Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

agriconnect / pandas   python

Repository URL to install this package:

Version: 0.24.2 

/ tests / indexes / datetimes / test_datetime.py

from datetime import date

import dateutil
import numpy as np
import pytest

from pandas.compat import lrange

import pandas as pd
from pandas import (
    DataFrame, DatetimeIndex, Index, Timestamp, date_range, offsets)
import pandas.util.testing as tm
from pandas.util.testing import assert_almost_equal

randn = np.random.randn


class TestDatetimeIndex(object):

    def test_roundtrip_pickle_with_tz(self):

        # GH 8367
        # round-trip of timezone
        index = date_range('20130101', periods=3, tz='US/Eastern', name='foo')
        unpickled = tm.round_trip_pickle(index)
        tm.assert_index_equal(index, unpickled)

    def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self):
        # GH7774
        index = date_range('20130101', periods=3, tz='US/Eastern')
        assert str(index.reindex([])[0].tz) == 'US/Eastern'
        assert str(index.reindex(np.array([]))[0].tz) == 'US/Eastern'

    def test_time_loc(self):  # GH8667
        from datetime import time
        from pandas._libs.index import _SIZE_CUTOFF

        ns = _SIZE_CUTOFF + np.array([-100, 100], dtype=np.int64)
        key = time(15, 11, 30)
        start = key.hour * 3600 + key.minute * 60 + key.second
        step = 24 * 3600

        for n in ns:
            idx = pd.date_range('2014-11-26', periods=n, freq='S')
            ts = pd.Series(np.random.randn(n), index=idx)
            i = np.arange(start, n, step)

            tm.assert_numpy_array_equal(ts.index.get_loc(key), i,
                                        check_dtype=False)
            tm.assert_series_equal(ts[key], ts.iloc[i])

            left, right = ts.copy(), ts.copy()
            left[key] *= -10
            right.iloc[i] *= -10
            tm.assert_series_equal(left, right)

    def test_time_overflow_for_32bit_machines(self):
        # GH8943.  On some machines NumPy defaults to np.int32 (for example,
        # 32-bit Linux machines).  In the function _generate_regular_range
        # found in tseries/index.py, `periods` gets multiplied by `strides`
        # (which has value 1e9) and since the max value for np.int32 is ~2e9,
        # and since those machines won't promote np.int32 to np.int64, we get
        # overflow.
        periods = np.int_(1000)

        idx1 = pd.date_range(start='2000', periods=periods, freq='S')
        assert len(idx1) == periods

        idx2 = pd.date_range(end='2000', periods=periods, freq='S')
        assert len(idx2) == periods

    def test_nat(self):
        assert DatetimeIndex([np.nan])[0] is pd.NaT

    def test_week_of_month_frequency(self):
        # GH 5348: "ValueError: Could not evaluate WOM-1SUN" shouldn't raise
        d1 = date(2002, 9, 1)
        d2 = date(2013, 10, 27)
        d3 = date(2012, 9, 30)
        idx1 = DatetimeIndex([d1, d2])
        idx2 = DatetimeIndex([d3])
        result_append = idx1.append(idx2)
        expected = DatetimeIndex([d1, d2, d3])
        tm.assert_index_equal(result_append, expected)
        result_union = idx1.union(idx2)
        expected = DatetimeIndex([d1, d3, d2])
        tm.assert_index_equal(result_union, expected)

        # GH 5115
        result = date_range("2013-1-1", periods=4, freq='WOM-1SAT')
        dates = ['2013-01-05', '2013-02-02', '2013-03-02', '2013-04-06']
        expected = DatetimeIndex(dates, freq='WOM-1SAT')
        tm.assert_index_equal(result, expected)

    def test_hash_error(self):
        index = date_range('20010101', periods=10)
        with pytest.raises(TypeError, match=("unhashable type: %r" %
                                             type(index).__name__)):
            hash(index)

    def test_stringified_slice_with_tz(self):
        # GH#2658
        import datetime
        start = datetime.datetime.now()
        idx = date_range(start=start, freq="1d", periods=10)
        df = DataFrame(lrange(10), index=idx)
        df["2013-01-14 23:44:34.437768-05:00":]  # no exception here

    def test_append_join_nondatetimeindex(self):
        rng = date_range('1/1/2000', periods=10)
        idx = Index(['a', 'b', 'c', 'd'])

        result = rng.append(idx)
        assert isinstance(result[0], Timestamp)

        # it works
        rng.join(idx, how='outer')

    def test_map(self):
        rng = date_range('1/1/2000', periods=10)

        f = lambda x: x.strftime('%Y%m%d')
        result = rng.map(f)
        exp = Index([f(x) for x in rng], dtype='<U8')
        tm.assert_index_equal(result, exp)

    def test_map_fallthrough(self, capsys):
        # GH#22067, check we don't get warnings about silently ignored errors
        dti = date_range('2017-01-01', '2018-01-01', freq='B')

        dti.map(lambda x: pd.Period(year=x.year, month=x.month, freq='M'))

        captured = capsys.readouterr()
        assert captured.err == ''

    def test_iteration_preserves_tz(self):
        # see gh-8890
        index = date_range("2012-01-01", periods=3, freq='H', tz='US/Eastern')

        for i, ts in enumerate(index):
            result = ts
            expected = index[i]
            assert result == expected

        index = date_range("2012-01-01", periods=3, freq='H',
                           tz=dateutil.tz.tzoffset(None, -28800))

        for i, ts in enumerate(index):
            result = ts
            expected = index[i]
            assert result._repr_base == expected._repr_base
            assert result == expected

