# -*- coding: utf-8 -*-
from __future__ import print_function
from datetime import datetime
import numpy as np
import pytest
from pandas.compat import lrange
import pandas as pd
from pandas import DataFrame, Index, Series, Timestamp, date_range
from pandas.tests.frame.common import TestData
import pandas.util.testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal
class TestDataFrameConcatCommon(TestData):
def test_concat_multiple_frames_dtypes(self):
# GH 2759
A = DataFrame(data=np.ones((10, 2)), columns=[
'foo', 'bar'], dtype=np.float64)
B = DataFrame(data=np.ones((10, 2)), dtype=np.float32)
results = pd.concat((A, B), axis=1).get_dtype_counts()
expected = Series(dict(float64=2, float32=2))
assert_series_equal(results, expected)
@pytest.mark.parametrize('data', [
pd.date_range('2000', periods=4),
pd.date_range('2000', periods=4, tz="US/Central"),
pd.period_range('2000', periods=4),
pd.timedelta_range(0, periods=4),
])
def test_combine_datetlike_udf(self, data):
# https://github.com/pandas-dev/pandas/issues/23079
df = pd.DataFrame({"A": data})
other = df.copy()
df.iloc[1, 0] = None
def combiner(a, b):
return b
result = df.combine(other, combiner)
tm.assert_frame_equal(result, other)
def test_concat_multiple_tzs(self):
# GH 12467
# combining datetime tz-aware and naive DataFrames
ts1 = Timestamp('2015-01-01', tz=None)
ts2 = Timestamp('2015-01-01', tz='UTC')
ts3 = Timestamp('2015-01-01', tz='EST')
df1 = DataFrame(dict(time=[ts1]))
df2 = DataFrame(dict(time=[ts2]))
df3 = DataFrame(dict(time=[ts3]))
results = pd.concat([df1, df2]).reset_index(drop=True)
expected = DataFrame(dict(time=[ts1, ts2]), dtype=object)
assert_frame_equal(results, expected)
results = pd.concat([df1, df3]).reset_index(drop=True)
expected = DataFrame(dict(time=[ts1, ts3]), dtype=object)
assert_frame_equal(results, expected)
results = pd.concat([df2, df3]).reset_index(drop=True)
expected = DataFrame(dict(time=[ts2, ts3]))
assert_frame_equal(results, expected)
@pytest.mark.parametrize(
't1',
[
'2015-01-01',
pytest.param(pd.NaT, marks=pytest.mark.xfail(
reason='GH23037 incorrect dtype when concatenating'))])
def test_concat_tz_NaT(self, t1):
# GH 22796
# Concating tz-aware multicolumn DataFrames
ts1 = Timestamp(t1, tz='UTC')
ts2 = Timestamp('2015-01-01', tz='UTC')
ts3 = Timestamp('2015-01-01', tz='UTC')
df1 = DataFrame([[ts1, ts2]])
df2 = DataFrame([[ts3]])
result = pd.concat([df1, df2])
expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0])
assert_frame_equal(result, expected)
def test_concat_tz_not_aligned(self):
# GH 22796
ts = pd.to_datetime([1, 2]).tz_localize("UTC")
a = pd.DataFrame({"A": ts})
b = pd.DataFrame({"A": ts, "B": ts})
result = pd.concat([a, b], sort=True, ignore_index=True)
expected = pd.DataFrame({"A": list(ts) + list(ts),
"B": [pd.NaT, pd.NaT] + list(ts)})
assert_frame_equal(result, expected)
def test_concat_tuple_keys(self):
# GH 14438
df1 = pd.DataFrame(np.ones((2, 2)), columns=list('AB'))
df2 = pd.DataFrame(np.ones((3, 2)) * 2, columns=list('AB'))
results = pd.concat((df1, df2), keys=[('bee', 'bah'), ('bee', 'boo')])
expected = pd.DataFrame(
{'A': {('bee', 'bah', 0): 1.0,
('bee', 'bah', 1): 1.0,
('bee', 'boo', 0): 2.0,
('bee', 'boo', 1): 2.0,
('bee', 'boo', 2): 2.0},
'B': {('bee', 'bah', 0): 1.0,
('bee', 'bah', 1): 1.0,
('bee', 'boo', 0): 2.0,
('bee', 'boo', 1): 2.0,
('bee', 'boo', 2): 2.0}})
assert_frame_equal(results, expected)
def test_append_series_dict(self):
df = DataFrame(np.random.randn(5, 4),
columns=['foo', 'bar', 'baz', 'qux'])
series = df.loc[4]
msg = 'Indexes have overlapping values'
with pytest.raises(ValueError, match=msg):
df.append(series, verify_integrity=True)
series.name = None
msg = 'Can only append a Series if ignore_index=True'
with pytest.raises(TypeError, match=msg):
df.append(series, verify_integrity=True)
result = df.append(series[::-1], ignore_index=True)
