd.DataFrame(
            {'A': pd.Series(['2016-01-02', '2016-01-03', '2016-01-05'],
                            dtype='datetime64[ns]'),
             'B': ser * 2})
        tm.assert_frame_equal(result, expected)

    def test_arith_flex_frame(self, all_arithmetic_operators, float_frame,
                              mixed_float_frame):
        # one instance of parametrized fixture
        op = all_arithmetic_operators

        def f(x, y):
            # r-versions not in operator-stdlib; get op without "r" and invert
            if op.startswith('__r'):
                return getattr(operator, op.replace('__r', '__'))(y, x)
            return getattr(operator, op)(x, y)

        result = getattr(float_frame, op)(2 * float_frame)
        expected = f(float_frame, 2 * float_frame)
        tm.assert_frame_equal(result, expected)

        # vs mix float
        result = getattr(mixed_float_frame, op)(2 * mixed_float_frame)
        expected = f(mixed_float_frame, 2 * mixed_float_frame)
        tm.assert_frame_equal(result, expected)
        _check_mixed_float(result, dtype=dict(C=None))
Loading ...