        # 9100
        index = pd.DatetimeIndex(['2014-12-01 03:32:39.987000-08:00',
                                  '2014-12-01 04:12:34.987000-08:00'])
        for i, ts in enumerate(index):
            result = ts
            expected = index[i]
            assert result._repr_base == expected._repr_base
            assert result == expected

    @pytest.mark.parametrize('periods', [0, 9999, 10000, 10001])
    def test_iteration_over_chunksize(self, periods):
        # GH21012

        index = date_range('2000-01-01 00:00:00', periods=periods, freq='min')
        num = 0
        for stamp in index:
            assert index[num] == stamp
            num += 1
        assert num == len(index)

    def test_misc_coverage(self):
        rng = date_range('1/1/2000', periods=5)
        result = rng.groupby(rng.day)
        assert isinstance(list(result.values())[0][0], Timestamp)

        idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02'])
        assert not idx.equals(list(idx))

        non_datetime = Index(list('abc'))
        assert not idx.equals(list(non_datetime))

    def test_string_index_series_name_converted(self):
        # #1644
        df = DataFrame(np.random.randn(10, 4),
                       index=date_range('1/1/2000', periods=10))

        result = df.loc['1/3/2000']
        assert result.name == df.index[2]

        result = df.T['1/3/2000']
        assert result.name == df.index[2]

    def test_get_duplicates(self):
        idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02',
                             '2000-01-03', '2000-01-03', '2000-01-04'])

        with tm.assert_produces_warning(FutureWarning):
            # Deprecated - see GH20239
            result = idx.get_duplicates()

        ex = DatetimeIndex(['2000-01-02', '2000-01-03'])
        tm.assert_index_equal(result, ex)

    def test_argmin_argmax(self):
        idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02'])
        assert idx.argmin() == 1
        assert idx.argmax() == 0

    def test_sort_values(self):
        idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02'])

        ordered = idx.sort_values()
        assert ordered.is_monotonic

        ordered = idx.sort_values(ascending=False)
        assert ordered[::-1].is_monotonic

        ordered, dexer = idx.sort_values(return_indexer=True)
        assert ordered.is_monotonic
        tm.assert_numpy_array_equal(dexer, np.array([1, 2, 0], dtype=np.intp))

        ordered, dexer = idx.sort_values(return_indexer=True, ascending=False)
        assert ordered[::-1].is_monotonic
        tm.assert_numpy_array_equal(dexer, np.array([0, 2, 1], dtype=np.intp))

    def test_map_bug_1677(self):
        index = DatetimeIndex(['2012-04-25 09:30:00.393000'])
        f = index.asof

        result = index.map(f)
        expected = Index([f(index[0])])
        tm.assert_index_equal(result, expected)

    def test_groupby_function_tuple_1677(self):
        df = DataFrame(np.random.rand(100),
                       index=date_range("1/1/2000", periods=100))
        monthly_group = df.groupby(lambda x: (x.year, x.month))

        result = monthly_group.mean()
        assert isinstance(result.index[0], tuple)

    def test_append_numpy_bug_1681(self):
        # another datetime64 bug
        dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI')
        a = DataFrame()
        c = DataFrame({'A': 'foo', 'B': dr}, index=dr)

        result = a.append(c)
        assert (result['B'] == dr).all()

    def test_isin(self):
        index = tm.makeDateIndex(4)
        result = index.isin(index)
        assert result.all()

        result = index.isin(list(index))
        assert result.all()

        assert_almost_equal(index.isin([index[2], 5]),
                            np.array([False, False, True, False]))

    def test_does_not_convert_mixed_integer(self):
        df = tm.makeCustomDataframe(10, 10,
                                    data_gen_f=lambda *args, **kwargs: randn(),
                                    r_idx_type='i', c_idx_type='dt')
        cols = df.columns.join(df.index, how='outer')
        joined = cols.join(df.columns)
        assert cols.dtype == np.dtype('O')
        assert cols.dtype == joined.dtype
        tm.assert_numpy_array_equal(cols.values, joined.values)

    def test_join_self(self, join_type):
        index = date_range('1/1/2000', periods=10)
        joined = index.join(index, how=join_type)
        assert index is joined

    def assert_index_parameters(self, index):
        assert index.freq == '40960N'
        assert index.inferred_freq == '40960N'

    def test_ns_index(self):
        nsamples = 400
        ns = int(1e9 / 24414)
        dtstart = np.datetime64('2012-09-20T00:00:00')

        dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, 'ns')
        freq = ns * offsets.Nano()
        index = pd.DatetimeIndex(dt, freq=freq, name='time')
        self.assert_index_parameters(index)