expected = df.append(DataFrame({0: series[::-1]}, index=df.columns).T,
ignore_index=True)
assert_frame_equal(result, expected)
# dict
result = df.append(series.to_dict(), ignore_index=True)
assert_frame_equal(result, expected)
result = df.append(series[::-1][:3], ignore_index=True)
expected = df.append(DataFrame({0: series[::-1][:3]}).T,
ignore_index=True, sort=True)
assert_frame_equal(result, expected.loc[:, result.columns])
# can append when name set
row = df.loc[4]
row.name = 5
result = df.append(row)
expected = df.append(df[-1:], ignore_index=True)
assert_frame_equal(result, expected)
def test_append_list_of_series_dicts(self):
df = DataFrame(np.random.randn(5, 4),
columns=['foo', 'bar', 'baz', 'qux'])
dicts = [x.to_dict() for idx, x in df.iterrows()]
result = df.append(dicts, ignore_index=True)
expected = df.append(df, ignore_index=True)
assert_frame_equal(result, expected)
# different columns
dicts = [{'foo': 1, 'bar': 2, 'baz': 3, 'peekaboo': 4},
{'foo': 5, 'bar': 6, 'baz': 7, 'peekaboo': 8}]
result = df.append(dicts, ignore_index=True, sort=True)
expected = df.append(DataFrame(dicts), ignore_index=True, sort=True)
assert_frame_equal(result, expected)
def test_append_empty_dataframe(self):
# Empty df append empty df
df1 = DataFrame([])
df2 = DataFrame([])
result = df1.append(df2)
expected = df1.copy()
assert_frame_equal(result, expected)
# Non-empty df append empty df
df1 = DataFrame(np.random.randn(5, 2))
df2 = DataFrame()
result = df1.append(df2)
expected = df1.copy()
assert_frame_equal(result, expected)
# Empty df with columns append empty df
df1 = DataFrame(columns=['bar', 'foo'])
df2 = DataFrame()
result = df1.append(df2)
expected = df1.copy()
assert_frame_equal(result, expected)
# Non-Empty df with columns append empty df
df1 = DataFrame(np.random.randn(5, 2), columns=['bar', 'foo'])
df2 = DataFrame()
result = df1.append(df2)
expected = df1.copy()
assert_frame_equal(result, expected)
def test_append_dtypes(self):
# GH 5754
# row appends of different dtypes (so need to do by-item)
# can sometimes infer the correct type
df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(5))
df2 = DataFrame()
result = df1.append(df2)
expected = df1.copy()
assert_frame_equal(result, expected)
df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1))
df2 = DataFrame({'bar': 'foo'}, index=lrange(1, 2))
result = df1.append(df2)
expected = DataFrame({'bar': [Timestamp('20130101'), 'foo']})
assert_frame_equal(result, expected)
df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1))
df2 = DataFrame({'bar': np.nan}, index=lrange(1, 2))
result = df1.append(df2)
expected = DataFrame(
{'bar': Series([Timestamp('20130101'), np.nan], dtype='M8[ns]')})
assert_frame_equal(result, expected)
df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1))
df2 = DataFrame({'bar': np.nan}, index=lrange(1, 2), dtype=object)
result = df1.append(df2)
expected = DataFrame(
{'bar': Series([Timestamp('20130101'), np.nan], dtype='M8[ns]')})
assert_frame_equal(result, expected)
df1 = DataFrame({'bar': np.nan}, index=lrange(1))
df2 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1, 2))
result = df1.append(df2)
expected = DataFrame(
{'bar': Series([np.nan, Timestamp('20130101')], dtype='M8[ns]')})
assert_frame_equal(result, expected)
df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1))
df2 = DataFrame({'bar': 1}, index=lrange(1, 2), dtype=object)
result = df1.append(df2)
expected = DataFrame({'bar': Series([Timestamp('20130101'), 1])})
assert_frame_equal(result, expected)
def test_update(self):
df = DataFrame([[1.5, np.nan, 3.],
[1.5, np.nan, 3.],
[1.5, np.nan, 3],
[1.5, np.nan, 3]])
other = DataFrame([[3.6, 2., np.nan],
[np.nan, np.nan, 7]], index=[1, 3])
df.update(other)
expected = DataFrame([[1.5, np.nan, 3],
[3.6, 2, 3],
[1.5, np.nan, 3],
[1.5, np.nan, 7.]])