        new_index = pd.date_range(start=index[0], end=index[-1],
                                  freq=index.freq)
        self.assert_index_parameters(new_index)

    def test_join_with_period_index(self, join_type):
        df = tm.makeCustomDataframe(
            10, 10, data_gen_f=lambda *args: np.random.randint(2),
            c_idx_type='p', r_idx_type='dt')
        s = df.iloc[:5, 0]

        msg = 'can only call with other PeriodIndex-ed objects'
        with pytest.raises(ValueError, match=msg):
            df.columns.join(s.index, how=join_type)

    def test_factorize(self):
        idx1 = DatetimeIndex(['2014-01', '2014-01', '2014-02', '2014-02',
                              '2014-03', '2014-03'])

        exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp)
        exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03'])

        arr, idx = idx1.factorize()
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, exp_idx)

        arr, idx = idx1.factorize(sort=True)
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, exp_idx)

        # tz must be preserved
        idx1 = idx1.tz_localize('Asia/Tokyo')
        exp_idx = exp_idx.tz_localize('Asia/Tokyo')

        arr, idx = idx1.factorize()
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, exp_idx)

        idx2 = pd.DatetimeIndex(['2014-03', '2014-03', '2014-02', '2014-01',
                                 '2014-03', '2014-01'])

        exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.intp)
        exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03'])
        arr, idx = idx2.factorize(sort=True)
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, exp_idx)

        exp_arr = np.array([0, 0, 1, 2, 0, 2], dtype=np.intp)
        exp_idx = DatetimeIndex(['2014-03', '2014-02', '2014-01'])
        arr, idx = idx2.factorize()
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, exp_idx)

        # freq must be preserved
        idx3 = date_range('2000-01', periods=4, freq='M', tz='Asia/Tokyo')
        exp_arr = np.array([0, 1, 2, 3], dtype=np.intp)
        arr, idx = idx3.factorize()
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, idx3)

    def test_factorize_tz(self, tz_naive_fixture):
        tz = tz_naive_fixture
        # GH#13750
        base = pd.date_range('2016-11-05', freq='H', periods=100, tz=tz)
        idx = base.repeat(5)

        exp_arr = np.arange(100, dtype=np.intp).repeat(5)

        for obj in [idx, pd.Series(idx)]:
            arr, res = obj.factorize()
            tm.assert_numpy_array_equal(arr, exp_arr)
            tm.assert_index_equal(res, base)

    def test_factorize_dst(self):
        # GH 13750
        idx = pd.date_range('2016-11-06', freq='H', periods=12,
                            tz='US/Eastern')

        for obj in [idx, pd.Series(idx)]:
            arr, res = obj.factorize()
            tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp))
            tm.assert_index_equal(res, idx)

        idx = pd.date_range('2016-06-13', freq='H', periods=12,
                            tz='US/Eastern')

        for obj in [idx, pd.Series(idx)]:
            arr, res = obj.factorize()
            tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp))
            tm.assert_index_equal(res, idx)

    @pytest.mark.parametrize('arr, expected', [
        (pd.DatetimeIndex(['2017', '2017']), pd.DatetimeIndex(['2017'])),
        (pd.DatetimeIndex(['2017', '2017'], tz='US/Eastern'),
         pd.DatetimeIndex(['2017'], tz='US/Eastern')),
    ])
    def test_unique(self, arr, expected):
        result = arr.unique()
        tm.assert_index_equal(result, expected)
        # GH 21737
        # Ensure the underlying data is consistent
        assert result[0] == expected[0]

    def test_asarray_tz_naive(self):
        # This shouldn't produce a warning.
        idx = pd.date_range('2000', periods=2)
        # M8[ns] by default
        with tm.assert_produces_warning(None):
            result = np.asarray(idx)

        expected = np.array(['2000-01-01', '2000-01-02'], dtype='M8[ns]')
        tm.assert_numpy_array_equal(result, expected)

        # optionally, object
        with tm.assert_produces_warning(None):
            result = np.asarray(idx, dtype=object)

        expected = np.array([pd.Timestamp('2000-01-01'),
                             pd.Timestamp('2000-01-02')])
        tm.assert_numpy_array_equal(result, expected)

    def test_asarray_tz_aware(self):
        tz = 'US/Central'
        idx = pd.date_range('2000', periods=2, tz=tz)
        expected = np.array(['2000-01-01T06', '2000-01-02T06'], dtype='M8[ns]')
        # We warn by default and return an ndarray[M8[ns]]
        with tm.assert_produces_warning(FutureWarning):
            result = np.asarray(idx)

        tm.assert_numpy_array_equal(result, expected)

        # Old behavior with no warning
        with tm.assert_produces_warning(None):
            result = np.asarray(idx, dtype="M8[ns]")

        tm.assert_numpy_array_equal(result, expected)

        # Future behavior with no warning
        expected = np.array([pd.Timestamp("2000-01-01", tz=tz),
                             pd.Timestamp("2000-01-02", tz=tz)])
        with tm.assert_produces_warning(None):
            result = np.asarray(idx, dtype=object)

        tm.assert_numpy_array_equal(result, expected)