assert_frame_equal(df, expected)
def test_update_dtypes(self):
# gh 3016
df = DataFrame([[1., 2., False, True], [4., 5., True, False]],
columns=['A', 'B', 'bool1', 'bool2'])
other = DataFrame([[45, 45]], index=[0], columns=['A', 'B'])
df.update(other)
expected = DataFrame([[45., 45., False, True], [4., 5., True, False]],
columns=['A', 'B', 'bool1', 'bool2'])
assert_frame_equal(df, expected)
def test_update_nooverwrite(self):
df = DataFrame([[1.5, np.nan, 3.],
[1.5, np.nan, 3.],
[1.5, np.nan, 3],
[1.5, np.nan, 3]])
other = DataFrame([[3.6, 2., np.nan],
[np.nan, np.nan, 7]], index=[1, 3])
df.update(other, overwrite=False)
expected = DataFrame([[1.5, np.nan, 3],
[1.5, 2, 3],
[1.5, np.nan, 3],
[1.5, np.nan, 3.]])
assert_frame_equal(df, expected)
def test_update_filtered(self):
df = DataFrame([[1.5, np.nan, 3.],
[1.5, np.nan, 3.],
[1.5, np.nan, 3],
[1.5, np.nan, 3]])
other = DataFrame([[3.6, 2., np.nan],
[np.nan, np.nan, 7]], index=[1, 3])
df.update(other, filter_func=lambda x: x > 2)
expected = DataFrame([[1.5, np.nan, 3],
[1.5, np.nan, 3],
[1.5, np.nan, 3],
[1.5, np.nan, 7.]])
assert_frame_equal(df, expected)
@pytest.mark.parametrize('bad_kwarg, exception, msg', [
# errors must be 'ignore' or 'raise'
({'errors': 'something'}, ValueError, 'The parameter errors must.*'),
({'join': 'inner'}, NotImplementedError, 'Only left join is supported')
])
def test_update_raise_bad_parameter(self, bad_kwarg, exception, msg):
df = DataFrame([[1.5, 1, 3.]])
with pytest.raises(exception, match=msg):
df.update(df, **bad_kwarg)
def test_update_raise_on_overlap(self):
df = DataFrame([[1.5, 1, 3.],
[1.5, np.nan, 3.],
[1.5, np.nan, 3],
[1.5, np.nan, 3]])
other = DataFrame([[2., np.nan],
[np.nan, 7]], index=[1, 3], columns=[1, 2])
with pytest.raises(ValueError, match="Data overlaps"):
df.update(other, errors='raise')
@pytest.mark.parametrize('raise_conflict', [True, False])
def test_update_deprecation(self, raise_conflict):
df = DataFrame([[1.5, 1, 3.]])
other = DataFrame()
with tm.assert_produces_warning(FutureWarning):
df.update(other, raise_conflict=raise_conflict)
def test_update_from_non_df(self):
d = {'a': Series([1, 2, 3, 4]), 'b': Series([5, 6, 7, 8])}
df = DataFrame(d)
d['a'] = Series([5, 6, 7, 8])
df.update(d)
Loading ...